

Paradoxical evolution of rickettsial genomes

Awa Diop, Didier Raoult, Pierre-Edouard Fournier

▶ To cite this version:

Awa Diop, Didier Raoult, Pierre-Edouard Fournier. Paradoxical evolution of rickettsial genomes. Ticks and Tick-borne Diseases, 2019, 10 (2), pp.462-469. 10.1016/j.ttbdis.2018.11.007 . hal-02101496

HAL Id: hal-02101496 https://amu.hal.science/hal-02101496

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Paradoxical evolution of rickettsial genomes

Awa Diop¹, Didier Raoult² and Pierre-Edouard Fournier^{1*}

¹ UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance
Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 1921 Boulevard Jean Moulin, 13005 Marseille, France Tel: +33 413 732 401, Fax: +33 413 732
402.

² UMR MEPHI, Aix-Marseille University, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, Marseille, France

*Corresponding author: Pr Pierre-Edouard Fournier

Email: pierre-edouard.fournier@univ-amu.fr

Abstract:

1 *Rickettsia* species are strictly intracellular bacteria that evolved approximately 150 million years ago from a presumably free-living common ancestor from the order *Rickettsiales* that 2 followed a transition to an obligate intracellular lifestyle. Rickettsiae are best known as 3 human pathogens vectored by various arthropods causing a range of mild to severe human 4 5 diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have undergone a convergent evolution that includes a strong genomic reduction resulting from progressive 6 7 gene degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably small RNAs and short palindromic elements whose role remains 8 9 unknown. This reductive evolutionary process is not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, 10 DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome 11 evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component 12 13 biosynthesis and transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins. Surprisingly the most virulent 14 *Rickettsia* species were shown to have the most drastically reduced and degraded genomes 15 16 compared to closely related species of milder pathogenesis. In contrast, the less pathogenic species harbored the greatest number of mobile genetic elements. Thus, this distinct 17 evolutionary process observed in Rickettsia species may be correlated with the differences in 18 19 virulence and pathogenicity observed in these obligate intracellular bacteria. However, future investigations are needed to provide novel insights into the evolution of genome sizes and 20 21 content, for that a better understanding of the balance between proliferation and elimination of 22 genetic material in these intracellular bacteria is required.

Keywords: *Rickettsia*, genomics, evolution, virulence, genome rearrangement, non-coding DNA, gene loss, DNA repeats

23 1 Introduction

24 The genus *Rickettsia* (order *Rickettsiales*, family *Rickettsiaceae*) comprises strictly intracellular α -proteobacteria mostly associated with diverse arthropod vectors around the 25 world (Raoult and Roux, 1997; Stothard et al., 1994). Rickettsia species evolved 26 approximately 150 million years ago from a common ancestor of *Rickettsiales* that was 27 presumably free-living, and progressively followed a transition to an obligate intracellular 28 lifestyle that occurred 775–525 million years ago and then to primarily infecting arthropod 29 lineages approximately 525-425 million years ago (El Karkouri et al., 2016; Merhej and 30 Raoult, 2011; Lucy A Weinert et al., 2009). These bacteria are also well known to infect 31 32 mammalian hosts, mostly through arthropod bites or arthropod feces infecting scratching lesions. On the basis of their phenotypic properties, vector hosts and phylogenetic 33 organization, *Rickettsia* species were split into three to four groups by different authors 34 35 (Figure 1): i) the spotted fever group (SFG, Figure 1) contains many spotted fever-causing species as well as numerous species of as-yet unknown pathogenicity. SFG rickettsiae are 36 37 mostly associated with ticks, but also fleas and mites (Diop et al., 2017); ii) the second phylogenetic group, the typhus group (TG, Figure 1) is only made of *R. prowazekii* and *R.* 38 typhi that cause epidemic and murine typhus, and are associated with human body lice and rat 39 fleas, respectively (Diop et al., 2017); iii) the ancestral group includes R. bellii and R. 40 canadensis. These species diverged early from SFG and TG rickettsiae, are associated with 41 ticks but do not cause human disease (Figure 1) (Diop et al., 2017); iv) a fourth group, named 42 transitional group, was proposed by Gillespie *et al.* to include SFG species phylogenetically 43 44 close to R. felis (Gillespie et al., 2007). However, as these species do not exhibit significant differences with other SFG species except their phylogenetic position, several authors 45 discussed the validity of this latter group (Shpynov et al., 2018). 46

Rickettsia species cause a range of illnesses, from mild and self-limiting to severe and 47 48 life-threatening diseases (Diop et al., 2017). Currently, the most common rickettsioses are African tick-bite fever caused by *R. africae*, scalp eschar and neck lymphadenopathy 49 (SENLAT) caused by R. slovaca, Mediterranean spotted fever (MSF) caused by R. conorii, 50 Rocky Mountain spotted fever (RMSF) caused by *R. rickettsii* and murine typhus caused by 51 R. typhi. (El Karkouri et al., 2017; Parola et al., 2013; Sahni et al., 2013). Rickettsia 52 prowazekii, the historical agent of epidemic typhus, is only rarely encountered currently but 53 has a strong epidemic potential (Parola et al., 2013). Furthermore, recent studies have 54 reported the association of other Rickettsia lineages with other reservoirs including protozoa, 55 56 algae, leeches, plants or insects (Merhej and Raoult, 2011; Murray et al., 2016; Weinert et al., 2009). 57

In 1998, the first complete Rickettsia genome, that of R. prowazekii strain Madrid E, was 58 sequenced (Andersson et al., 1998). It was the seventh bacterial genome to be sequenced. 59 60 Subsequently, the genomes of many *Rickettsia* species have been fully sequenced, allowing a better knowledge of the molecular mechanisms involved in their pathogenicity (Balraj et al., 61 2009). Genome sequencing also appeared as a potential tool to revolutionize the phylogenetic 62 and evolutionary investigations of prokaryotes, especially endosymbiotic bacteria. Hence, 63 deciphering rickettsial genomes appeared as an efficient tool to understand the evolution of 64 these obligate intracellular bacteria. 65

2 66

General features of rickettsia genomes

67 Rickettsia species have small genome sizes and low G+C contents. SFG and TG rickettsiae exhibit genome sizes of 1.25 to 2.3 Mb, and 1.11 Mb, respectively. They also exhibit G+C 68 contents ranging from 32.2 to 33.0% and 28.9 to 29.0%, respectively. Rickettsia species have 69 numbers of predicted protein-coding genes varying between 817 and 2,479 and most of them 70

maintain a near perfect chromosomal synteny (Diop et al., 2017), which enabled the 71 72 identification of an ongoing and progressive genome degradation (Ogata, 2001). Rickettsial genomes contain many functional or unfunctional pseudogenes and possess a high percentage 73 of non-coding DNA (Blanc et al., 2007; McLeod et al., 2004) (Fig. 2). This percentage of 74 non-coding DNA ranges from 16.2% for R. felis to 31% for R. massiliae. Rickettsia 75 prowazekii, the most reduced rickettsial genome contains 24% of non-coding sequence. By 76 comparison, Chlamydia trachomatis, another strictly intracellular bacterium, possesses only 77 10% non-coding DNA (Andersson et al., 1998; Holste et al., 2000; Rogozin et al., 2002). This 78 pseudogenization progressively leads to a genome downsizing and results from a switch from 79 80 a free-living to an obligate intracellular lifestyle. This progressive reductive evolution has allowed rickettsiae to purge unnecessary and redundant genes mainly involved in 81 metabolisms supplied by eukaryotic host cells (Georgiades and Raoult, 2011; Merhej et al., 82 83 2009). Paradoxically to this ongoing genomic reduction, rickettsial genomes exhibit another marker of convergent evolution, *i. e.*, the expansion of genetic elements including small 84 85 RNAs, tandem repeats, short palindromic elements named rickettsia palindromic elements (RPEs) (Ogata et al., 2002), ankyrin and tetratricopeptide repeats and gene family duplication 86 mainly ADP-ATP translocases, toxin-antitoxin modules and type IV secretion system (T4SS). 87 88 Another unexpected property of rickettsial genomes is the presence of plasmids, the first described in obligate intracellular bacteria. The first plasmid was identified in R. felis (Ogata 89 et al., 2005a). To date, at least 20 rickettsial plasmids have been described in 11 species. Their 90 number varies from 1 to 4 per species/strain (Baldridge et al., 2007; G. Blanc et al., 2007; El 91 92 Karkouri et al., 2016). These findings suggest possible exchanges of genetic material by conjugation, a mechanism that was thought to be absent in obligate intracellular and allopatric 93 bacteria (Georgiades and Raoult, 2011; Merhej et al., 2009; Ogata et al., 2005a). 94

95 3 Rickettsia genome in an ongoing convergent evolution

96

3.1 Ongoing reductive evolution of Rickettsial genomes

Following their adaptation from a free-living to an obligate intracellular lifestyle in 97 eukaryotic cells, rickettsiae underwent genomic changes to fit their specific bottleneck 98 ecosystem, resulting not only in a reducing genome size but also in a specific genomic 99 100 architecture (Keeling et al., 1994; Sicheritz-Pontén and Andersson, 1997). Comparative genomics revealed that rickettsiae, by taking advantage of host cell metabolites, underwent a 101 genome reductive evolution (Georgiades and Raoult, 2011; Merhej et al., 2009) that occurred 102 through a progressive pseudogenization (Fig. 2) and gene loss of selected biosynthetic 103 pathway components (Andersson et al., 1998; Audia and Winkler, 2006; Fournier et al., 2009; 104 105 Ogata, 2001; Sakharkar, 2004; Walker, 2005; Wolf and Koonin, 2013). In addition, genomic degradation was detrimental for the G+C content, as it led to an enrichment in A+T, in 106 particular in the high proportion of non-coding DNA (Sakharkar, 2004). However, a great 107 108 variation in chromosome size, ranging from 1.1 to 2.3 Mb, is observed in rickettsiae (Diop et al., 2017), indicating that some species are at a more advanced stage of reductive genomic 109 evolution (TG rickettsiae) than others (SFG rickettsiae) (Ogata, 2001). In ehrlichiae, a similar 110 genomic reduction is observed, but the G+C content may remain as high as 49.8% in 111 Anaplasma species (Dunning Hotopp et al., 2006), suggesting that the reductive process in 112 these bacteria had a lesser impact on the G+C content degradation. Rickettsial genomes are 113 114 characterized by a high rate of accumulation of slightly harmful deletions, mutations and insertions (Brynnel et al., 1998). Alternatively, gene loss can also result from the 115 116 accumulations of small mutations. The formation of internal stop codons within intact genes can occur through the creation of a frameshit by single base mutation, insertion or deletion 117 (Ogata, 2001). This induces the genome degradation resulting from fragmented gene 118 119 accumulation or gene remnants. An unexpected finding of rickettsial genomics was that the

most virulent species had the most reduced genomes (Fournier et al., 2009). Such a finding is 120 121 not an isolated phenomenon as in *Mycobacterium*, *Streptococcus* spp., *Corynebacterium* spp. and other genera, the highest degree of gene loss is observed in the most virulent species 122 123 when compared to closely related and milder or nonpathogenic species (Blanc et al., 2007; Merhej et al., 2013; Ogata, 2001). Many of the genes required by free-living bacteria are 124 125 absent in *Rickettsia* (Bechah et al., 2010) and degraded genes include mostly those involved 126 in the biosynthesis of nutrients (Blanc, 2005; Ogata, 2001; Renesto et al., 2005). For example, *Rickettsia* exhibits few genes for de novo nucleotide synthesis, *i. e.*, only those for 127 conversion of nucleoside monophosphates into all other nucleotides, implying that they take 128 129 up nucleoside monophosphates from the host (Wixon, 2001). Analysis of R. conorii and R. prowazekii genomes (Dunning Hotopp et al., 2006; Ogata, 2001) revealed that genes coding 130 glycolytic enzymes and those required for nucleotide or cofactor biosynthesis are totally 131 132 absent in R. conorii and R. prowazekii when compared to most genera in the order *Rickettsiales* that have complete glycolytic pathways. Nevertheless, rickettsiae must obtain 133 glycerol-3-phosphate from the host via a glycerol-3-phosphate transporter (Dunning Hotopp 134 et al., 2006). This ATP production profile is similar for *Rickettsia* and mitochondria, as they 135 possess a high number of ATP/ADP translocases, suggesting that they have both evolved 136 137 from a common ancestor (Andersson et al., 1998; Renesto et al., 2005). In addition, the genome sequencing of R. prowazekii revealed a lack of amino acid metabolism such as those 138 for glutamate metabolism (Andersson et al., 1998; Fuxelius et al., 2007). The enzymes 139 involved in the aspartate and alanine metabolism pathways, and those playing a role in the 140 biosynthesis of leucine, valine, isoleucine and aromatic amino acids (tryptophan, tyrosine, 141 phenylalanine) are similarly missing in *Rickettsia* species (Renesto et al., 2005), suggesting 142 the use of host-derived amino acids for their growth, survival and replication. Additionally, all 143 Rickettsia species except R. belli have a reduced set of folate biosynthesis genes (Fuxelius et 144

al., 2007). In TG rickettsiae all five genes required for the de novo folate biosynthesis are 145 146 lacking (Hunter et al., 2015). Furthermore, a limited set of genes for LPS and cell wall component biosynthesis, including lipid-A and peptidoglycan, respectively, were identified in 147 Rickettsia species (Fuxelius et al., 2007). The rickettsial surface protein-coding genes rickA 148 and sca2 are another example of genes that were degraded or eliminated by Rickettsia species 149 during their specialization. The RickA protein participates in actin polymerization through the 150 151 activation of Arp2/3 similar to that found in *Listeria monocytogenes* and *Shigella* spp. (Balraj et al., 2008b; Gouin et al., 2004, 1999). While lacking in the TG, rickA is present in all AG 152 and SFG rickettsial genomes avalaible (Baldridge et al., 2005; Balraj et al., 2008a, 2008b; 153 154 Heinzen et al., 1993; Jeng et al., 2004; McLeod et al., 2004; Ogata, 2001; Ogata et al., 2006, 2005a). The absence of *rickA* in *R. prowazekii* is not surprising if we consider its lack of actin 155 motility. In contrast, R. typhi exhibits a unique and erratic actin-based motility despite having 156 157 a nonfunctional RickA protein (McLeod et al., 2004; Reed et al., 2014). In addition, R. canadensis expresses RickA but does not exhibit actin-based motility (Heinzen et al., 1993). 158 159 These data suggest the possible involvement of other actin polymerization mechanisms and 160 that RickA alone may not be sufficient or required for actin-based rickettsial motility. Nevertheless, it was proposed that RickA originated early in rickettsial evolution and may 161 have been lost during the divergence of the TG. Recent research suggests that *Rickettsia* spp. 162 use also Sca2 for actin-based motility with a distinct mechanism compared to RickA. Sca2 163 was found to be intact in R. conorii, absent in R. prowazekii and pseudogenized in R. typhi 164 (McLeod et al., 2004). In R. typhi, Sca2 lacks the FH1 (formin homology 1) domain and 165 contains only a proline-rich tract and a series of five WH2 domains (β-domains) in different 166 locations with a divergence in sequences (Sears et al., 2012). The evolutionary process of 167 genome degradation in rickettsiae led to loss of transcriptional regulator genes with a 168 decreased translational capacity as observed in R. prowazekii (Andersson and Kurland, 1998), 169

despite conserved gene sets coding for toxins, toxin-antitoxin (TA) modules and

recombination and DNA repair proteins most likely needed for protection against hostimmune response (Moran, 2002).

The reductive evolution of rickettsial genomes is not only the consequence of gene 173 degradation or loss, but it is also linked to a differential expression level of genes (Diop et al., 174 175 2017). Some genes under the influence of evolutionary forces are dormant or repressed while others under this effect are overexpressed. Recent research involving two virulent and two 176 milder SFG rickettsiae demonstrated that the two virulent agents R. conorii (MSF) and R. 177 *slovaca* (SENLAT) have the most reduced genome and displayed less up-regulated than 178 down-regulated genes than the milder R. massiliae and R. raoultii causing MSF and 179 SENLAT, respectively (El Karkouri et al., 2017), that have less reduced genomes. 180 Consequently, to adapt to their specific intracellular environment, Rickettsia species were 181 shaped by distinct evolutionary processes. The most pathogenic species are characterized by a 182 183 strong reductive genomic evolution, with a higher genome degradation rate and accumulation of non-coding DNA than less pathogenic species. These findings suggest that reductive 184 genomic evolution, resulting in protein structural variations, is associated to the emergence of 185 virulence (El Karkouri et al., 2017). It was speculated that the loss of regulator genes, as 186 observed in several intracellular pathogens, is a critical cause of virulence (Darby et al., 187 2007). This reductive genomic evolution appears to have occurred in several other human 188 pathogens that have no common intracellular ancestor with Rickettsia such as Treponema 189 spp., Mycobacterium spp. or Yersinia spp (Merhej et al., 2009; Walker, 2005; Wixon, 2001). 190 191 Overall, during the course of evolution, rickettsial genomes exhibit a trend toward gene loss rather than acquisition, but strong selective effects co-exist with functional duplication 192 required for survival. 193

194 **3.2** Gene order, recombination events and "junk DNA" in rickettsial genomes

A comparison of 13 rickettsial genomes (Diop et al., 2017) demonstrated that they exhibit 195 a highly conserved synteny and present few genomic rearrangements, except for R. bellii that 196 197 exhibits little colinearity with other genomes, and R. felis that underwent several inversions. In addition, R. typhi, underwent a 35-kb inversion close to the replication terminus and a 198 specific 124-kb inversion nearby the origin of replication when compared to R. prowazekii 199 200 and R. conorii (McLeod et al., 2004). As in other bacteria, inversions that occured in the 201 origin of replication region are also found in R. australis, R. helvetica and R. honei (X. Dong et al., 2012; Xin Dong et al., 2012; Xin et al., 2012), indicating that this region constitutes a 202 203 hotspot for genomic rearrangement (Eisen et al., 2000). Homologous intra-chromosomal recombination, the principal mechanism for genomic rearrangement in rickettsiae, occured 204 between repeated sequences or by site-specific recombination. Consequently, duplications, 205 206 deletions and inversions arose through these structures (Andersson and Kurland, 1998; Krawiec and Riley, 1990). Such events have been observed in Rickettsia spp., in the so-called 207 208 super-ribosomal protein gene operon. Highly conserved in a broad range of bacteria and 209 archaea, this operon consists of about 40 genes located in seven operons in the same order (Sicheritz-Pontén and Andersson, 1997). Despite their conserved order in many bacteria 210 211 including E. coli and Bacillus subtilis, genes in the ribosomal protein gene operon are scattered around the genomes of *Haemophilus influenzae*, *Mycoplasma genitalium* and *R*. 212 prowazeki (Andersson and Kurland, 1998; Fraser et al., 1995). Ribosomal RNA genes in 213 bacterial genomes are normally organized into an operon with a conserved order 16S-23S-5S, 214 215 and tRNA genes are often found in the spacer between the 16S and the 23S rRNA genes (Krawiec and Riley, 1990). However, an unusual arrangement of rRNA genes has been 216 217 observed in all avalaible *Rickettsia* genomes, as the 16S rRNA gene is separated from the 23S and 5S rRNA gene cluster (Andersson et al., 1999; Munson et al., 1993). A similar 218

organization is observed in all members of the order *Rickettsiales* (Dunning Hotopp et al., 219 220 2006). The upstream spacer of the rearranged 23S rRNA gene in some *Rickettsia* species contains short repetitive sequences that have been eliminated in other related species, 221 222 suggesting that the rearrangement of rRNA genes occurred by intra-chromosomal recombination prior to speciation in *Rickettsia* spp. Rickettsial genome analysis highlighted a 223 second major genomic rearrangement in rickettsiae, the elongation factor proteins (tuf and 224 fus) being present in more than one copy in *Rickettsia* genomes (Syvänen et al., 1996). These 225 226 genes can serve as repeat sequences, and initiate a rapid gene loss through intra-chromosomal recombination (Krawiec and Riley, 1990). In addition, the degree and positions of deletions 227 228 caused by intra-chromosomal recombination in *Rickettsia* is different among the species, which suggests that the homologous recombination is an ongoing process that may result in 229 an ongoing genes loss under weak or no selection pressure. 230

When compared to other bacterial genomes, rickettsial genomes have a high percentage of non-coding DNA sequences which also contains many DNA repeat sequences (Holste et al., 2000; Rogozin et al., 2002). Non-coding DNA in rickettsial genomes is traditionally considered as "junk DNA" resulting from gene degradation. *R. prowazekii* and *R. typhi*, the most reduced rickettsial genomes, harbor high rates of non-coding DNA with 24.6 and 23.7%, respectively. However, *R. bellii* exhibits the lowest rickettsial level of non-coding DNA with 14.8% (Diop et al., 2017).

238

239 **3.3** Paradoxical genomic expansions

From a general point of view, rickettsial genomes are typical of those of symbiotic
bacteria, in which the reductive trend is the dominant mode of evolution (Andersson and
Andersson, 1999; Georgiades and Raoult, 2011; Merhej et al., 2009; Ogata, 2005). However,

243	despite this reductive evolution, a paradoxical expansion of genetic elements can still occur in
244	rickettsial genomes (Ogata et al., 2002). Genome sequence analysis revealed that rickettsial
245	genome expansion may occur through proliferation of selfish DNA (small non coding RNAs
246	(sRNAs) and rickettsia palindromic elements (RPEs)), gene duplications and horizontal gene
247	transfer (Merhej and Raoult, 2011). Bacterial non-coding RNAs, whose biogenesis is
248	predominantly attributed to either the intergenic regions (trans-acting) or to the antisense
249	strand of an open reading frame (cis-acting) (Schroeder et al., 2015), were well documented in
250	many bacterial taxa including Enterobacteriaceae, Listeria monocytogenes, Clostridium
251	perfringens, Staphylococcus aureus, Pseudomonas aeruginosa and Mycobacterium
252	tuberculosis (Papenfort and Vanderpool, 2015). sRNAs are classified among the most
253	important post-transcriptional regulators involved in virulence and adaptation depending on
254	the host niche, through transcriptomic regulation (Schroeder et al., 2015). Schroeder et al.
255	(2015) were the first to identify sRNAs in <i>Rickettsia</i> species. Twenty to 30% of intergenic
256	regions presumably encode for trans-acting sRNAs (14 to 191 sRNAs, depending on species).
257	These findings may explain the highly conserved intergenic spacers identified by early
258	comparative studies in <i>Rickettsia</i> (Ogata, 2001). More than 1,700 trans-acting sRNAs were
259	predicted in 16 genomes of 13 species spanning all rickettsial groups (Schroeder et al., 2015).
260	Rickettsia prowazekii was shown to possess stem loop structures after homopolymeric
261	poly(T) stretches in the termination sites where the expression of sRNAs occurs (Woodard
262	and Wood, 2011). Rickettsia palindromic elements (RPEs) were identified in 2002 by Ogata
263	et al. (Ogata et al., 2002). These genetic elements are more abundant in SFG than TG
264	rickettsiae (Figure 2). In the R. conorii genome, a total of 656 RPEs, classified into 8 families,
265	were identified (RPE-1 to RPE-8) and represent 3.2% of the entire genome (Ogata et al.,
266	2002). By comparison, only 10 of the 44 RPE-1 copies described in <i>R. conorii</i> were found in
267	the <i>R. prowazekii</i> genome. Surprisingly, nine of these 10 RPE-1 copies that are present in <i>R</i> .

prowazekii are inserted in protein-coding genes, versus 19/44 in R. conorii. In addition, the 268 RPE-1s inserted into protein-coding genes have a position compatible with the 3-dimentional 269 fold and function of proteins (Ogata et al., 2000). This process of genomic evolution by 270 271 inserting RPEs within protein-coding genes was initially thought to be unique to Rickettsia species but is also encountered in the Wolbachia genus (Ogata et al., 2005b; Riegler et al., 272 2012). Bacteria may use this random strategy to adapt their genetic repertoire in response to 273 274 selective environmental pressure. The presence of a mobile element inserted in many 275 unrelated genes also suggests the potential role of selfish DNA in rickettsial genome for de novo creation of new protein sequences during the course of evolution, suggesting an 276 277 implication in the dynamics of genome evolution (Claverie and Ogata, 2003). Moreover, genomic comparison also enabled the identification of several copies of Ankyrin and 278 Tetratricopeptide (TPR)-repeats in rickettsiae. Such repeated elements are frequently found in 279 280 endosymbionts and assumed to play a role in host-pathogen interaction (Caturegli et al., 2000; Felsheim et al., 2009; Seshadri et al., 2003; Wu et al., 2004). Twenty-two copies of ankyrin-281 and 11 copies of TPR-repeats were found in R. felis (Ogata et al., 2005a). In both species, 282 they were proposed to be linked to pathogenicity. In Legionella pneumophila, which exhibits 283 20 Ankyrin-repeat copies and numerous TPR-repeat copies, these elements are suspected to 284 285 play a modulatory role in the interactions with the host cytoskeleton and in interferences with the host cell trafficking events, respectively (Cazalet et al., 2004). 286

In addition to DNA repeat sequences, various gene families are duplicated in rickettsial genomes. Gene duplication was considered as an important source of bacterial adaptation to environmental changes in the host (Hooper, 2003). Following duplication, gene copies can evolve by conserving the same functions or undergoing mutations and becoming nonfunctional or assuming new functions, thus providing a putative new selective advantage in a new environment (Greub and Raoult, 2003; Walsh, 1995). *Rickettsia prowazekii*, the most

reduced and degraded rickettsial genome that lacks the genes encoding the biosynthesis of 293 294 purines and pyrimidines (Andersson et al., 1998), exhibits five copies of *tlc1* genes. These genes encode ADP/ATP translocases responsible of energy exploitation from host cells 295 296 (Greub and Raoult, 2003; Renesto et al., 2005). Similar sequences were found in R. typhi, R. rickettsii and R. montanensis. Thus, the duplication of the tlc genes in Rickettsia is most likely 297 explained by their important role in maintaining an efficient uptake and transport system of 298 host cytoplasmic. ATP Four to 14 copies of spoT genes, involved in stringent response and 299 the adaptation to intracellular environment, were also found in rickettsiae (Ogata et al., 2005a; 300 Renesto et al., 2005; Rovery et al., 2005). The R. conorii genome has multiple copies of 301 302 ampG agent encoding β -lactamase, which may explain the resistance of these bacteria to β lactam antibiotics (Ogata, 2001). The T4SS, a multiple component, membrane-spanning 303 transporter system containing eight distinct classes such as the MPF-T class (P-T4SSs), is 304 305 largely found in many rickettsial genomes. Rickettsiae possess an incomplete P-T4SS system (related to systems of the IncP group conjugative plasmid) that is characterized by the lack of 306 307 virB5 but the duplication of the virB4, virB6, virB8 and virB9 genes (Gillespie et al., 2016). 308 The R. prowazekii genome has six Vir components (virB4, virB8-virB11, virD4), and the virB4 and virB9 were duplicated (Gillespie et al., 2009). Seventeen orthologous surface cell 309 antigen-coding genes (sca) were identified in rickettsial genomes (Blanc, 2005). SCA proteins 310 autotransporter proteins that were demonstrated to play roles in mammalian cell infection as 311 well as infection of their arthropod host cells, notably by promoting actin-based motility 312 (Sears et al., 2012). The R. bellii genome possesses a set of complete conjugation genes, and 313 314 pilli like-filaments were observed on the bacterial surface (Ogata et al., 2006). Among 13 tested Rickettsia collection strains, 11 got positive conjugation gene detection. This suggests 315 that the conjugation elements are widely present among Rickettsia spp (88), and that 316 horizontal gene transfer (HGT) occured at a high rate (Weinert et al., 2009). Within amoebae, 317

HGTs have given the *Rickettsia* ancestor the access to novel gene pools, with possibility to
acquire foreign DNA from other intracellular bacteria, thus, in capability of adaptation
environment (Ogata et al., 2006). In addition, a RAGE module, considered as a genetic
exchange facilitator, was found in multiple copies in the genome from *Rickettsia*endosymbiont of *Ixodes scapularis* (REIS), the largest rickettsial genome described to date
(Gillespie et al., 2014, 2012).

Finally, a large number of mobile genetic elements (MGEs) referred to as mobilome are 324 found in rickettsiae despite their reduced genome size. This mobilome, mostly consisting of 325 plasmids, may ensure DNA movement within and between genomes. To date, at least 20 326 known rickettsial plasmids have been described in 11 species despite their allopatric lifestyle 327 328 (Diop et al., 2017). Recent phylogenomic analysis revealed that rickettsial plasmids are undergoing reductive evolutionary events similar to those affecting their co-residing 329 chromosomes (El Karkouri et al., 2016). Rickettsial plasmids were thus shaped by a biphasic 330 331 model of convergent evolution including a strong reductive evolution as well as an increased complexity via horizontal gene transfer and gene duplication and genesis (El Karkouri et al., 332 2016). The most reduced and virulent rickettsial genomes have probablely lost plasmid(s) 333 during their evolution when compared to the related milder or non pathogenic species (Darby 334 et al., 2007; El Karkouri et al., 2017; Ogata et al., 2005a). 335

336

4 Conclusions and Perspectives

Rickettsia species are strictly intracellular bacteria that are likely to have evolved from a
presumably free-living ancestor and followed a transition to an obligate intracellular lifestyle.
To adapt to such a bottleneck lifestyle associated with genetic drift, *Rickettsia* species have
been shaped by distinct evolutionary processes resulting not only in differences in genome
size, but also in genomic architecture. Generally, rickettsial genomes are small and contain a

high ratio of non-coding DNA, which suggests that the reductive trend is their dominant mode 342 343 of evolution. Comparative sequence analysis has provided important clues on the mechanisms driving the genome-reduction process of Rickettsia spp. This phenomenon is marked by a 344 345 selected loss of genes such as those associated with amino-acid, ATP, LPS and cell wall component biosynthesis with a loss of regulatory genes and a high preservation of toxin-346 associated proteins and toxin-antitoxin modules. Homologous intra-chromosomal 347 recombination, principal mechanism for genomic rearrangement structures seems play a role 348 349 in rapid gene loss. Consequently, rickettsiae have evolved under a distinct process including a strong reductive evolution as well as a paradoxical expansion of genetic elements acquired by 350 horizontal gene transfer and gene duplication and genesis. Thus, during the course of 351 evolution, rickettsial genomes had a trend of gene loss rather than gene acquisition or 352 duplication, but these strong selective effects co-exist with functional duplications required 353 354 for survival. In order to understand the evolution of genome size and content, it is necessary to understand the balance between proliferation and elimination of genetic material in these 355 356 intracellular bacteria.

357 5 **References**

- Andersson, J.O., Andersson, S.G., 1999. Genome degradation is an ongoing process in *Rickettsia*. Mol.
 Biol. Evol. 16, 1178–1191. https://doi.org/10.1093/oxfordjournals.molbev.a026208
 Andersson, S.G., Kurland, C.G., 1998. Reductive evolution of resident genomes. Trends Microbiol. 6,
 263–268. https://doi.org/10.1016/S0966-842X(98)01312-2
- Andersson, S.G., Stothard, D.R., Fuerst, P., Kurland, C.G., 1999. Molecular phylogeny and
 rearrangement of rRNA genes in *Rickettsia* species. Mol. Biol. Evol. 16, 987–995.
 https://doi.org/10.1093/oxfordjournals.molbev.a026188
- Andersson, S.G., Zomorodipour, A., Andersson, J.O., Sicheritz-Pontén, T., Alsmark, U.C.M., Podowski,
 R.M., Näslund, A.K., Eriksson, A.-S., Winkler, H.H., Kurland, C.G., 1998. The genome sequence
 of *Rickettsia prowazekii* and the origin of mitochondria. Nature 396, 133–140.
- Audia, J.P., Winkler, H.H., 2006. Study of the five *Rickettsia prowazekii* proteins annotated as
 ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport
 other ribonucleotides. J. Bacteriol. 188, 6261–6268. https://doi.org/10.1128/JB.00371-06
- Baldridge, G.D., Burkhardt, N., Herron, M.J., Kurtti, T.J., Munderloh, U.G., 2005. Analysis of
 fluorescent protein expression in transformants of *Rickettsia monacensis*, an obligate
 intracellular tick symbiont. Appl. Environ. Microbiol. 71, 2095–2105.
 https://doi.org/10.1128/AEM.71.4.2095-2105.2005
- Baldridge, G.D., Burkhardt, N.Y., Felsheim, R.F., Kurtti, T.J., Munderloh, U.G., 2007. Transposon
 insertion reveals pRM, a plasmid of *Rickettsia monacensis*. Appl. Environ. Microbiol. 73,
 4984–4995. https://doi.org/10.1128/AEM.00988-07
- Balraj, P., Karkouri, K.E., Vestris, G., Espinosa, L., Raoult, D., Renesto, P., 2008a. RickA Expression is
 not sufficient to promote actin-based motility of *Rickettsia raoultii*. PLoS ONE 3, e2582.
 https://doi.org/10.1371/journal.pone.0002582
- Balraj, P., Nappez, C., Raoult, D., Renesto, P., 2008b. Western-blot detection of RickA within spotted
 fever group rickettsiae using a specific monoclonal antibody. FEMS Microbiol. Lett. 286, 257–
 262. https://doi.org/10.1111/j.1574-6968.2008.01283.x
- Balraj, P., Renesto, P., Raoult, D., 2009. Advances in *Rickettsia* pathogenicity. Ann. N. Y. Acad. Sci.
 1166, 94–105. https://doi.org/10.1111/j.1749-6632.2009.04517.x
- Bechah, Y., El Karkouri, K., Mediannikov, O., Leroy, Q., Pelletier, N., Robert, C., Medigue, C., Mege,
 J.L., Raoult, D., 2010. Genomic, proteomic, and transcriptomic analysis of virulent and
 avirulent *Rickettsia prowazekii* reveals its adaptive mutation capabilities. Genome Res. 20,
 655–663. https://doi.org/10.1101/gr.103564.109
- Blanc, G., 2005. Molecular evolution of *Rickettsia* surface antigens: evidence of positive selection.
 Mol. Biol. Evol. 22, 2073–2083. https://doi.org/10.1093/molbev/msi199
- Blanc, G., Ogata, H., Robert, C., Audic, S., Claverie, J.-M., Raoult, D., 2007. Lateral gene transfer
 between obligate intracellular bacteria: evidence from the *Rickettsia massiliae* genome.
 Genome Res. 17, 1657–1664. https://doi.org/10.1101/gr.6742107
- Blanc, G., Ogata, H., Robert, C., Audic, S., Suhre, K., Vestris, G., Claverie, J.-M., Raoult, D., 2007.
 Reductive genome evolution from the mother of *Rickettsia*. PLoS Genet 3, e14.
- Brynnel, E.U., Kurland, C.G., Moran, N.A., Andersson, S.G., 1998. Evolutionary rates for tuf genes in
 endosymbionts of aphids. Mol. Biol. Evol. 15, 574–582.
- Caturegli, P., Asanovich, K.M., Walls, J.J., Bakken, J.S., Madigan, J.E., Popov, V.L., Dumler, J.S., 2000.
 ankA: an *Ehrlichia phagocytophila* group gene encoding a cytoplasmic protein antigen with
 ankyrin repeats. Infect. Immun. 68, 5277–5283.
- 402 Cazalet, C., Rusniok, C., Brüggemann, H., Zidane, N., Magnier, A., Ma, L., Tichit, M., Jarraud, S.,
 403 Bouchier, C., Vandenesch, F., Kunst, F., Etienne, J., Glaser, P., Buchrieser, C., 2004. Evidence
 404 in the *Legionella pneumophila* genome for exploitation of host cell functions and high
 405 genome plasticity. Nat. Genet. 36, 1165–1173. https://doi.org/10.1038/ng1447
- 406 Claverie, J.-M., Ogata, H., 2003. The insertion of palindromic repeats in the evolution of proteins.
- 407 Trends Biochem. Sci. 28, 75–80. https://doi.org/10.1016/S0968-0004(02)00036-1

- 408 Darby, A.C., Cho, N.-H., Fuxelius, H.-H., Westberg, J., Andersson, S.G.E., 2007. Intracellular pathogens 409 go extreme: genome evolution in the Rickettsiales. Trends Genet. 23, 511–520. 410 https://doi.org/10.1016/j.tig.2007.08.002
- 411 Diop, A., Raoult, D., Fournier, P.-E., 2017. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect. 412 413 https://doi.org/10.1016/j.micinf.2017.11.009
- 414 Dong, X., El Karkouri, K., Robert, C., Gavory, F., Raoult, D., Fournier, P.-E., 2012. Genomic comparison 415 of Rickettsia helvetica and other Rickettsia species. J. Bacteriol. 194, 2751–2751. 416 https://doi.org/10.1128/JB.00299-12
- 417 Dong, X., El Karkouri, K., Robert, C., Raoult, D., Fournier, P.-E., 2012. Genome Sequence of Rickettsia 418 australis, the agent of queensland tick typhus. J. Bacteriol. 194, 5129. 419

https://doi.org/10.1128/JB.01117-12

- 420 Dunning Hotopp, J.C., Lin, M., Madupu, R., Crabtree, J., Angiuoli, S.V., Eisen, J., Seshadri, R., Ren, Q., 421 Wu, M., Utterback, T.R., Smith, S., Lewis, M., Khouri, H., Zhang, C., Niu, H., Lin, Q., Ohashi, N., 422 Zhi, N., Nelson, W., Brinkac, L.M., Dodson, R.J., Rosovitz, M.J., Sundaram, J., Daugherty, S.C., 423 Davidsen, T., Durkin, A.S., Gwinn, M., Haft, D.H., Selengut, J.D., Sullivan, S.A., Zafar, N., Zhou, 424 L., Benahmed, F., Forberger, H., Halpin, R., Mulligan, S., Robinson, J., White, O., Rikihisa, Y., 425 Tettelin, H., 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS 426 Genet. 2, e21. https://doi.org/10.1371/journal.pgen.0020021
- 427 Eisen, J.A., Heidelberg, J.F., White, O., Salzberg, S.L., 2000. Evidence for symmetric chromosomal 428 inversions around the replication origin in bacteria. Genome Biol. 1, research0011–1.
- 429 El Karkouri, K., Kowalczewska, M., Armstrong, N., Azza, S., Fournier, P.-E., Raoult, D., 2017. Multi-430 omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted 431 fever group *Rickettsia* spp. Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.01363
- 432 El Karkouri, K., Mediannikov, O., Robert, C., Raoult, D., Fournier, P.-E., 2016. Genome sequence of the 433 tick-borne pathogen Rickettsia raoultii. Genome Announc. 4, e00157–16. 434 https://doi.org/10.1128/genomeA.00157-16
- 435 Felsheim, R.F., Kurtti, T.J., Munderloh, U.G., 2009. Genome sequence of the endosymbiont *Rickettsia* 436 peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. 437 PLoS ONE 4, e8361. https://doi.org/10.1371/journal.pone.0008361
- 438 Fournier, P.-E., El Karkouri, K., Leroy, Q., Robert, C., Giumelli, B., Renesto, P., Socolovschi, C., Parola, 439 P., Audic, S., Raoult, D., 2009. Analysis of the Rickettsia africae genome reveals that virulence 440 acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10, 441 166. https://doi.org/10.1186/1471-2164-10-166
- 442 Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult, C.J., 443 Kerlavage, A.R., Sutton, G., Kelley, J.M., Fritchman, R.D., Weidman, J.F., Small, K.V., Sandusky, 444 M., Fuhrmann, J., Nguyen, D., Utterback, T.R., Saudek, D.M., Phillips, C.A., Merrick, J.M., 445 Tomb, J.F., Dougherty, B.A., Bott, K.F., Hu, P.C., Lucier, T.S., Peterson, S.N., Smith, H.O.,
- 446 Hutchison, C.A., Venter, J.C., 1995. The minimal gene complement of Mycoplasma 447 genitalium. Science 270, 397–403.
- 448 Fuxelius, H.-H., Darby, A., Min, C.-K., Cho, N.-H., Andersson, S.G.E., 2007. The genomic and metabolic 449 diversity of *Rickettsia*. Res. Microbiol. 158, 745–753. 450
 - https://doi.org/10.1016/j.resmic.2007.09.008
- Georgiades, K., Raoult, D., 2011. Genomes of the most dangerous epidemic bacteria have a virulence 451 452 repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS ONE 6, 453 e17962. https://doi.org/10.1371/journal.pone.0017962
- 454 Gillespie, J.J., Ammerman, N.C., Dreher-Lesnick, S.M., Rahman, M.S., Worley, M.J., Setubal, J.C., 455 Sobral, B.S., Azad, A.F., 2009. An Anomalous type IV secretion system in Rickettsia Is 456 evolutionarily conserved. PLoS ONE 4, e4833. https://doi.org/10.1371/journal.pone.0004833
- 457 Gillespie, J.J., Beier, M.S., Rahman, M.S., Ammerman, N.C., Shallom, J.M., Purkayastha, A., Sobral, 458 B.S., Azad, A.F., 2007. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS 459 ONE 2, e266. https://doi.org/10.1371/journal.pone.0000266

460 Gillespie, J.J., Joardar, V., Williams, K.P., Driscoll, T., Hostetler, J.B., Nordberg, E., Shukla, M., Walenz, 461 B., Hill, C.A., Nene, V.M., Azad, A.F., Sobral, B.W., Caler, E., 2012. A Rickettsia genome 462 overrun by mobile genetic elements provides insight into the acquisition of genes 463 characteristic of an obligate intracellular lifestyle. J. Bacteriol. 194, 376–394. 464 https://doi.org/10.1128/JB.06244-11 Gillespie, J.J., Kaur, S.J., Rahman, M.S., Rennoll-Bankert, K., Sears, K.T., Beier-Sexton, M., Azad, A.F., 465 466 2014. Secretome of obligate intracellular *Rickettsia*. FEMS Microbiol. Rev. n/a–n/a. 467 https://doi.org/10.1111/1574-6976.12084 468 Gillespie, J.J., Phan, I.Q.H., Driscoll, T.P., Guillotte, M.L., Lehman, S.S., Rennoll-Bankert, K.E., 469 Subramanian, S., Beier-Sexton, M., Myler, P.J., Rahman, M.S., Azad, A.F., 2016. The Rickettsia 470 type IV secretion system: unrealized complexity mired by gene family expansion. Pathog. Dis. 471 74, ftw058. https://doi.org/10.1093/femspd/ftw058 472 Gouin, E., Egile, C., Dehoux, P., Villiers, V., Adams, J., Gertler, F., Li, R., Cossart, P., 2004. The RickA 473 protein of *Rickettsia conorii* activates the Arp2/3 complex. Nature 427, 457. 474 Gouin, E., Gantelet, H., Egile, C., Lasa, I., Ohayon, H., Villiers, V., Gounon, P., Sansonetti, P.J., Cossart, 475 P., 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria 476 monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112, 1697–1708. 477 Greub, G., Raoult, D., 2003. History of the ADP/ATP-translocase-encoding gene, a parasitism gene 478 transferred from a *Chlamydiales* ancestor to plants 1 billion years ago. Appl. Environ. 479 Microbiol. 69, 5530-5535. https://doi.org/10.1128/AEM.69.9.5530-5535.2003 480 Heinzen, R.A., Hayes, S.F., Peacock, M.G., Hackstadt, T., 1993. Directional actin polymerization 481 associated with spotted fever group Rickettsia infection of vero cells. Infect. Immun. 61, 482 1926-1935. 483 Holste, D., Weiss, O., Grosse, I., Herzel, H., 2000. Are noncoding sequences of Rickettsia prowazekii remnants of ``neutralized" genes? J. Mol. Evol. 51, 353–362. 484 485 https://doi.org/10.1007/s002390010097 486 Hooper, S.D., 2003. On the nature of gene innovation: duplication patterns in microbial genomes. Mol. Biol. Evol. 20, 945–954. https://doi.org/10.1093/molbev/msg101 487 488 Hunter, D.J., Torkelson, J.L., Bodnar, J., Mortazavi, B., Laurent, T., Deason, J., Thephavongsa, K., Zhong, J., 2015. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de 489 490 novo folate biosynthesis. PloS One 10, e0144552. Jeng, R.L., Goley, E.D., D'Alessio, J.A., Chaga, O.Y., Svitkina, T.M., Borisy, G.G., Heinzen, R.A., Welch, 491 492 M.D., 2004. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-493 based motility: Rickettsia RickA activates the Arp2/3 complex. Cell. Microbiol. 6, 761–769. 494 https://doi.org/10.1111/j.1462-5822.2004.00402.x 495 Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software Version 7: 496 Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. 497 https://doi.org/10.1093/molbev/mst010 498 Keeling, P.J., Charlebois, R.L., Ford Doolittle, W., 1994. Archaebacterial genomes: eubacterial form 499 and eukaryotic content. Curr. Opin. Genet. Dev. 4, 816-822. https://doi.org/10.1016/0959-500 437X(94)90065-5 501 Krawiec, S., Riley, M., 1990. Organization of the bacterial chromosome. Microbiol. Rev. 54, 502–539. 502 Lechner, M., Findei\s s, S., Steiner, L., Marz, M., Stadler, P.F., Prohaska, S.J., 2011. Proteinortho: 503 detection of (co-) orthologs in large-scale analysis. BMC Bioinformatics 12, 124. 504 McLeod, M.P., Qin, X., Karpathy, S.E., Gioia, J., Highlander, S.K., Fox, G.E., McNeill, T.Z., Jiang, H., 505 Muzny, D., Jacob, L.S., Hawes, A.C., Sodergren, E., Gill, R., Hume, J., Morgan, M., Fan, G., 506 Amin, A.G., Gibbs, R.A., Hong, C., Yu, X. -j., Walker, D.H., Weinstock, G.M., 2004. Complete 507 Genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J. 508 Bacteriol. 186, 5842-5855. https://doi.org/10.1128/JB.186.17.5842-5855.2004 509 Merhej, V., Georgiades, K., Raoult, D., 2013. Postgenomic analysis of bacterial pathogens repertoire 510 reveals genome reduction rather than virulence factors. Brief. Funct. Genomics 12, 291–304. 511 https://doi.org/10.1093/bfgp/elt015

- Merhej, V., Raoult, D., 2011. Rickettsial evolution in the light of comparative genomics. Biol. Rev. 86,
 379–405. https://doi.org/10.1111/j.1469-185X.2010.00151.x
- Merhej, V., Royer-Carenzi, M., Pontarotti, P., Raoult, D., 2009. Massive comparative genomic analysis
 reveals convergent evolution of specialized bacteria. Biol. Direct 4, 13.
 https://doi.org/10.1186/1745-6150-4-13
- 517 Moran, N.A., 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583– 518 586.
- Munson, M.A., Baumann, L., Baumann, P., 1993. Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene:
 sequence determination, and promoter and terminator analysis. Gene 137, 171–178.
 https://doi.org/10.1016/0378-1119(93)90003-L
- Murray, G.G.R., Weinert, L.A., Rhule, E.L., Welch, J.J., 2016. The phylogeny of *Rickettsia* using
 different evolutionary signatures: how tree-like is bacterial evolution? Syst. Biol. 65, 265–
 279. https://doi.org/10.1093/sysbio/syv084
- Ogata, H., 2005. *Rickettsia felis*, from culture to genome sequencing. Ann. N. Y. Acad. Sci. 1063, 26–
 34. https://doi.org/10.1196/annals.1355.004
- Ogata, H., 2001. Mechanisms of evolution in *Rickettsia conorii* and *R. prowazekii*. Science 293, 2093–
 2098. https://doi.org/10.1126/science.1061471
- Ogata, H., Audic, S., Abergel, C., Fournier, P.-E., Claverie, J.-M., 2002. Protein coding palindromes are
 a unique but recurrent feature in Rickettsia. Genome Res. 12, 808–816.
- Ogata, H., Audic, S., Barbe, V., Artiguenave, F., Fournier, P.-E., Raoult, D., M Claverie, J., 2000. Selfish
 DNA in protein-coding genes of *Rickettsia*.
- Ogata, H., La Scola, B., Audic, S., Renesto, P., Blanc, G., Robert, C., Fournier, P.-E., Claverie, J.-M.,
 Raoult, D., 2006. Genome sequence of *Rickettsia bellii* illuminates the role of amoebae in
 gene exchanges between intracellular pathogens. PLoS Genet. 2, e76.
 https://doi.org/10.1371/journal.pgen.0020076
- Ogata, H., Renesto, P., Audic, S., Robert, C., Blanc, G., Fournier, P.-E., Parinello, H., Claverie, J.-M.,
 Raoult, D., 2005a. The genome sequence of *Rickettsia felis* identifies the first putative
 conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3, e248.
 https://doi.org/10.1371/journal.pbio.0030248
- Ogata, H., Suhre, K., Claverie, J.-M., 2005b. Discovery of protein-coding palindromic repeats in
 Wolbachia. Trends Microbiol. 13, 253–5. https://doi.org/10.1016/j.tim.2005.03.013
- Papenfort, K., Vanderpool, C.K., 2015. Target activation by regulatory RNAs in bacteria. FEMS
 Microbiol. Rev. 39, 362–378. https://doi.org/10.1093/femsre/fuv016
- Parola, P., Paddock, C.D., Socolovschi, C., Labruna, M.B., Mediannikov, O., Kernif, T., Abdad, M.Y.,
 Stenos, J., Bitam, I., Fournier, P.-E., Raoult, D., 2013. Update on tick-borne rickettsioses
 around the World: a geographic approach. Clin. Microbiol. Rev. 26, 657–702.
 https://doi.org/10.1128/CMR.00032-13
- Raoult, D., Roux, V., 1997. Rickettsioses as paradigms of new or emerging infectious diseases. Clin.
 Microbiol. Rev. 10, 694–719.
- Reed, S.C.O., Lamason, R.L., Risca, V.I., Abernathy, E., Welch, M.D., 2014. Rickettsia actin-based
 motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 24, 98–
 103. https://doi.org/10.1016/j.cub.2013.11.025
- Renesto, P., Ogata, H., Audic, S., Claverie, J.-M., Raoult, D., 2005. Some lessons from *Rickettsia* genomics. FEMS Microbiol. Rev. 29, 99–117. https://doi.org/10.1016/j.femsre.2004.09.002
- Riegler, M., Iturbe-Ormaetxe, I., Woolfit, M., Miller, W.J., O'Neill, S.L., 2012. Tandem repeat markers
 as novel diagnostic tools for high resolution fingerprinting of *Wolbachia*. BMC Microbiol. 12,
 S12.
- Rogozin, I.B., Makarova, K.S., Natale, D.A., Spiridonov, A.N., Tatusov, R.L., Wolf, Y.I., Yin, J., Koonin,
 E.V., 2002. Congruent evolution of different classes of non-coding DNA in prokaryotic
 genomes. Nucleic Acids Res. 30, 4264–4271.

564 Transcriptional response of Rickettsia conorii exposed to temperature variation and stress 565 starvation. Res. Microbiol. 156, 211–218. https://doi.org/10.1016/j.resmic.2004.09.002 566 Sahni, S.K., Narra, H.P., Sahni, A., Walker, D.H., 2013. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 8, 1265–1288. 567 568 https://doi.org/10.2217/fmb.13.102 569 Sakharkar, K.R., 2004. Genome reduction in prokaryotic obligatory intracellular parasites of humans: 570 a comparative analysis. Int. J. Syst. Evol. Microbiol. 54, 1937–1941. 571 https://doi.org/10.1099/ijs.0.63090-0 572 Schroeder, C.L.C., Narra, H.P., Rojas, M., Sahni, A., Patel, J., Khanipov, K., Wood, T.G., Fofanov, Y., 573 Sahni, S.K., 2015. Bacterial small RNAs in the genus *Rickettsia*. BMC Genomics 16. 574 https://doi.org/10.1186/s12864-015-2293-7 575 Sears, K.T., Ceraul, S.M., Gillespie, J.J., Allen, E.D., Popov, V.L., Ammerman, N.C., Rahman, M.S., Azad, 576 A.F., 2012. Surface proteome analysis and characterization of surface cell antigen (Sca) or 577 autotransporter family of *Rickettsia typhi*. PLoS Pathog. 8, e1002856. 578 https://doi.org/10.1371/journal.ppat.1002856 579 Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. 580 https://doi.org/10.1093/bioinformatics/btu153 581 Seshadri, R., Paulsen, I.T., Eisen, J.A., Read, T.D., Nelson, K.E., Nelson, W.C., Ward, N.L., Tettelin, H., 582 Davidsen, T.M., Beanan, M.J., others, 2003. Complete genome sequence of the Q-fever 583 pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. 100, 5455-5460. 584 Sicheritz-Pontén, T., Andersson, S.G., 1997. GRS: a graphic tool for genome retrieval and segment 585 analysis. Microb. Comp. Genomics 2, 123–139. 586 Shpynov, S.N., Fournier, P.E., Pozdnichenko, N.N., Gumenuk, A.S., Skiba, A.A., 2018. New approaches 587 in the systematics of rickettsiae. New Microbes New Infect. 23, 93-102. 588 https://doi.org10.1016/j.nmni.2018.02.012. 589 Stothard, D.R., Clark, J.B., Fuerst, P.A., 1994. Ancestral divergence of Rickettsia bellii from the spotted 590 fever and typhus groups of *Rickettsia* and antiquity of the genus *Rickettsia*. Int. J. Syst. Evol. 591 Microbiol. 44, 798-804. 592 Syvänen, A.-C., Amiri, H., Jamal, A., Andersson, S.G., Kurland, C.G., 1996. A chimeric disposition of the 593 elongation factor genes in *Rickettsia prowazekii*. J. Bacteriol. 178, 6192–6199. 594 Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary 595 genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. 596 https://doi.org/10.1093/molbev/mst197 597 Walker, D.H., 2005. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii 598 to the recent Rickettsia typhi. Ann. N. Y. Acad. Sci. 1063, 13–25. 599 https://doi.org/10.1196/annals.1355.003 600 Walsh, J.B., 1995. How often do duplicated genes evolve new functions? Genetics 139, 421–428. 601 Weinert, L.A., Welch, J.J., Jiggins, F.M., 2009. Conjugation genes are common throughout the genus 602 Rickettsia and are transmitted horizontally. Proc. R. Soc. B Biol. Sci. 276, 3619–3627. 603 https://doi.org/10.1098/rspb.2009.0875 604 Weinert, L.A., Werren, J.H., Aebi, A., Stone, G.N., Jiggins, F.M., 2009. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 6. https://doi.org/10.1186/1741-7007-7-6 605 606 Wixon, J., 2001. Featured organism: reductive evolution in bacteria: Buchnera sp., Rickettsia 607 prowazekii and Mycobacterium leprae. Comp. Funct. Genomics 2, 44-48. 608 Wolf, Y.I., Koonin, E.V., 2013. Genome reduction as the dominant mode of evolution: prospects & 609 overviews. BioEssays 35, 829-837. https://doi.org/10.1002/bies.201300037 610 Woodard, A., Wood, D.O., 2011. Analysis of convergent gene transcripts in the obligate intracellular 611 bacterium Rickettsia prowazekii. PLoS ONE 6, e16537. 612 https://doi.org/10.1371/journal.pone.0016537 613 Wu, M., Sun, L.V., Vamathevan, J., Riegler, M., Deboy, R., Brownlie, J.C., McGraw, E.A., Martin, W., 614 Esser, C., Ahmadinejad, N., Wiegand, C., Madupu, R., Beanan, M.J., Brinkac, L.M., Daugherty,

Rovery, C., Renesto, P., Crapoulet, N., Matsumoto, K., Parola, P., Ogata, H., Raoult, D., 2005.

563

- 615 S.C., Durkin, A.S., Kolonay, J.F., Nelson, W.C., Mohamoud, Y., Lee, P., Berry, K., Young, M.B.,
- 616 Utterback, T., Weidman, J., Nierman, W.C., Paulsen, I.T., Nelson, K.E., Tettelin, H., O'Neill,
- 617 S.L., Eisen, J.A., 2004. Phylogenomics of the reproductive parasite *Wolbachia pipientis* wMel:
- 618 A streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, e69.
- 619 https://doi.org/10.1371/journal.pbio.0020069
- Xin, D., El Karkouri, K., Robert, C., Raoult, D., Fournier, P.-E., 2012. Genomic comparison of *Rickettsia honei strain RBT and other Rickettsia* Species. J. Bacteriol. 194, 4145.
- 622 https://doi.org/10.1128/JB.00802-12

Figure 1: Phylogenomic tree of 29 *Rickettsia* species based on whole-genome sequence
analysis using the Maximum Likehood method within the FastTree software. Genomes were
aligned using Mugsy software. Values at the nodes are percentages. Numbers at the nodes
represent the percentages of bootstrap values obtained by repeating the analysis 1000 times to
generate a majority consensus tree. Only values greater than 90 % were reported. AG =
Ancestral group; TG = Typhus group; TRG = Transitional group; SFG = Spotted fever group.

Figure 2: Phylogenomic tree based on 591 core proteins and pathogenic and genomic 630 features, of *Rickettsia* species exhibiting various degrees of pathogenesis. For each genome 631 (downloaded from GenBank), gene prediction was obtained using the Prokka software 632 (Seemann, 2014). The core genome was identified using the ProteinOrtho software (Lechner 633 et al., 2011). Then, the amino acid sequences of 591 proteins (Supplementary Table) 634 635 conserved in all studied genomes were concatenated for each species and multiple alignment was performed using the Mafft software (Katoh and Standley, 2013, p. 2). Gapped positions 636 637 were removed. The phylogenetic inferences were obtained using the Maximum Likelihood 638 method and the MEGA software version 6 (Tamura et al., 2013). Branching support was evaluated using the bootstrap method with 1000 replications. Bootstrap values greater than 639 90% are shown at the nodes. Properties of each species were extracted from the following 640 references (Andersson et al., 1998; G. Blanc et al., 2007; Guillaume Blanc et al., 2007b; El 641 Karkouri et al., 2017, 2016; Fournier et al., 2009; McLeod et al., 2004; Ogata, 2001b; Ogata 642 et al., 2006, 2005a). NA = data not available; RPEs = Rickettsia palindromic elements. 643

644

645 Supplementary Table: List of protein sequences used for inferring the phylogenomic

relationshiops of ten *Rickettsia* species exhibiting various degrees of pathogenesis and presented in Figure 2.

Clusters ID	Protein function	Genes
cRIG00001	rnpA Ribonuclease P	rnpA
cRIG00002	rplT 50S ribosomal protein L	rpl
cRIG00003	nrdG Organic radical activating enzymes	nrd
cRIG00004	rplY 50S ribosomal protein L	rpl
cRIG00005	ychF GTP-binding protein YchF	ychF
cRIG00006	murE UDP-N-acetylmuramoylalanyl-D-glutamate, 2,6-diaminopimelate ligase	mur
cRIG00007	murF UDP-N-acetylmuramoylalanyl-D-glutamyl- , 2,6-diaminopimelateD-alanyl-D-alanyl ligase	mur
cRIG00008	mraY1 Phospho-N-acetylmuramoyl-pentapeptide- transferase	mraY
cRIG00009	recG ATP-dependent DNA helicase RecG	rec
cRIG00010	traX F pilin acetylation protein TraX	tra
cRIG00011	mviN Integral membrane protein MviN	mviN
cRIG00012	ppa Inorganic pyrophosphatase	ppa
cRIG00013	ccmE Cytochrome c-type biogenesis protein ccmE	ccm
cRIG00014	Sco2 protein precursor	Sco2
cRIG00015	secD Protein-export membrane protein secD	sec
cRIG00016	yajC Preprotein translocase YajC subunit	yajC
cRIG00017	gyrB DNA gyrase subunit B	gyr
cRIG00018	murA UDP-N-acetylglucosamine -1-carboxyvinyltransferase	mur
cRIG00019	surA Parvulin-like peptidyl-prolyl isomerase	surA
cRIG00020	secA Preprotein translocase secA subunit	sec
cRIG00021	Unknown	-
cRIG00022	uvrC Excinuclease ABC subunit C	uvr
cRIG00023	cmk Cytidylate kinase	cmk
cRIG00024	rpsA 30S ribosomal protein S1	rps
cRIG00025	clpP ATP-dependent Clp protease proteolytic subunit	clp
cRIG00026	glmU UDP-N-acetylglucosamine pyrophosphorylase	glmU
cRIG00027	Unknown	-
cRIG00028	Unknown	-
cRIG00029	lpdA2 Dihydrolipoamide dehydrogenase	lpdA
cRIG00030	5 -Formyltetrahydrofolate cyclo-ligase	-
cRIG00031	rnd Ribonuclease D	rnd
cRIG00032	gcvT Glycine cleavage T-protein	gcvT
cRIG00033	putP Na+/proline symporter and signal transduction histidine kinase	putP
cRIG00034	hemC Porphobilinogen deaminase	hemC
cRIG00035	trpS Tryptophanyl-tRNA synthetase	trpS
cRIG00036	plsC 1-acyl-sn-glycerolphosphate acyltransferase	plsC
cRIG00037	ampG1 AmpG	ampG
cRIG00038	tlc3 ATP/ADP translocase	tlc
cRIG00039	Unknown	-
cRIG00040	ispB Octaprenyl-diphosphate synthase	isp
cRIG00041	potE Putrescine-ornithine antiporter	potE
cRIG00042	iscA2 Iron-sulfur cluster assembly accessory protein	isc

cRIG00043	iscU FeS cluster assembly scaffold IscU	isc
cRIG00044	iscS Cysteine desulfurase IscS	isc
cRIG00045	spl1 NifS-like protein	spl1
cRIG00046	Unknown	-
cRIG00047	ntrY Nitrogen regulation protein NtrY	ntr
cRIG00048	rpsU 30S ribosomal protein S	rps
cRIG00049	Unknown	-
cRIG00050	ileS Isoleucyl-tRNA synthetase	ileS
cRIG00051	accC Acetyl-CoA carboxylase, biotin carboxylase	accC
cRIG00052	pccB Propionyl-CoA carboxylase beta chain precursor	pccB
cRIG00053	aas2 -acylglycerophosphoethanolamine acyltransferase	aas
cRIG00054	znuB Zinc/manganese ABC transporter permease protein	znuB
cRIG00055	ubiG Ubiquinone biosynthesis O-methyltransferase	ubi
cRIG00056	gltX Glutamyl-tRNA synthetase	gltX
cRIG00057	groEL 60 kD chaperonin	groEL
cRIG00058	groES 10 kD chaperonin	groES
cRIG00059	rph Ribonuclease PH	rph
cRIG00060	grpE GrpE protein	grpE
cRIG00061	perM Permease PerM-like protein	perM
cRIG00062	DnaA-like protein	DnaA
cRIG00063	rplQ 50S ribosomal protein L17	rpl
cRIG00064	rpoA DNA-directed RNA polymerase alpha chain	rpo
cRIG00065	rpsK 30S ribosomal protein S11	rps
cRIG00066	rpsM 30S ribosomal protein S13	rps
cRIG00067	adk Adenylate kinase	adk
cRIG00068	sec Y Preprotein translocase sec Y subunit	sec
cRIG00069	rpiO 50S ribosomal protein L15	rpl
cRIG00070	rpmD 50S ribosomal protein L30	rpm
cRIG00071	rpsE 30S ribosomal protein S5	rps
CRIG00072	rpIR 50S ribeSomal protein L18	rpl
CKIG00073	rpIF 50S HOOSOmai protein Lo	rpi
cRIG00074	m20SN 20S riboSomal protein St	rps
cRIG00075	rp1E 50S ribeSomeL protein 1.5	rps
cRIG00070	rplY 50S riboSomal protein L 24	rpl
cRIG00077	rpIX 50S ribosomal protein L 14	rpl
cRIG00078	rpsQ 30S ribosomal protein S17	rps
cRIG00075	rpsQ 505 ribosomal protein 517	rps
cRIG00081	rnIP 50S ribosomal protein L16	rpli
cRIG00082	rpsC 30S ribosomal protein S3	rps
cRIG00083	rplV 50S ribosomal protein L22	rpl
cRIG00084	rps S 30S ribosomal protein S19	rps
cRIG00085	rplB 50S ribosomal protein L2	rnl
cRIG00086	rplW 50S ribosomal protein L23	rnl
cRIG00087	rpID 50S ribosomal protein L4	rnl
cRIG00088	rpsJ 30S ribosomal protein S10	rps
cRIG00089	tuf Elongation factor EF-Tu	tuf
cRIG00090	fumC Fumarate hvdratase	fumC
		0

cRIG00091	ftsZ Cell division protein ftsZ	fts
cRIG00092	NifU-like protein	NifU
cRIG00093	ampG2 AmpG	ampG
cRIG00094	rhlE ATP-dependent RNA helicase RhlE	rhlE
cRIG00095	cspA Cold shock-like protein	cspA
cRIG00096	ksgA Dimethyladenosine transferase	ksgA
cRIG00097	Unknown	-
cRIG00098	ostA Organic solvent tolerance protein-like protein	ostA
cRIG00099	xseA Exodeoxyribonuclease VII, large subunit	xse
cRIG00100	xth2 Exodeoxyribonuclease III	xth
cRIG00101	GTP-binding protein	-
cRIG00102	ubiB 2-polyprenylphenol -hydroxylase	ubi
cRIG00103	ubiE Ubiquinone/menaquinone biosynthesis methlytransferase UbiE	ubi
cRIG00104	Unknown	-
cRIG00105	tatD Putative deoxyribonuclease TatD	tat
cRIG00106	metG Methionyl-tRNA synthetase	metG
cRIG00107	tmk1Thymidylate kinase	tmk1
cRIG00108	proP4 Proline/betaine transporter	proP4
cRIG00109	ubiA 4-hydroxybenzoate octaprenyltransferase	ubi
cRIG00110	valS Valyl-tRNA synthetase	valS
cRIG00111	RmuC family protein	
cRIC00112	eysB Trans regulatory protein EysB	RmuC
cRIG00112	msh42 Multidrug resistance protein	msh A
cRIG00113	Unknown	-
cRIG00114	bcr2 MFS-type bicyclomycin resistance protein	hcr?
cRIG00116	Lipoprotein releasing system, transmembrane protein, LolC/E family protein	Lol
cRIG00117	lolD Lipoprotein releasing system ATP-binding protein LolD	Lol
cRIG00118	Unknown	-
cRIG00119	Hemolysin-like protein	-
cRIG00120	ccmF Cytochrome c-type biogenesis protein ccmF	ccm
cRIG00121	ompB, sca5 Outer membrane protein rOmpB	sca
cRIG00122	Beta-glucosidase	-
cRIG00123	lpxK Tetraacyldisaccharide 4'-kinase	lpx
cRIG00124	ligA DNA ligase, NAD-dependent	lig
cRIG00125	tgt Queuine tRNA-ribosyltransferase	tgt
cRIG00126	ABC transporter substrate binding protein	-
cRIG00127	NADHubiquinone oxidoreductase 17,2 kD subunit	-
cRIG00128	rnhA Ribonuclease H	rnh
cRIG00129	Unknown	-
cRIG00130	Unknown	-
cRIG00131	coaE Dephospho-CoA kinase	coaE
cRIG00132	dnaQ DNA polymerase III epsilon chain	dna
cRIG00133	surf1 Surfeit locus protein	surf1
cRIG00134	ATP-dependent helicase	-
cRIG00135	fabD Malonyl CoA-acyl carrier protein transacylase	fab
cRIG00136	tlc5 ATP/ADP translocase	tlc
cRIG00137	tlyC Hemolysin C	tlyC

cRIG00138	Putative metal-dependent hydrolase	-
cRIG00139	lipA Lipoic acid synthetase	lip
cRIG00140	glyA Glycine/serine hydroxymethyltransferase	gly
cRIG00141	Serine esterase	-
cRIG00142	nth Endonuclease III	nth
cRIG00143	Putative methyltransferase	-
cRIG00144	ABC-type transport systems periplasmic component	-
cRIG00145	tatA Twin-arginine translocation protein TatA	tat
cRIG00146	pgpA Phosphatidylglycerophosphatase A	pgpA
cRIG00147	rplU 50S ribosomal protein L21	rpl
cRIG00148	rpmA 50S ribosomal protein L27	rpm
cRIG00149	Unknown	-
cRIG00150	proP5 Proline/betaine transporter	proP
cRIG00151	NAD-specific glutamate dehydrogenase	NAD
cRIG00152	trmE tRNA modification GTPase TrmE	trm
cRIG00153	recA RecA	rec
cRIG00154	fabG 3-oxoacyl reductase	fab
cRIG00155	acpP Acyl carrier protein	acpP
cRIG00156	fabF 3-oxoacyl-	fab
cRIG00157	mreC Rod shape-determining protein MreC	mre
cRIG00158	mreB Rod shape-determining protein MreB	mre
cRIG00159	Putative permeases	-
cRIG00160	pal Peptidoglycan-associated lipoprotein precursor	pal
cRIG00161	rpmF 50S ribosomal protein L32	rpm
cRIG00162	smpA tmRNA-binding protein	smpA
cRIG00163	ftsY Signal recognition particle-docking protein FtsY	fts
cRIG00164	polA DNA polymerase I	pol
cRIG00165	dnaE DNA polymerase III alpha chain	dna
cRIG00166	udg UDP-glucose 6-dehydrogenase	udg
cRIG00167	Unknown	-
CRIG00168	ampG3 AmpG	ampG
CKIG00169	tate Sec-independent protein translocase protein Tate	tat
CKIG00170	sers Seryi-tRNA synthetase	serS
CKIG00171	VIIB4-2 VIIB4	VIID
CKIG00172	UIKIIOWII tarC Tallurium registance protein TarC	- torC
CKIG00175	nuol 1 NADH dahydrogenasa I chain I	leic
CRIG00174	nuoli NADH debudrogenese Lehein M	nuo
CRIG00175	com A Hama exporter protain A	nuo
cRIC00170	nuoI NADH debydrogenase I chain I	nuo
cRIC00177	nuch NADH dehydrogenase I chain H	nuo
cRIG00178	nuoG NADH dehydrogenase I chain G	1100
cRIG00120	atnG ATP synthase gamma chain	atn
cRIC00180	$atp \Delta ATP$ synthase alpha chain	atp
cRIG00182	atnH ATP synthese delta chain	aip
cRIG00183	IndA1 Dibydrolinoamide dehydrogenase	uip Ind A
cRIG00184	Unknown	-
cRIG00185	kefB Glutathione-regulated potassium-efflux system protein KefB	kefB
	Kerb Gradanione regalated polassiani errax system protein Kerb	KUD

cRIG00186	Iojap-related protein	lojap
cRIG00187	bolA2 BolA-like protein	bolA
cRIG00188	infA Translation initiation factor IF-	inf
cRIG00189	maf Nucleotide-binding protein implicated in inhibition of septum formation	maf
cRIG00190	dksA DnaK suppressor-like protein	dksA
cRIG00191	xerC Tyrosine recombinase XerC	xerC
cRIG00192	hypothetical protein	-
cRIG00193	ftsK Cell division protein FtsK	fts
cRIG00194	mraY2 Undecaprenyl-phosphate alpha-N-acetylglucosaminyltransferase	mraY
cRIG00195	Unknown	-
cRIG00196	Unknown	-
cRIG00197	Putative outer surface protein	sca
cRIG00198	fdxA Ferredoxin	fdxA
cRIG00199	ccmC Heme exporter protein C	ccm
cRIG00200	Cation diffusion facilitator family transporter	-
cRIG00201	omp 17 kD surface antigen precursor	Sca
cRIG00202	znuC Zinc ABC transporter ATP-binding protein	znu
cRIG00203	uvrA Excinuclease ABC subunit A	uvr
cRIG00204	ssb Single-stranded DNA-binding protein	ssb
cRIG00205	DAP dipeptidyl aminopeptidase/acylaminoacyl-peptidase-like protein	dap
cRIG00206	htpG Heat shock protein htpG	htpG
cRIG00207	hemA 5-aminolevulinic acid synthase	hemA
CRIG00208	tig Irigger factor	tig
CRIG00209	obg GTP-binding protein	obg
CRIG00210	gita Citrate synthase I	gitA Uma sil
CRIG00211	Diacii-DINA giycosylase, faliliy	
cRIG00212	heme K Mathulasa of polypaptida chain release factors	hamK
cRIG00213	Sus5/VciO/VrdC/VwlC family putative translation factor protein	Sua5
cRIG00214	glvS Glvcyl-tRNA synthetase beta chain	olv
cRIG00215	glyO Glycyl-tRNA synthetase alpha chain	5 ¹ y olv
cRIG00210	Unknown	-
cRIG00218	Unknown	_
cRIG00219	dnaG DNA primase	dna
cRIG00220	sec59 Dolichol kinase	sec
cRIG00221	greA Transcription elongation factor GreA	greA
cRIG00222	pntA2 NAD(P) transhydrogenase subunit alpha	pnt
cRIG00223	pntA1 NAD(P) transhydrogenase subunit alpha	pnt
cRIG00224	lolA Outer membrane lipoprotein-sorting protein LolA	Lol
cRIG00225	Unknown	-
cRIG00226	Putative aspartyl protease	-
cRIG00227	glnQ Glutamine ABC transporter ATP-binding protein	gln
cRIG00228	phnP Metal-dependent hydrolases of the beta-lactamase superfamily I	phnP
cRIG00229	Unknown	-
cRIG00230	Putative permeases	-
cRIG00231	holC DNA polymerase III chi subunit HolC	holC
cRIG00232	dapE Succinyl-diaminopimelate desuccinylase	dap
cRIG00233	Unknown	-

cRIG00234	lipB Putative lipoate-protein ligase B	lip
cRIG00235	rpsP 30S ribosomal protein S16	rps
cRIG00236	mutL DNA mismatch repair protein MutL	mut
cRIG00237	proP7 Proline/betaine transporter	proP
cRIG00238	hemF Coproporphyrinogen III oxidase precursor	hemF
cRIG00239	Putative membrane protein	-
cRIG00240	hemH Putative ferrochelatase	hemH
cRIG00241	hemE Uroporphyrinogen decarboxylase	hemE
cRIG00242	Unknown	-
cRIG00243	trxA Thioredoxin	trx
cRIG00244	rfbE O-antigen export system ATP-binding protein RfbE	rfb
cRIG00245	rfbA O-antigen export system permease protein RfbA	rfb
cRIG00246	gltD NADPH-dependent glutamate synthase beta chain and related oxidoreductases	gltA
cRIG00247	lpxA Acvl-	lpx
cRIG00248	fabZ (3R)-hydroxymyristoyl-	fab
cRIG00249	InxD UDP-3-O-	lnx
cRIG00250	Putative P-loop hydrolase	- -
cRIG00251	znuA Zinc/manganese ABC transporter substrate binding protein	Zn 11
cRIG00252	ncnB Poly(A) polymerase	ncnB
cRIG00252	atnF ATP synthase B chain	atn
cRIG00254	atpX ATP synthase B chain	atn
cRIG00255	atpF ATP synthase C chain	atn
cRIG00255	atnB ATP synthase A chain	atn
cRIC00257	Linknown	- atp
cRIC00258	dshG Protein-disulfide isomerase	dshG
cRIC00250	Transcriptional regulator	usbu
cRIC00260	Unknown	
•DIC00261	cyn A Putative colicin V production membrane protein	cwnΔ
cRIC00201	clpB ClpB	clp
•DIC00263	hypothetical protain	cip
•DIC00264	rnsE 20S ribosomal protein S6	-
CRIG00204	maB20 S ribosomal protein S0	ips
CRIG00205	rpsR50 S filosofilai protein S18	rps
CRIG00200	tils mast tPNA (IIa) hvaiding synthetese	1pi
01100020/ 01100020	the ATD dependent metalleprotesses Etall	415 415
001C00260	sdbB Succinete debudrogenese iron sulfur protoin	115
•DIC00270	Jukeown	sull
•DIC00271	UIIKIIUWII	- 1~+
ADIC/00272	Butative membrane protein	Igi
•DIC00272	r utative memorane protein	-
CRIGUU2/3	yith rippidelli transiocase subunit fild	
CRIGUU2/4	pgsA CDF-diacyigiyceroigiyceroi-3-phosphate 3-phosphatidyitransferase	pgsA
CKIGUU2/5		- 41.
CKIG00276	uci AIP/ADP translocase	tic
CKIG00277	unpC Sugar phosphate permease	uhpC
CKIG00278	ndk Nucleoside diphosphate kinase	ndk
CKIG00279	gia A Glucose-inhibited division protein A	gid
CKIG00280	soj A i Pase involved in chromosome partitioning	soj
cKIG00281	ParB-like partition proteins	ParB

cRIG00282	abcTABC transporter ATP-binding protein	abcT
cRIG00283	Unknown	-
cRIG00284	kdsA -deoxyphosphooctulonate synthase	kds
cRIG00285	iscAIron-sulfur cluster assembly accessory protein	isc
cRIG00286	dgt Deoxyguanosinetriphosphate triphosphohydrolase	dgt
cRIG00287	argS Arginyl-tRNA synthetase	arg
cRIG00288	Unknown	-
cRIG00289	parC Topoisomerase IV subunit A	Par
cRIG00290	Unknown	-
cRIG00291	dcd Deoxycytidine triphosphate deaminase	dcd
cRIG00292	secB Protein-export protein secB	sec
cRIG00293	czcR Transcriptional activator protein CzcR	czcR
cRIG00294	GTP cyclohydrolase I	GTP
cRIG00295	Unknown	-
cRIG00296	pntB NAD(p) transhydrogenase subunit beta	pnt
cRIG00297	ompW OmpW family outer-membrane protein	Sca
cRIG00298	sam S-adenosylmethionine transporter	sam
cRIG00299	proP1 Proline/betaine transporter	proP
cRIG00300	cysS Cysteinyl-tRNA synthetase	cysS
cRIG00301	rpsB 30S ribosomal protein S2	rps
cRIG00302	tsf Elongation factor EF-Ts	tsf
cRIG00303	kdtA 3-deoxy-D-manno-octulosonic-acid transferase	kdtA
cRIG00304	Unknown	-
cRIG00305	aatA Aspartate aminotransferase A	aatA
cRIG00306	Unknown	-
cRIG00307	vacJ VacJ lipoprotein precursor	vacJ
cRIG00308	ABC-type transporter related to toluene tolerance	-
cRIG00309	alr Alanine racemase	alr
cRIG00310	ABC transporter permease protein	-
cRIG00311	mkl Ribonucleotide ABC transporter ATP-binding protein	mkl
cRIG00312	rpmB 50S ribosomal protein L28	rpm
cRIG00313	rpmE 50S ribosomal protein L31	rpm
cRIG00314	Hypothetical GTP-binding protein	-
cRIG00315	virB3 VirB3	virB
cRIG00316	virB4-1 VirB4	virB
cRIG00317	virB6-3 VirB6	vırB
cRIG00318	virB6-4 VirB6	vırB
cRIG00319	virB6-5 VirB6	vırB
cRIG00320	trmD tRNA (guanne-n1)-methyltransterase	trm
cRIG00321	rpis 505 ribosomal protein L19	rpl
cRIG00322	Unknown	-
CKIG00323	secf Protein-export membrane protein secf	sec
CKIG00324	nuoF NADH denydrogenase I chain F	nuo
CKIG00325	IEPE Signal peptidase I	ІерВ
CKIG00326	era GIP-binding protein Era	era
CKIG00327	ruve crossover junction endodeoxyribonuclease Ruve	ruvC
CKIG00528	Putative nucleoside-diphosphate-sugar epimerase	-
CKIG00329	mrp Mrp	mrp

cRIG00330	hflK Protease activity modulator HflK	hfl
cRIG00331	hflC2 Membrane protease subunit, stomatin/prohibitin-like protein	hfl
cRIG00332	htrA Periplasmic serine protease	htrA
cRIG00333	Putative sulfurtransferase	-
cRIG00334	sdhC Succinate dehydrogenase cytochrome b-556 subunit	sdh
cRIG00335	yqiY Amino acid ABC transporter permease protein	yqi
cRIG00336	rpsL 30S ribosomal protein S12	rps
cRIG00337	rpsG 30S ribosomal protein S7	rps
cRIG00338	fusA Elongation factor EF-G	fusA
cRIG00339	nusG Transcription antitermination protein NusG	nus
cRIG00340	rplK 50S ribosomal protein L11	rpl
cRIG00341	rplA 50S ribosomal protein L1	rpl
cRIG00342	rplJ 50S ribosomal protein L10	rpl
cRIG00343	rplL 50S ribosomal protein L7/L12	rpl
cRIG00344	rpoB DNA-directed RNA polymerase beta chain	rpo
cRIG00345	rpoC DNA-directed RNA polymerase beta prime chain	rpo
cRIG00346	pepA Aminopeptidase A	pepA
cRIG00347	Chromosome partitioning protein-like protein	-
cRIG00348	aspS Aspartyl-tRNA synthetase	aspS
cRIG00349	Integral membrane protein, interacts with FtsH	fts
cRIG00350	yqiX Amino acid ABC transporter substrate binding protein	yqi
cRIG00351	gatA Glutamyl-tRNA(Gln) amidotransferase subunit A	gat
cRIG00352	gatC Glutamyl-tRNA(Gln) amidotransferase subunit C	gat
cRIG00353	rrf Ribosome recycling factor	rrf
cRIG00354	pyrH Uridylate kinase	pyr
cRIG00355	mnhE Multisubunit Na+/H+ antiporter, MnhE subunit	mnh
cRIG00356	emrB MFS-type multidrug resistance protein B (SPLIT GENE)	emrB
cRIG00357	omp1 Outer membrane protein omp	Sca
cRIG00358	Putative membrane-associated zinc metalloprotease	-
cRIG00359	nusB N utilization substance protein B	nus
cRIG00360	rrmJ Ribosomal RNA large subunit methyltransferase J	rrmJ
cRIG00361	Oligoketide cyclase/lipid transport protein	-
cRIG00362	Unknown	-
cRIG00363	hupA DNA-binding protein HU	hupA
cRIG00364	holB DNA polymerase III delta subunit	hol
cRIG00365	th Signal recognition particle protein	tth
cRIG00366	gltP Na+/H+-dicarboxylate symporters	glt
cRIG00367	Putative 6-pyruvoyl tetrahydropterin synthase	-
cRIG00368	sucB Dihydrolipoamide acetyltransferase component	suc
CRIG00369	sucA2 -oxoglutarate dehydrogenase Ecomponent	suc
CKIG00370	recN DNA repair protein RecN	rec
CKIG003/1		comL
CKIG003/2		dna
CKIG003/3		dna 1 1
CKIG003/4	Heat snock protease	nsi
CKIG003/5		- 1 1
CKIGUU3/0	noiA DNA polymerase III, delta subunit	nol
CKIG00577	coq/ Ubiquinone biosynthesis protein coq	coq7

cRIG00378	coxC Cytochrome c oxidase subunit III	cox
cRIG00379	virB2 VirB2-like protein	virB
cRIG00380	RafdapD 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase	dap
cRIG00381	uspA Universal stress protein UspA and related nucleotide-binding proteins	uspA
cRIG00382	imp TRAP-type uncharacterized transport system, periplasmic component	imp
cRIG00383	Unknown	-
cRIG00384	hscA Heat shock protein hscA	hsc
cRIG00385	rnhB Ribonuclease HII	rnh
cRIG00386	uvrB Excinuclease ABC subunit B	uvr
cRIG00387	grxC1 Glutaredoxin, GrxC family	grxC1
cRIG00388	atm1 Multidrug resistance protein Atm	atm1
cRIG00389	gyrA DNA gyrase subunit A	gyr
cRIG00390	def1 Polypeptide deformylase	def
cRIG00391	fmt Methionyl-tRNA formyltransferase	fmt
cRIG00392	abcT3 Multidrug resistance ABC transporter ATP-binding protein	abcT
cRIG00393	Unknown	_
cRIG00394	cvdA Cytochrome d ubiauinol oxidase subunit I	cvd
cRIG00395	thrS Threonyl-tRNA synthetase	thrS
cRIG00396	Unknown	-
cRIG00397	tolC Type I secretion outer membrane protein TolC	tol
cRIG00398	Unknown	-
cRIG00399	Ankyrin repeat	-
cRIG00400	parE DNA topoisomerase IV. B subunit	Par
cRIG00401	ctp Carboxyl-terminal protease	ctp
cRIG00402	barA Histidine kinase sensor protein	barA
cRIG00403	Unknown	-
cRIG00404	Unknown	-
cRIG00405	WD40-like repeat	-
cRIG00406	rplM 50S ribosomal protein L13	rpl
cRIG00407	rpsI 30S ribosomal protein S9	rps
cRIG00408	nudH (Di)nucleoside polyphosphate hydrolase	nudH
cRIG00409	Regulatory components of sensory transduction system	-
cRIG00410	efp Translation elongation factor EF-P	efn
cRIG00411	subB Extragenic suppressor protein subB	suhB
cRIG00412	Unknown	-
cRIG00413	psd Phosphatidylserine decarboxylase	psd
cRIG00414	pssA CDP-diacylglycerolserine O-phosphatidyltransferase	nssA
cRIG00415	hypothetical protein	-
cRIG00416	Unknown	-
cRIG00417	bolA1 BolA-like protein	bolA
cRIG00418	EAL domain containing protein	EAL
cRIG00419	murC UDP-N-acetvlmuramatealanine ligase	mur
cRIG00420	murB UDP-N-acetylenolpyruvoylglucosamine reductase	mur
cRIG00421	ddlB D-alanineD-alanine ligase	ddlB
cRIG00422	Membrane protein implicated in regulation of membrane protease activity	
cRIG00423	cycM Cytochrome c	cvcM
cRIG00424	InxC UDP-3-O-	lny
DICODADE		122

cRIG00426	pdhA Pyruvate dehydrogenase e1 component, alpha subunit precursor	pdh
cRIG00427	pdhB Pyruvate dehydrogenase E1 component, beta subunit precursor	pdh
cRIG00428	typA GTP-binding protein TypA	typ
cRIG00429	hlpA Outer membrane protein	hlp
cRIG00430	icd Isocitrate dehydrogenase, NADP-dependent	icd
cRIG00431	Monovalent cation/proton antiporter, MnhG/PhaG subunit	MnhG
cRIG00432	mnhB Multisubunit Na+/H+ antiporter, MnhB subunit	mnh
cRIG00433	ccmB Heme exporter protein B	ccm
cRIG00434	Unknown	-
cRIG00435	petA Ubiquinol-cytochrome c reductase, iron-sulfur subunit	pet
cRIG00436	petB Cytochrome b	pet
cRIG00437	fbcH Cytochrome c1, heme protein precursor	fbcH
cRIG00438	nuoL2 NADH dehydrogenase I chain L	nuo
cRIG00439	nuoN2 NADHubiquinone oxidoreductase subunit (chain N)	nuo
cRIG00440	mnhC Multisubunit Na+/H+ antiporter, MnhC subunit	mnh
cRIG00441	virB8-1VirB8	virB
cRIG00442	virB8-2 VirB8	virB
cRIG00443	virB9-2 VirB9	virB
cRIG00444	virD4 VirD4	virD
cRIG00445	gppA Guanosine pentaphosphate phosphohydrolase	gppA
cRIG00446	Unknown	-
cRIG00447	Unknown	-
cRIG00448	cysQ 3'(2'),'5-bisphosphate nucleotidase	cysQ
cRIG00449	mutS DNA mismatch repair protein MutS	mut
cRIG00450	lacA Ribose-5-phosphate isomerase	lacA
cRIG00451	nlpD1 Membrane-bound metallopeptidase	nlpD
cRIG00452	thyX Thymidylate synthase, flavin-dependent	thy
cRIG00453	tolB TolB protein precursor	tol
cRIG00454	hypothetical protein	-
cRIG00455	cox11, ctaG Cytochrome c oxidase assembly protein cox 11	cox
cRIG00456	trmU tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase	trm
cRIG00457	atrC1 Cationic amino acid transporter-1	atrC
cRIG00458	hisS Histidyl-tRNA synthetase	hisS
cRIG00459	tolQ TolQ	tol
cRIG00460	tolR TolR	tol
cRIG00461	Periplasmic protein TonB, links inner and outer membranes	Ton
cRIG00462	proP10 Proline/betaine transporter	proP
cRIG00463	HlyD family secretion protein	HlyD
cRIG00464	aprD Alkaline protease secretion ATP-binding protein AprD	aprD
cRIG00465	asd Aspartate-semialdehyde dehydrogenase	asd
cRIG00466	Unknown	-
cRIG00467	hslV Heat shock protein HslV	hsl
cRIG00468	hslU Heat shock protein HslVU, ATPase subunit HslU	hsl
cRIG00469	IpxB Lipid-A-disaccharide synthase	lpx
cRIG00470	Aminodeoxychorismate lyase	-
cRIG00471	cyaY CyaY	cyaY
cRIG00472	gltX1 Glutamyl-tRNA synthetase	glt
cRIG00473	topA DNA topoisomerase I	top

cRIG00474	tdpX1 Thioredoxin peroxidase	tdpX
cRIG00475	hflC1 Membrane protease subunit, stomatin/prohibitin-like protein	hfl
cRIG00476	Putative membrane-associated metal-dependent hydrolase	-
cRIG00477	Efflux transporter, RND family, MFP subunit	rnd
cRIG00478	Putative hydrolase/acyltransferase	-
cRIG00479	Glycosyltransferase	-
cRIG00480	rpsD 30S ribosomal protein S4	rps
cRIG00481	cyoB, ctaB Protoheme IX farnesyltransferase	cyoB
cRIG00482	rimM 16S rRNA processing protein RimM	rimM
cRIG00483	Unknown	-
cRIG00484	xseB Exodeoxyribonuclease VII small subunit	xse
cRIG00485	mpg DNA-3-methyladenine glycosidase	mpg
cRIG00486	nuoE NADH dehydrogenase I chain E	nuo
cRIG00487	nuoD NADH dehydrogenase I chain D	nuo
cRIG00488	nuoC NADH dehydrogenase I chain C	nuo
cRIG00489	nuoA NADH dehydrogenase I chain A	nuo
cRIG00490	cutE Apolipoprotein N-acyltransferase	cut
cRIG00491	lysS Lysyl-tRNA synthetase	lys
cRIG00492	Putative permease	-
cRIG00493	tme Malate oxidoreductase	tme
cRIG00494	proP3 Proline/betaine transporter	proP
cRIG00495	mdh Malate dehydrogenase	mdh
cRIG00496	tlc2 ATP/ADP translocase	tlc
cRIG00497	pyrG CTP synthase	pyr
cRIG00498	kdsB 3-deoxy-manno-octulosonate cytidylyltransferase	kds
cRIG00499	folE GTP cyclohydrolase I	fol
cRIG00500	proS Prolyl-tRNA synthetase	proS
cRIG00501	ruvB Holliday junction DNA helicase RuvB	ruv
cRIG00502	msbA1 Multidrug resistance protein	msbA
cRIG00503	dacF Penicillin-binding protein dacF precursor	dac
cRIG00504	rlpA Rare lipoprotein A precursor	rlpA
cRIG00505	osmY Putative periplasmic or secreted lipoprotein	osmY
cRIG00506	ispZ Intracellular septation protein A	isp
cRIG00507	FTR1 family protein	FTR1
cRIG00508	Unknown	-
cRIG00509	Unknown	-
cRIG00510	Protocatechuate-3,4-dioxygenase, beta subunit	-
cRIG00511	tlpA Thioldisulfide interchange protein tlpA	tlpA
cRIG00512	sppAI Signal peptide peptidase SppA, 36K type	sppA
cRIG00513	dut Deoxyuridine 5'-triphosphate nucleotidohydrolase	dut
cRIG00514	mltESoluble lytic murein transglycosylase precursor	mltE
cRIG00515	mccF Microcin C/ self-immunity protein	mccF
cRIG00516	RecB family exonuclease	rec
cRIG00517	Putative glutamine amidotransferase	-
CRIG00518	coxA Cytochrome c oxidase polypeptide I	cox
CRIG00519	coxB Cytochrome c oxidase polypeptide II	cox
cRIG00520	nIpD2 Membrane-bound metallopeptidase	nlpD
cRIG00521	ftsW Cell division protein ftsW	fts

cRIG00522	murG UDP-N-acetylglucosamineN-acetylmuramyl- (pentapeptide) pyrophosphoryl-	mur		
DIC00532	undecaprenol N-acetylglucosamine transferase			
CKIG00523	Unknown			
CKIG00524	Giycosyitransferase			
CRIG00525				
CRIG00526	MiaB-like tRNA modifying enzyme			
CRIG00527	pnes Pnenylalanyl-tKNA synthetase alpha chain			
CKIG00528	phe I Phenylalanyl-tRNA synthetase beta chain			
CRIG00529	anan DNA polymerase III beta chain			
CRIG00530				
CRIG00531	rbIA Ribosome-binding factor A			
CRIG00532	Putative membrane protein			
CRIG00533	KDD family protein			
CKIG00534	reck Recombination protein Reck			
CRIG00535	ppnK Putative inorganic polyphosphate/ATP-NAD kinase			
CKIG00530	Putative hydrolase of the metallo-beta-lactamase superfamily			
CKIG00537	gpsA Gryceroiphosphate denydrogenase	pgsA		
CKIG00538	Putative permease	-		
CKIG00539	Putative hydrolase/acyltransferase	-		
CKIG00540	trxB1 Inforedoxin reductase	trx		
CKIG00541	Igid Giycosyi italisterase	Igi		
CKIG00542		uvr		
CRIG00545	UIIKIIOWII tdaP. Thraanina dahudratasa	- tdaP		
CRIG00544	lon1 ATD dependent protocol Le	lon1		
cRIG00545	wheth Dutative sigms (54) modulation protoin	10111 vbbU		
CRIG00540	folD Methylanetetrahydrofolata dehydroganasa	fol		
CRIG00547	try B2 Thioredoxin reductase	try		
cRIG00540	nrd A Ribonucleoside dinbosnhate reductase alpha chain	un nrd		
cRIG00549	nrdB Ribonucleoside-diphosphate reductase beta chain	nrd		
cRIG00550	Unknown	-		
cRIG00552	knsE KnsE			
cRIG00553	nnn Polyribonucleotide nucleotidyltransferase	nnn		
cRIG00554	rnsO 30S ribosomal protein \$15	rns		
cRIG00555	truB tRNA pseudouridine synthase B	truB		
cRIG00556	tlc4 ATP/ADP translocase	tlc		
cRIG00557	sca Cell surface antigen Sca	Sca		
cRIG00558	glnA Glutamine synthetase	gln		
cRIG00559	Unknown	-		
cRIG00560	ppdK Pyruvate, phosphate dikinase precursor	ppdk		
cRIG00561	Glutathione S-transferase	-		
cRIG00562	folC Folylpolyglutamate synthase	fol		
cRIG00563	sodB Superoxide dismutase	sodB		
cRIG00564	rssA Putative esterase of the alpha/beta hydrolase superfamily protein	rssA		
cRIG00565	birA Biotin-(acetyl-CoA carboxylase) ligase	birA		
cRIG00566	rho Transcription termination factor	rho		
cRIG00567	mraZ MraZ protein	mra		
cRIG00568	mraW S-adenosyl-methyltransferase MraW	mra		

cRIG00569	ftsL Cell division protein FtsL			
cRIG00570	pbpA2 Penicillin-binding protein			
cRIG00571	pbpA1 Penicillin-binding protein			
cRIG00572	Unknown			
cRIG00573	Unknown			
cRIG00574	ntrX Nitrogen assimilation regulatory protein NtrX			
cRIG00575	ubiH 2-polyprenyl-6-methoxyphenol 4-hydroxylase			
cRIG00576	nusA N utilization substance protein A, transcription termination factor NusA			
cRIG00577	infB Translation initiation factor IF-2			
cRIG00578	Putative glycoprotein endopeptidase	-		
cRIG00579	Unknown	-		
cRIG00580	N6-adenine-specific methylase			
cRIG00581	rluA2 Ribosomal large subunit pseudouridine synthase			
cRIG00582	dnaB Replicative DNA helicase			
cRIG00583	ubiX 3-octaprenyl-4-hydroxybenzoate carboxy-lyase			
cRIG00584	priA Primosomal protein N'			
cRIG00585	hemB Delta-aminolevulinic acid dehydratase	hemB		
cRIG00586	Unknown	-		
cRIG00587	nuoN1 NADHubiquinone oxidoreductase subunit (chain N)	nuo		
cRIG00588	proP6 Proline/betaine transporter	proP		
cRIG00589	dus Putative dihydrouridine synthase Dus			
cRIG00590	phbC Poly-beta-hydroxybutyrate polymerase			
cRIG00591	Unknown	-		

648 ^acRIG = Rickettsial orthologous cluster

0.005

		Virulence	Size (bp)	protein- coding genes	% coding sequences	RNAs	pseudogenes	RPEs
100	- R. africae ESF-5	Milder	1,278,540 pRaf:12,377	1112	78.26	39	246	460
100	- R. sibirica 246	Virulent	1,250,021	1083	77.76	36	200	NA
100	R. conorii Malish 7	Virulent	1,268,755	1374	81.5	39	252	559
100	– R. rickettsii Sheila Smith	Virulent	1,257,710	1345	78.5	36	233	NA
	R. massiliae MTU5	Mild	1,360,898 pRma:15,286	968	69	39	286	562
100 100	R. raoultii Khabarovsk	Mild	1,344,605 pRra1:20,840 pRra2:83,219	1180	71.2	39	339	NA
R	. felis URRWXCal2	Mild	pRra3:34,583 1,485,148 pRF:6,282 pRF:339,268	1444	83.8	39	130	726
	R. prowazekii Madrid E	Highly virulent	1,111,523	834	76.2	39	181	120
	R. typhi Wilmington	Virulent	1,111,496	838	76.3	39	185	121
	R. bellii RML369-C	Unknown	1,522,076	1429	82.5	40	100	526