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Rickettsia species are strictly intracellular bacteria that evolved approximately 150 million years ago from a presumably free-living common ancestor from the order Rickettsiales that followed a transition to an obligate intracellular lifestyle. Rickettsiae are best known as human pathogens vectored by various arthropods causing a range of mild to severe human diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have undergone a convergent evolution that includes a strong genomic reduction resulting from progressive gene degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably small RNAs and short palindromic elements whose role remains unknown. This reductive evolutionary process is not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component biosynthesis and transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins. Surprisingly the most virulent Rickettsia species were shown to have the most drastically reduced and degraded genomes compared to closely related species of milder pathogenesis. In contrast, the less pathogenic species harbored the greatest number of mobile genetic elements. Thus, this distinct evolutionary process observed in Rickettsia species may be correlated with the differences in virulence and pathogenicity observed in these obligate intracellular bacteria. However, future investigations are needed to provide novel insights into the evolution of genome sizes and content, for that a better understanding of the balance between proliferation and elimination of genetic material in these intracellular bacteria is required.

Introduction

The genus Rickettsia (order Rickettsiales, family Rickettsiaceae) comprises strictly intracellular α-proteobacteria mostly associated with diverse arthropod vectors around the world [START_REF] Raoult | Rickettsioses as paradigms of new or emerging infectious diseases[END_REF][START_REF] Stothard | Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia[END_REF]. Rickettsia species evolved approximately 150 million years ago from a common ancestor of Rickettsiales that was presumably free-living, and progressively followed a transition to an obligate intracellular lifestyle that occurred 775-525 million years ago and then to primarily infecting arthropod lineages approximately 525-425 million years ago [START_REF] El Karkouri | Genome sequence of the tick-borne pathogen Rickettsia raoultii[END_REF][START_REF] Merhej | Rickettsial evolution in the light of comparative genomics[END_REF]Lucy A Weinert et al., 2009). These bacteria are also well known to infect mammalian hosts, mostly through arthropod bites or arthropod feces infecting scratching lesions. On the basis of their phenotypic properties, vector hosts and phylogenetic organization, Rickettsia species were split into three to four groups by different authors (Figure 1): i) the spotted fever group (SFG, Figure 1) contains many spotted fever-causing species as well as numerous species of as-yet unknown pathogenicity. SFG rickettsiae are mostly associated with ticks, but also fleas and mites [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF]; ii) the second phylogenetic group, the typhus group (TG, Figure 1) is only made of R. prowazekii and R. typhi that cause epidemic and murine typhus, and are associated with human body lice and rat fleas, respectively [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF]; iii) the ancestral group includes R. bellii and R. canadensis. These species diverged early from SFG and TG rickettsiae, are associated with ticks but do not cause human disease (Figure 1) [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF]; iv) a fourth group, named transitional group, was proposed by Gillespie et al. to include SFG species phylogenetically close to R. felis [START_REF] Gillespie | Plasmids and rickettsial evolution: insight from Rickettsia felis[END_REF]. However, as these species do not exhibit significant differences with other SFG species except their phylogenetic position, several authors discussed the validity of this latter group [START_REF] Shpynov | New approaches in the systematics of rickettsiae[END_REF].

Rickettsia species cause a range of illnesses, from mild and self-limiting to severe and life-threatening diseases [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF]. Currently, the most common rickettsioses are African tick-bite fever caused by R. africae, scalp eschar and neck lymphadenopathy (SENLAT) caused by R. slovaca, Mediterranean spotted fever (MSF) caused by R. conorii, Rocky Mountain spotted fever (RMSF) caused by R. rickettsii and murine typhus caused by R. typhi. [START_REF] El Karkouri | Multiomics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp[END_REF][START_REF] Parola | Update on tick-borne rickettsioses around the World: a geographic approach[END_REF][START_REF] Sahni | Recent molecular insights into rickettsial pathogenesis and immunity[END_REF]. Rickettsia prowazekii, the historical agent of epidemic typhus, is only rarely encountered currently but has a strong epidemic potential [START_REF] Parola | Update on tick-borne rickettsioses around the World: a geographic approach[END_REF]. Furthermore, recent studies have reported the association of other Rickettsia lineages with other reservoirs including protozoa, algae, leeches, plants or insects [START_REF] Merhej | Rickettsial evolution in the light of comparative genomics[END_REF][START_REF] Munson | Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene: sequence determination, and promoter and terminator analysis[END_REF]Weinert et al., 2009).

In 1998, the first complete Rickettsia genome, that of R. prowazekii strain Madrid E, was sequenced (Andersson et al., 1998). It was the seventh bacterial genome to be sequenced.

Subsequently, the genomes of many Rickettsia species have been fully sequenced, allowing a better knowledge of the molecular mechanisms involved in their pathogenicity [START_REF] Balraj | Advances in Rickettsia pathogenicity[END_REF]. Genome sequencing also appeared as a potential tool to revolutionize the phylogenetic and evolutionary investigations of prokaryotes, especially endosymbiotic bacteria. Hence, deciphering rickettsial genomes appeared as an efficient tool to understand the evolution of these obligate intracellular bacteria.

General features of rickettsia genomes

Rickettsia species have small genome sizes and low G+C contents. SFG and TG rickettsiae exhibit genome sizes of 1.25 to 2.3 Mb, and 1.11 Mb, respectively. They also exhibit G+C contents ranging from 32.2 to 33.0% and 28.9 to 29.0%, respectively. Rickettsia species have numbers of predicted protein-coding genes varying between 817 and 2,479 and most of them maintain a near perfect chromosomal synteny [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF], which enabled the identification of an ongoing and progressive genome degradation [START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF]. Rickettsial genomes contain many functional or unfunctional pseudogenes and possess a high percentage of non-coding DNA (Blanc et al., 2007;[START_REF] Mcleod | Complete Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae[END_REF]) (Fig. 2). This percentage of non-coding DNA ranges from 16.2% for R. felis to 31% for R. massiliae. Rickettsia prowazekii, the most reduced rickettsial genome contains 24% of non-coding sequence. By comparison, Chlamydia trachomatis, another strictly intracellular bacterium, possesses only 10% non-coding DNA (Andersson et al., 1998;[START_REF] Holste | Are noncoding sequences of Rickettsia prowazekii remnants of ``neutralized'' genes?[END_REF][START_REF] Rogozin | Congruent evolution of different classes of non-coding DNA in prokaryotic genomes[END_REF].This pseudogenization progressively leads to a genome downsizing and results from a switch from a free-living to an obligate intracellular lifestyle. This progressive reductive evolution has allowed rickettsiae to purge unnecessary and redundant genes mainly involved in metabolisms supplied by eukaryotic host cells [START_REF] Georgiades | Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules[END_REF][START_REF] Merhej | Massive comparative genomic analysis reveals convergent evolution of specialized bacteria[END_REF]. Paradoxically to this ongoing genomic reduction, rickettsial genomes exhibit another marker of convergent evolution, i. e., the expansion of genetic elements including small RNAs, tandem repeats, short palindromic elements named rickettsia palindromic elements (RPEs) [START_REF] Ogata | Protein coding palindromes are a unique but recurrent feature in Rickettsia[END_REF], ankyrin and tetratricopeptide repeats and gene family duplication mainly ADP-ATP translocases, toxin-antitoxin modules and type IV secretion system (T4SS).

Another unexpected property of rickettsial genomes is the presence of plasmids, the first described in obligate intracellular bacteria. The first plasmid was identified in R. felis (Ogata et al., 2005a). To date, at least 20 rickettsial plasmids have been described in 11 species. Their number varies from 1 to 4 per species/strain [START_REF] Baldridge | Transposon insertion reveals pRM, a plasmid of Rickettsia monacensis[END_REF]G. Blanc et al., 2007;[START_REF] El Karkouri | Genome sequence of the tick-borne pathogen Rickettsia raoultii[END_REF]. These findings suggest possible exchanges of genetic material by conjugation, a mechanism that was thought to be absent in obligate intracellular and allopatric bacteria [START_REF] Georgiades | Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules[END_REF][START_REF] Merhej | Massive comparative genomic analysis reveals convergent evolution of specialized bacteria[END_REF]Ogata et al., 2005a).

Rickettsia genome in an ongoing convergent evolution

Ongoing reductive evolution of Rickettsial genomes

Following their adaptation from a free-living to an obligate intracellular lifestyle in eukaryotic cells, rickettsiae underwent genomic changes to fit their specific bottleneck ecosystem, resulting not only in a reducing genome size but also in a specific genomic architecture [START_REF] Keeling | Archaebacterial genomes: eubacterial form and eukaryotic content[END_REF][START_REF] Sicheritz-Pontén | GRS: a graphic tool for genome retrieval and segment analysis[END_REF]. Comparative genomics revealed that rickettsiae, by taking advantage of host cell metabolites, underwent a genome reductive evolution [START_REF] Georgiades | Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules[END_REF][START_REF] Merhej | Massive comparative genomic analysis reveals convergent evolution of specialized bacteria[END_REF] that occurred through a progressive pseudogenization (Fig. 2) and gene loss of selected biosynthetic pathway components (Andersson et al., 1998;[START_REF] Audia | Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides[END_REF][START_REF] Fournier | Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction[END_REF][START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF][START_REF] Sakharkar | Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis[END_REF][START_REF] Walker | Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi[END_REF][START_REF] Wolf | Genome reduction as the dominant mode of evolution: prospects & overviews[END_REF]. In addition, genomic degradation was detrimental for the G+C content, as it led to an enrichment in A+T, in particular in the high proportion of non-coding DNA [START_REF] Sakharkar | Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis[END_REF]. However, a great variation in chromosome size, ranging from 1.1 to 2.3 Mb, is observed in rickettsiae [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF], indicating that some species are at a more advanced stage of reductive genomic evolution (TG rickettsiae) than others (SFG rickettsiae) [START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF]. In ehrlichiae, a similar genomic reduction is observed, but the G+C content may remain as high as 49.8% in Anaplasma species [START_REF] Dunning Hotopp | Comparative genomics of emerging human ehrlichiosis agents[END_REF], suggesting that the reductive process in these bacteria had a lesser impact on the G+C content degradation. Rickettsial genomes are characterized by a high rate of accumulation of slightly harmful deletions, mutations and insertions [START_REF] Brynnel | Evolutionary rates for tuf genes in endosymbionts of aphids[END_REF]. Alternatively, gene loss can also result from the accumulations of small mutations. The formation of internal stop codons within intact genes can occur through the creation of a frameshit by single base mutation, insertion or deletion [START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF]. This induces the genome degradation resulting from fragmented gene accumulation or gene remnants. An unexpected finding of rickettsial genomics was that the most virulent species had the most reduced genomes [START_REF] Fournier | Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction[END_REF]. Such a finding is not an isolated phenomenon as in Mycobacterium, Streptococcus spp., Corynebacterium spp. and other genera, the highest degree of gene loss is observed in the most virulent species when compared to closely related and milder or nonpathogenic species (Blanc et al., 2007;[START_REF] Merhej | Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors[END_REF][START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF]. Many of the genes required by free-living bacteria are absent in Rickettsia [START_REF] Bechah | Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities[END_REF] and degraded genes include mostly those involved in the biosynthesis of nutrients [START_REF] Blanc | Molecular evolution of Rickettsia surface antigens: evidence of positive selection[END_REF][START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF][START_REF] Renesto | Some lessons from Rickettsia genomics[END_REF]. For example, Rickettsia exhibits few genes for de novo nucleotide synthesis, i. e., only those for conversion of nucleoside monophosphates into all other nucleotides, implying that they take up nucleoside monophosphates from the host [START_REF] Wixon | Featured organism: reductive evolution in bacteria: Buchnera sp., Rickettsia prowazekii and Mycobacterium leprae[END_REF]. Analysis of R. conorii and R. prowazekii genomes [START_REF] Dunning Hotopp | Comparative genomics of emerging human ehrlichiosis agents[END_REF][START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF] revealed that genes coding glycolytic enzymes and those required for nucleotide or cofactor biosynthesis are totally absent in R. conorii and R. prowazekii when compared to most genera in the order Rickettsiales that have complete glycolytic pathways. Nevertheless, rickettsiae must obtain glycerol-3-phosphate from the host via a glycerol-3-phosphate transporter [START_REF] Dunning Hotopp | Comparative genomics of emerging human ehrlichiosis agents[END_REF]. This ATP production profile is similar for Rickettsia and mitochondria, as they possess a high number of ATP/ADP translocases, suggesting that they have both evolved from a common ancestor (Andersson et al., 1998;[START_REF] Renesto | Some lessons from Rickettsia genomics[END_REF]. In addition, the genome sequencing of R. prowazekii revealed a lack of amino acid metabolism such as those for glutamate metabolism (Andersson et al., 1998;[START_REF] Fuxelius | The genomic and metabolic diversity of Rickettsia[END_REF]. The enzymes involved in the aspartate and alanine metabolism pathways, and those playing a role in the biosynthesis of leucine, valine, isoleucine and aromatic amino acids (tryptophan, tyrosine, phenylalanine) are similarly missing in Rickettsia species [START_REF] Renesto | Some lessons from Rickettsia genomics[END_REF], suggesting the use of host-derived amino acids for their growth, survival and replication. Additionally, all Rickettsia species except R. belli have a reduced set of folate biosynthesis genes (Fuxelius et al., 2007). In TG rickettsiae all five genes required for the de novo folate biosynthesis are lacking [START_REF] Hunter | The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis[END_REF]. Furthermore, a limited set of genes for LPS and cell wall component biosynthesis, including lipid-A and peptidoglycan, respectively, were identified in Rickettsia species [START_REF] Fuxelius | The genomic and metabolic diversity of Rickettsia[END_REF]. The rickettsial surface protein-coding genes rickA and sca2 are another example of genes that were degraded or eliminated by Rickettsia species during their specialization. The RickA protein participates in actin polymerization through the activation of Arp2/3 similar to that found in Listeria monocytogenes and Shigella spp. (Balraj et al., 2008b;[START_REF] Gouin | The RickA protein of Rickettsia conorii activates the Arp2/3 complex[END_REF][START_REF] Gouin | A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii[END_REF]. While lacking in the TG, rickA is present in all AG and SFG rickettsial genomes avalaible [START_REF] Baldridge | Analysis of fluorescent protein expression in transformants of Rickettsia monacensis, an obligate intracellular tick symbiont[END_REF]Balraj et al., 2008aBalraj et al., , 2008b;;[START_REF] Heinzen | Directional actin polymerization associated with spotted fever group Rickettsia infection of vero cells[END_REF][START_REF] Jeng | A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actinbased motility: Rickettsia RickA activates the Arp2/3 complex[END_REF][START_REF] Mcleod | Complete Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae[END_REF][START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF][START_REF] Ogata | Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens[END_REF]Ogata et al., , 2005a)). The absence of rickA in R. prowazekii is not surprising if we consider its lack of actin motility. In contrast, R. typhi exhibits a unique and erratic actin-based motility despite having a nonfunctional RickA protein [START_REF] Mcleod | Complete Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae[END_REF][START_REF] Reed | Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators[END_REF]. In addition, R. canadensis expresses RickA but does not exhibit actin-based motility [START_REF] Heinzen | Directional actin polymerization associated with spotted fever group Rickettsia infection of vero cells[END_REF]. These data suggest the possible involvement of other actin polymerization mechanisms and that RickA alone may not be sufficient or required for actin-based rickettsial motility.

Nevertheless, it was proposed that RickA originated early in rickettsial evolution and may have been lost during the divergence of the TG. Recent research suggests that Rickettsia spp. use also Sca2 for actin-based motility with a distinct mechanism compared to RickA. Sca2 was found to be intact in R. conorii, absent in R. prowazekii and pseudogenized in R. typhi [START_REF] Mcleod | Complete Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae[END_REF]. In R. typhi, Sca2 lacks the FH1 (formin homology 1) domain and contains only a proline-rich tract and a series of five WH2 domains (β-domains) in different locations with a divergence in sequences [START_REF] Sears | Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi[END_REF]. The evolutionary process of genome degradation in rickettsiae led to loss of transcriptional regulator genes with a decreased translational capacity as observed in R. prowazekii (Andersson and Kurland, 1998), despite conserved gene sets coding for toxins, toxin-antitoxin (TA) modules and recombination and DNA repair proteins most likely needed for protection against host immune response [START_REF] Moran | Microbial minimalism: genome reduction in bacterial pathogens[END_REF].

The reductive evolution of rickettsial genomes is not only the consequence of gene degradation or loss, but it is also linked to a differential expression level of genes [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF]. Some genes under the influence of evolutionary forces are dormant or repressed while others under this effect are overexpressed. Recent research involving two virulent and two milder SFG rickettsiae demonstrated that the two virulent agents R. conorii (MSF) and R. slovaca (SENLAT) have the most reduced genome and displayed less up-regulated than down-regulated genes than the milder R. massiliae and R. raoultii causing MSF and SENLAT, respectively [START_REF] El Karkouri | Multiomics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp[END_REF], that have less reduced genomes.

Consequently, to adapt to their specific intracellular environment, Rickettsia species were shaped by distinct evolutionary processes. The most pathogenic species are characterized by a strong reductive genomic evolution, with a higher genome degradation rate and accumulation of non-coding DNA than less pathogenic species. These findings suggest that reductive genomic evolution, resulting in protein structural variations, is associated to the emergence of virulence [START_REF] El Karkouri | Multiomics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp[END_REF]. It was speculated that the loss of regulator genes, as observed in several intracellular pathogens, is a critical cause of virulence [START_REF] Darby | Intracellular pathogens go extreme: genome evolution in the Rickettsiales[END_REF]. This reductive genomic evolution appears to have occurred in several other human pathogens that have no common intracellular ancestor with Rickettsia such as Treponema spp., Mycobacterium spp. or Yersinia spp [START_REF] Merhej | Massive comparative genomic analysis reveals convergent evolution of specialized bacteria[END_REF][START_REF] Walker | Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi[END_REF][START_REF] Wixon | Featured organism: reductive evolution in bacteria: Buchnera sp., Rickettsia prowazekii and Mycobacterium leprae[END_REF].

Overall, during the course of evolution, rickettsial genomes exhibit a trend toward gene loss rather than acquisition, but strong selective effects co-exist with functional duplication required for survival.

Gene order, recombination events and ''junk DNA'' in rickettsial genomes

A comparison of 13 rickettsial genomes [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF] demonstrated that they exhibit a highly conserved synteny and present few genomic rearrangements, except for R. bellii that exhibits little colinearity with other genomes, and R. felis that underwent several inversions.

In addition, R. typhi, underwent a 35-kb inversion close to the replication terminus and a specific 124-kb inversion nearby the origin of replication when compared to R. prowazekii and R. conorii [START_REF] Mcleod | Complete Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae[END_REF]. As in other bacteria, inversions that occured in the origin of replication region are also found in R. australis, R. helvetica and R. honei (X. Dong et al., 2012;Xin Dong et al., 2012;[START_REF] Xin | Genomic comparison of Rickettsia honei strain RBT and other Rickettsia Species[END_REF], indicating that this region constitutes a hotspot for genomic rearrangement [START_REF] Eisen | Evidence for symmetric chromosomal inversions around the replication origin in bacteria[END_REF]. Homologous intra-chromosomal recombination, the principal mechanism for genomic rearrangement in rickettsiae, occured between repeated sequences or by site-specific recombination. Consequently, duplications, deletions and inversions arose through these structures (Andersson and Kurland, 1998;[START_REF] Krawiec | Organization of the bacterial chromosome[END_REF]). Such events have been observed in Rickettsia spp., in the so-called super-ribosomal protein gene operon. Highly conserved in a broad range of bacteria and archaea, this operon consists of about 40 genes located in seven operons in the same order [START_REF] Sicheritz-Pontén | GRS: a graphic tool for genome retrieval and segment analysis[END_REF]. Despite their conserved order in many bacteria including E. coli and Bacillus subtilis, genes in the ribosomal protein gene operon are scattered around the genomes of Haemophilus influenzae, Mycoplasma genitalium and R.

prowazeki (Andersson and Kurland, 1998;[START_REF] Fraser | The minimal gene complement of Mycoplasma genitalium[END_REF]. Ribosomal RNA genes in bacterial genomes are normally organized into an operon with a conserved order 16S-23S-5S, and tRNA genes are often found in the spacer between the 16S and the 23S rRNA genes [START_REF] Krawiec | Organization of the bacterial chromosome[END_REF]. However, an unusual arrangement of rRNA genes has been observed in all avalaible Rickettsia genomes, as the 16S rRNA gene is separated from the 23S and 5S rRNA gene cluster (Andersson et al., 1999;[START_REF] Munson | Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene: sequence determination, and promoter and terminator analysis[END_REF]. A similar organization is observed in all members of the order Rickettsiales [START_REF] Dunning Hotopp | Comparative genomics of emerging human ehrlichiosis agents[END_REF]. The upstream spacer of the rearranged 23S rRNA gene in some Rickettsia species contains short repetitive sequences that have been eliminated in other related species, suggesting that the rearrangement of rRNA genes occurred by intra-chromosomal recombination prior to speciation in Rickettsia spp. Rickettsial genome analysis highlighted a second major genomic rearrangement in rickettsiae, the elongation factor proteins (tuf and fus) being present in more than one copy in Rickettsia genomes [START_REF] Syvänen | A chimeric disposition of the elongation factor genes in Rickettsia prowazekii[END_REF]. These genes can serve as repeat sequences, and initiate a rapid gene loss through intra-chromosomal recombination [START_REF] Krawiec | Organization of the bacterial chromosome[END_REF]. In addition, the degree and positions of deletions caused by intra-chromosomal recombination in Rickettsia is different among the species, which suggests that the homologous recombination is an ongoing process that may result in an ongoing genes loss under weak or no selection pressure.

When compared to other bacterial genomes, rickettsial genomes have a high percentage of non-coding DNA sequences which also contains many DNA repeat sequences [START_REF] Holste | Are noncoding sequences of Rickettsia prowazekii remnants of ``neutralized'' genes?[END_REF][START_REF] Rogozin | Congruent evolution of different classes of non-coding DNA in prokaryotic genomes[END_REF]. Non-coding DNA in rickettsial genomes is traditionally considered as "junk DNA" resulting from gene degradation. R. prowazekii and R. typhi, the most reduced rickettsial genomes, harbor high rates of non-coding DNA with 24.6 and 23.7%, respectively. However, R. bellii exhibits the lowest rickettsial level of non-coding DNA with 14.8% [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF].

Paradoxical genomic expansions

From a general point of view, rickettsial genomes are typical of those of symbiotic bacteria, in which the reductive trend is the dominant mode of evolution (Andersson and Andersson, 1999;[START_REF] Georgiades | Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules[END_REF][START_REF] Merhej | Massive comparative genomic analysis reveals convergent evolution of specialized bacteria[END_REF][START_REF] Ogata | Rickettsia felis, from culture to genome sequencing[END_REF]. However, despite this reductive evolution, a paradoxical expansion of genetic elements can still occur in rickettsial genomes [START_REF] Ogata | Protein coding palindromes are a unique but recurrent feature in Rickettsia[END_REF]. Genome sequence analysis revealed that rickettsial genome expansion may occur through proliferation of selfish DNA (small non coding RNAs (sRNAs) and rickettsia palindromic elements (RPEs)), gene duplications and horizontal gene transfer [START_REF] Merhej | Rickettsial evolution in the light of comparative genomics[END_REF]. Bacterial non-coding RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting) [START_REF] Schroeder | Bacterial small RNAs in the genus Rickettsia[END_REF], were well documented in many bacterial taxa including Enterobacteriaceae, Listeria monocytogenes, Clostridium perfringens, Staphylococcus aureus, Pseudomonas aeruginosa and Mycobacterium tuberculosis [START_REF] Papenfort | Target activation by regulatory RNAs in bacteria[END_REF]. sRNAs are classified among the most important post-transcriptional regulators involved in virulence and adaptation depending on the host niche, through transcriptomic regulation [START_REF] Schroeder | Bacterial small RNAs in the genus Rickettsia[END_REF]. [START_REF] Schroeder | Bacterial small RNAs in the genus Rickettsia[END_REF] were the first to identify sRNAs in Rickettsia species. Twenty to 30% of intergenic regions presumably encode for trans-acting sRNAs (14 to 191 sRNAs, depending on species). These findings may explain the highly conserved intergenic spacers identified by early comparative studies in Rickettsia [START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF]. More than 1,700 trans-acting sRNAs were predicted in 16 genomes of 13 species spanning all rickettsial groups [START_REF] Schroeder | Bacterial small RNAs in the genus Rickettsia[END_REF].

Rickettsia prowazekii was shown to possess stem loop structures after homopolymeric poly(T) stretches in the termination sites where the expression of sRNAs occurs [START_REF] Woodard | Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii[END_REF]. Rickettsia palindromic elements (RPEs) were identified in 2002 by Ogata et al. [START_REF] Ogata | Protein coding palindromes are a unique but recurrent feature in Rickettsia[END_REF]. These genetic elements are more abundant in SFG than TG rickettsiae (Figure 2). In the R. conorii genome, a total of 656 RPEs, classified into 8 families, were identified (RPE-1 to RPE-8) and represent 3.2% of the entire genome [START_REF] Ogata | Protein coding palindromes are a unique but recurrent feature in Rickettsia[END_REF]. By comparison, only 10 of the 44 RPE-1 copies described in R. conorii were found in the R. prowazekii genome. Surprisingly, nine of these 10 RPE-1 copies that are present in R. prowazekii are inserted in protein-coding genes, versus 19/44 in R. conorii. In addition, the RPE-1s inserted into protein-coding genes have a position compatible with the 3-dimentional fold and function of proteins [START_REF] Ogata | Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens[END_REF]. This process of genomic evolution by inserting RPEs within protein-coding genes was initially thought to be unique to Rickettsia species but is also encountered in the Wolbachia genus (Ogata et al., 2005b;[START_REF] Riegler | Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia[END_REF]. Bacteria may use this random strategy to adapt their genetic repertoire in response to selective environmental pressure. The presence of a mobile element inserted in many unrelated genes also suggests the potential role of selfish DNA in rickettsial genome for de novo creation of new protein sequences during the course of evolution, suggesting an implication in the dynamics of genome evolution [START_REF] Claverie | The insertion of palindromic repeats in the evolution of proteins[END_REF]. Moreover, genomic comparison also enabled the identification of several copies of Ankyrin and Tetratricopeptide (TPR)-repeats in rickettsiae. Such repeated elements are frequently found in endosymbionts and assumed to play a role in host-pathogen interaction [START_REF] Caturegli | ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats[END_REF][START_REF] Felsheim | Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors[END_REF][START_REF] Seshadri | Complete genome sequence of the Q-fever pathogen Coxiella burnetii[END_REF][START_REF] Wu | Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements[END_REF]. Twenty-two copies of ankyrinand 11 copies of TPR-repeats were found in R. felis (Ogata et al., 2005a). In both species, they were proposed to be linked to pathogenicity. In Legionella pneumophila, which exhibits 20 Ankyrin-repeat copies and numerous TPR-repeat copies, these elements are suspected to play a modulatory role in the interactions with the host cytoskeleton and in interferences with the host cell trafficking events, respectively [START_REF] Cazalet | Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity[END_REF].

In addition to DNA repeat sequences, various gene families are duplicated in rickettsial genomes. Gene duplication was considered as an important source of bacterial adaptation to environmental changes in the host [START_REF] Hooper | On the nature of gene innovation: duplication patterns in microbial genomes[END_REF]. Following duplication, gene copies can evolve by conserving the same functions or undergoing mutations and becoming nonfunctional or assuming new functions, thus providing a putative new selective advantage in a new environment [START_REF] Greub | History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago[END_REF][START_REF] Walsh | How often do duplicated genes evolve new functions?[END_REF]. Rickettsia prowazekii, the most reduced and degraded rickettsial genome that lacks the genes encoding the biosynthesis of purines and pyrimidines (Andersson et al., 1998), exhibits five copies of tlc1 genes. These genes encode ADP/ATP translocases responsible of energy exploitation from host cells [START_REF] Greub | History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago[END_REF][START_REF] Renesto | Some lessons from Rickettsia genomics[END_REF]. Similar sequences were found in R. typhi, R. rickettsii and R. montanensis. Thus, the duplication of the tlc genes in Rickettsia is most likely explained by their important role in maintaining an efficient uptake and transport system of host cytoplasmic. ATP Four to 14 copies of spoT genes, involved in stringent response and the adaptation to intracellular environment, were also found in rickettsiae (Ogata et al., 2005a;[START_REF] Renesto | Some lessons from Rickettsia genomics[END_REF][START_REF] Rovery | Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation[END_REF]. The R. conorii genome has multiple copies of ampG agent encoding β-lactamase, which may explain the resistance of these bacteria to βlactam antibiotics [START_REF] Ogata | Mechanisms of evolution in Rickettsia conorii and R. prowazekii[END_REF]. The T4SS, a multiple component, membrane-spanning transporter system containing eight distinct classes such as the MPF-T class (P-T4SSs), is largely found in many rickettsial genomes. Rickettsiae possess an incomplete P-T4SS system (related to systems of the IncP group conjugative plasmid) that is characterized by the lack of virB5 but the duplication of the virB4, virB6, virB8 and virB9 genes [START_REF] Gillespie | The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion[END_REF].

The R. prowazekii genome has six Vir components (virB4, virB8-virB11, virD4), and the virB4 and virB9 were duplicated [START_REF] Gillespie | An Anomalous type IV secretion system in Rickettsia Is evolutionarily conserved[END_REF]. Seventeen orthologous surface cell antigen-coding genes (sca) were identified in rickettsial genomes [START_REF] Blanc | Molecular evolution of Rickettsia surface antigens: evidence of positive selection[END_REF]. SCA proteins autotransporter proteins that were demonstrated to play roles in mammalian cell infection as well as infection of their arthropod host cells, notably by promoting actin-based motility [START_REF] Sears | Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi[END_REF]. The R. bellii genome possesses a set of complete conjugation genes, and pilli like-filaments were observed on the bacterial surface [START_REF] Ogata | Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens[END_REF]. Among 13 tested Rickettsia collection strains, 11 got positive conjugation gene detection. This suggests that the conjugation elements are widely present among Rickettsia spp (88), and that horizontal gene transfer (HGT) occured at a high rate (Weinert et al., 2009). Within amoebae, HGTs have given the Rickettsia ancestor the access to novel gene pools, with possibility to acquire foreign DNA from other intracellular bacteria, thus, in capability of adaptation environment [START_REF] Ogata | Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens[END_REF]. In addition, a RAGE module, considered as a genetic exchange facilitator, was found in multiple copies in the genome from Rickettsia endosymbiont of Ixodes scapularis (REIS), the largest rickettsial genome described to date [START_REF] Gillespie | Secretome of obligate intracellular Rickettsia[END_REF][START_REF] Gillespie | A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle[END_REF].

Finally, a large number of mobile genetic elements (MGEs) referred to as mobilome are found in rickettsiae despite their reduced genome size. This mobilome, mostly consisting of plasmids, may ensure DNA movement within and between genomes. To date, at least 20 known rickettsial plasmids have been described in 11 species despite their allopatric lifestyle [START_REF] Diop | Rickettsial genomics and the paradigm of genome reduction associated with increased virulence[END_REF]. Recent phylogenomic analysis revealed that rickettsial plasmids are undergoing reductive evolutionary events similar to those affecting their co-residing chromosomes [START_REF] El Karkouri | Genome sequence of the tick-borne pathogen Rickettsia raoultii[END_REF]. Rickettsial plasmids were thus shaped by a biphasic model of convergent evolution including a strong reductive evolution as well as an increased complexity via horizontal gene transfer and gene duplication and genesis [START_REF] El Karkouri | Genome sequence of the tick-borne pathogen Rickettsia raoultii[END_REF]. The most reduced and virulent rickettsial genomes have probablely lost plasmid(s) during their evolution when compared to the related milder or non pathogenic species [START_REF] Darby | Intracellular pathogens go extreme: genome evolution in the Rickettsiales[END_REF][START_REF] El Karkouri | Multiomics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp[END_REF]Ogata et al., 2005a).

Conclusions and Perspectives

Rickettsia species are strictly intracellular bacteria that are likely to have evolved from a presumably free-living ancestor and followed a transition to an obligate intracellular lifestyle.

To adapt to such a bottleneck lifestyle associated with genetic drift, Rickettsia species have been shaped by distinct evolutionary processes resulting not only in differences in genome size, but also in genomic architecture. Generally, rickettsial genomes are small and contain a high ratio of non-coding DNA, which suggests that the reductive trend is their dominant mode of evolution. Comparative sequence analysis has provided important clues on the mechanisms driving the genome-reduction process of Rickettsia spp. This phenomenon is marked by a selected loss of genes such as those associated with amino-acid, ATP, LPS and cell wall component biosynthesis with a loss of regulatory genes and a high preservation of toxinassociated proteins and toxin-antitoxin modules. Homologous intra-chromosomal recombination, principal mechanism for genomic rearrangement structures seems play a role in rapid gene loss. Consequently, rickettsiae have evolved under a distinct process including a strong reductive evolution as well as a paradoxical expansion of genetic elements acquired by horizontal gene transfer and gene duplication and genesis. Thus, during the course of evolution, rickettsial genomes had a trend of gene loss rather than gene acquisition or duplication, but these strong selective effects co-exist with functional duplications required for survival. In order to understand the evolution of genome size and content, it is necessary to understand the balance between proliferation and elimination of genetic material in these intracellular bacteria. (downloaded from GenBank), gene prediction was obtained using the Prokka software [START_REF] Seemann | Prokka: rapid prokaryotic genome annotation[END_REF]. The core genome was identified using the ProteinOrtho software [START_REF] Lechner | Proteinortho: detection of (co-) orthologs in large-scale analysis[END_REF]. Then, the amino acid sequences of 591 proteins (Supplementary Table )     conserved in all studied genomes were concatenated for each species and multiple alignment was performed using the Mafft software (Katoh and Standley, 2013, p. 2). Gapped positions were removed. The phylogenetic inferences were obtained using the Maximum Likelihood method and the MEGA software version 6 [START_REF] Tamura | MEGA6: Molecular evolutionary genetics analysis version 6.0[END_REF]. Branching support was evaluated using the bootstrap method with 1000 replications. Bootstrap values greater than 90% are shown at the nodes. Properties of each species were extracted from the following references (Andersson et al., 1998;G. Blanc et al., 2007;Guillaume Blanc et al., 2007b;[START_REF] El Karkouri | Multiomics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp[END_REF], 2016;[START_REF] Fournier | Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction[END_REF][START_REF] Mcleod | Complete Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae[END_REF]Ogata, 2001b;[START_REF] Ogata | Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens[END_REF]Ogata et al., , 2005a)). NA = data not available; RPEs = Rickettsia palindromic elements. 
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a cRIG = Rickettsial orthologous cluster