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Ion velocity analysis of rotating structures in a magnetic linear plasma device

N. Claire,a) A. Escarguel,b) C. Rebont, and F. Doveilc)

Aix Marseille Univ, CNRS, PIIM, Marseille, France

The MISTRAL device is designed to produce a linear magnetized plasma column. It has been used 
a few years ago to study a nonlinear low frequency instability exhibiting an azimuthal number 
m ¼ 2. By changing the experimental configuration of MISTRAL, this work shows experimental 
results on an m ¼ 1 rotating instability with strongly different behavior. The spatio-temporal evolu-

tion of the ion velocity distribution function given by a laser-induced fluorescence diagnostic is 
measured to infer the radial and azimuthal velocities, ion fluxes, and electric fields. The naive 
image of a plasma exhibiting a global rotation is again invalidated in this m ¼ 1 mode but in a dif-

ferent way. Contrary to the m ¼ 2 mode, the rotation frequency of the instability is lower than the 
ion cyclotron frequency and ions exhibit a complex behavior with a radial outward flux inside the 
unstable arm and azimuthal ion fluxes always directed toward the unstable arm. The azimuthal ion 
velocity is close to zero inside the ionization region, whereas the radial ion velocity grows linearly 
with radius. The radial electric field is oriented inward inside the unstable arm and outward outside. 
An axial velocity perturbation is also present, indicating that contrary to the m ¼ 2 mode, the m ¼ 1 
mode is not a flute mode. These results cannot be easily interpreted with existing theories. 
https://doi.org/10.1063/1.5019448

I. INTRODUCTION

The presence of a magnetic field ~B perpendicular to an

electric field ~E in a plasma leads to charged particle drift in

the ~E � ~B direction. This situation is very favorable for the

triggering of instabilities, leading to anomalous plasma trans-

port across the magnetic field. This is a crucial question of

plasma physics, which has attracted much attention in the

context of fusion plasmas, but little is known about anoma-

lous transport in low temperature discharge devices (Hall

thrusters, negative ion sources, Penning discharges, magnet-

rons, mass separation of nuclear waste, etc.) where the pres-

ence of weakly or non-magnetized ions and of collisions

with neutrals leads to specific phenomena. Strongly nonlin-

ear rotating structures can develop in such configurations,

exhibiting a large density and potential perturbation with

angular frequency close to the ion cyclotron frequency.

Depending on the experimental conditions, it has been

shown that radial regular rotating structures with azimuthal

numbers m¼ 1 and m¼ 2 can be observed on the MISTRAL

plasma device.1–4 The transition from regular to unstable or

turbulent regimes can be controlled by biasing the end plates

of the plasma column. In 2011, a detailed study of such

instability with two rotating symmetric arms (m¼ 2) was

investigated experimentally on MISTRAL,5 with emphasis

on the ion velocity distribution function (IVDF). By chang-

ing the experimental conditions on MISTRAL with a con-

ducting cylinder surrounding the plasma column, we present

in this work a complementary study of an m¼ 1 strongly

nonlinear coherent structure using the same Laser Induced

Fluorescence (LIF) diagnostic.6,7 Time-resolved LIF is

applied to the investigation of temporal and spatial evolution

of the IVDF inside and outside the ionization region. In com-

parison with the m¼ 2 case, the spatiotemporal evolution of

the IVDF exhibits very different features.

II. EXPERIMENTAL APPARATUS

The MISTRAL device is composed of a large source

chamber and a cylindrical study chamber. Energetic ionizing

electrons are created in the source chamber, with typical

energy around 40 eV, and are accelerated toward the

grounded anode. As shown in Fig. 1, a magnetic multipolar

structure increases the confinement time of the ionizing elec-

trons and allows their radially homogeneous injection inside

the cylindrical study chamber.

The plasma study is done in this second chamber. It

allows the creation of a linear plasma column confined by an

axial magnetic field. It is 1 m in length and 40 cm in diame-

ter. The argon gas pressure is 9� 10�4 mbar. The uniform

magnetic field of 16 mT is produced by a set of 19 coils. A

metallic diaphragm limiter with a centered circular 10 cm

aperture is placed between the source and the study chamber.

For the experiments reported here, two grounded half-

cylinders have been installed around the plasma column to

measure the time evolution of the radially collected current.

Therefore, the distance between the core plasma and the ves-

sel is less than for the configuration in which an instability

with azimuthal number m¼ 2 has been previously studied.5

Consequently, the radial current evacuation from plasma to

ground is easier. The linear magnetized plasma column is

axially delimited by two grids at the floating potential, one

between the source and the study chamber and the other one

at the end of the column.

The equilibrium of the plasma column is determined by

the current of incoming ionizing electrons and the collection
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of charged particles on the separating and collecting grids,

and on the vessel or the two half-cylinders. The potential dif-

ference between the central plasma column and the grounded

collecting half-cylinders gives rise to an inward radial electric

field, leading to a possible ~E � ~B rotation of ions and elec-

trons. Nonlinear rotating structures around a plasma column

have been detected a long time ago in magnetized plasmas.8

Analytical studies have exhibited the main characteristics9,10

of these structures existing when a sheared radial electric field

is established. The structure of the instability has been

obtained with probes,11 ultrafast imaging,12 and spectros-

copy.4 A kinetic description of the unstable low-frequency

waves in a magnetized plasma column under rotation induced

by the injection of energetic electrons has been proposed.13

More recently, PIC-MCC (Particle-In-Cell Monte Carlo

Collisions) simulations have shown some important features

of ~E � ~B configurations rotating instabilities.14

The plasma parameters are the electronic density ne

� 108 cm�3, the ion cyclotronic frequency fci¼ 6 kHz, the

electronic cyclotronic frequency fce¼ 400 MHz, the elec-

tronic Larmor radius qce ¼ 0:3 mm, the ion Larmor radius

qci ¼ 12:8 mm, the electronic temperature Te � 3 eV, the

ion temperature Ti � 0:1 eV, and the plasma potential

Uplasma ¼ 10 V. In these conditions (grounded half cylinders

and grids at floating potential), a strongly non-linear rotating

coherent m¼ 1 mode develops in the central plasma at 5 kHz

with one spiral arm and expands out in the scrape-off layer

behind the entrance limiter. The LIF diagnostic6 uses a tun-

able dye laser chopped by an acousto-optic modulator and

pumped by a continuous DPSS Verdi laser. The spectral

purity of the dye laser is very high (0.5 MHz), and the central

frequency is electronically tunable. Three Argon II atomic

levels are used: the 3d2G9=2 metastable level is excited at

611 nm to the 4p2F7=2 level whose decay at 460.9 nm to the

3s2G9=2 level is observed. With this method, the IVDF along

the laser beam can be recorded with a good spatial resolu-

tion.15 The laser beam is fired vertically at different plasma

radiuses from r¼ 1 to 6 cm, the entrance diaphragm radius

being r¼ 5 cm. Because of too noisy data, no acquisition has

been done for r> 6 cm. The fluorescence radiation emitted

by the probed metastable ions is collected in a direction per-

pendicular to the laser beam by an optical system whose

aperture sets the axial radial and azimuthal resolution at

0.8 cm. This value is close to the ion Larmor radius with

thermal velocity vthi¼ 450 m/s. The fluorescence radiation is

detected by a photomultiplier tube coupled to a 1 nm band-

pass optical filter. A multi-channel scaler16 records the

counting rate of events. With repetitive measurements, the

scan in laser frequency is synchronized with the rotation of

the structure inside the plasma and multiple scans are

summed up. The temporal resolution is 10 ls and the dura-

tion of one record is about 20 min.

III. m 5 1 MODE RESULTS

When separating and collecting grids are grounded, no

rotating structure is present. A m¼ 1 mode is obtained for

the collecting and separating grids at floating potential and

the half cylinders grounded as shown on Fig. 1.

Figure 2 shows the time evolution of the plasma light

images separated by 25 ls in the shadow of the limiter. This

result is obtained with a synchronized intensified camera

looking at the end of the plasma column exhibiting a m¼ 1

plasma ejection mode at �¼ 5 kHz. To avoid saturation of

the camera, the plasma bulk light emission is occulted by a

mask. This series of pictures shows clearly the rotation of

the m¼ 1 structure.4

In this configuration, the charged particles flux cannot

be evacuated by the floating grids placed at the two ends of

the plasma column. The only possibility is the radial evacua-

tion through the two half-cylinders. Then, this experimental

configuration favors the radial transport across the magnetic

field with respect to the m¼ 2 mode configuration.

Moreover, we note that it is much easier to obtain nonlinear

modes in rotation with the presence of the two half-cylinders

than without.

FIG. 1. Sketch of the MISTRAL

experimental device.



Plasma ejection occurs in the form of one spiral arm in

this particular MISTRAL configuration. The main control

parameters are the collecting and separating grids potentials.

The other device parameters (discharge biasing, pressure,

…) only change the value of the rotation frequency of the

structure. An m¼ 2 mode, similar to the one previously stud-

ied,5 can also be obtained in this half-cylinders MISTRAL

configuration when separating and collecting grids are biased

at a different potential, for example, Ucol ¼ 20 V and Usep

¼ 2 V. Spatial/time resolved IVDF of Argon ions was mea-

sured in the plasma. From these data, the 2D ion velocity~v
and electric field ~E have been calculated in the same way as

for the m¼ 2 study,5 for radius varying from r¼ 1 cm to

r¼ 6 cm with a 1 cm step. The spatial and temporal resolu-

tions are equal to 8 mm and 10 ls, respectively. The r¼ 6 cm

measurements correspond to 1 cm outside the ionization

region. Positive azimuthal fluxes, velocities, and electric

fields are oriented in the trigonometrical sense which is the

direction of the structure rotation. Radial fluxes, velocities,

and electric fields are positive when directed outward the

plasma column.

Figure 3 shows a typical radial time-resolved IVDF

record at r¼ 5 cm from the center and at a time correspond-

ing to the maximum density perturbation. Close to a

Maxwellian distribution (except at far wings), its total ther-

mal velocity vthr has a value of 810 m/s for this point at this

particular time in the MISTRAL device. This value is close

to the value classically measured for the ions in MISTRAL.

But the time evolution of vthr at r¼ 5 cm exhibits a particular

shape, as shown in Fig. 4: it is minimum at the maximum

density perturbation and 4 times bigger at the minimum den-

sity perturbation. This thermal velocity behavior is also pre-

sent on the azimuthal records end for any radius. Thus ions

clearly exhibit a higher temperature outside the rotating

structure. Using the same reconstruction as in the paper by

Rebont et al.5 for this kind of rotating periodic structure, a

measurement by LIF of IVDF along the radial direction at

one position gives a measurement of IVDF along the azi-

muthal direction at a position angularly shifted by is p=2 at

FIG. 2. Images from an intensified

camera, plasma bulk emission is

occulted by a mask.

FIG. 3. Typical radial IVDF record at r¼ 5 cm from the center and at the

time of maximum density perturbation.



the same radius. Time is then synchronized between the

radial and reconstructed azimuthal measurements, assuming

that the maximum density perturbation must occur at the

same time for both measurements.

In Fig. 5, the radial variation of the time delay between

the ion density maximum and the azimuthal and radial maxi-

mum fluid velocities is presented. The azimuthal time delay

is approximately constant and close to 20 ls (corresponding

to a p=5 phase shift), but the radial time delay strongly

decreases with radius: inside the ionization region, the maxi-

mum phase shift is 3p=5 (60 ls), then decreases to half of

this value, and vanishes outside. Let us recall that theory pre-

dicts a null (resp. p=2) phase shift for a flute mode (resp. a

drift wave).17

FIG. 4. Plasma density (dashed line) and total radial thermal velocity vthr

(continuous line) at r¼ 5 cm as a function of time.

FIG. 5. Radial variation of the time delay between the maximum of the ionic

density and the maximum of the azimuthal (a) and radial (b) fluid velocities.

FIG. 6. Radial variations of the ionic azimuthal (a) and radial (b) fluid veloc-

ities at the density maximum.

FIG. 7. Temporal evolutions of the azimuthal (dashed line) and radial (con-

tinuous line) ionic fluxes at r¼ 5 cm. The vertical line represents the density

maximum.



In Fig. 6, the azimuthal and radial fluid velocities are

presented versus radius for the time corresponding to the

maximum density perturbation in the arm. Except outside

the ionization region, the azimuthal fluid velocity vh is very

low and decreases slightly with radius, even if a small mis-

alignment is possible and could explain the negative values.

The radial fluid velocity increases approximately linearly

with radius as used in an earlier theoretical approach,10 fol-

lowing the relation vr ¼ A:r with A¼ 20 340 s�1. These

results show that, at the density maximum inside the arms,

ions do not rotate with it.

Figure 7 shows the temporal evolution of the radial and

azimuthal fluxes, Cr ¼ n:vr and Ch ¼ n:vh for r¼ 5 cm, the

vertical line corresponding to the density maximum. Note

that a complete period of the perturbation is not shown.

Inside the arm, fluxes behaviors are similar for all radiuses:

ions are radially ejected outward (positive radial flux around

the density maximum). In the azimuthal direction, the flux

changes its sign at the density maximum (positive before and

negative after the maximum). This means that at the periph-

ery of the unstable arm, ions always penetrate azimuthally

inside it.

The azimuthal Eh and radial Er electric fields have been

calculated from the fluid equations as in the previous work

on the m¼ 2 instability.5 Figure 8 gives the temporal evolu-

tion of the ion density ni and of the azimuthal Eh and radial

Er electric fields at position r¼ 5 cm. Er changes its sign

around the density maximum, pointing outward before it. No

error bar is plotted since electric fields are derivated from a

theoretical fluid model.5 The norm of the electric field vector

increases with radius, from 10 Vm�1 close to the plasma col-

umn center to 40 Vm�1 at r¼ 6 cm outside the ionization

region.

In Fig. 9, the time evolution of the axial ion fluid velocity

and density is shown. Unlike the m¼ 2 case,5 an axial veloc-

ity perturbation is clearly present. The m¼ 1 rotating structure

in the linear magnetized plasma MISTRAL is not a flute

mode characterized by a revolution symmetry and an identical

radial perturbation expansion all along the column. The axial

velocity is always directed toward the end grid with a maxi-

mum amplitude close to the maximum density perturbation.

IV. COMPARISON BETWEEN m 5 1 AND m 5 2 MODE

The m¼ 2 and m¼ 1 modes show very different behav-

iors. Obviously, m¼ 2 is symmetric, whereas m¼ 1 is not.

Indeed, m¼ 2 mode presents more symmetry than the m¼ 1

mode, whereas the center of the plasma column of the m¼ 1

mode spatially oscillates around the column center with the

arm rotation.18 The ion cyclotronic frequency in both modes

is fci¼ 6 kHz larger than the frequency rotation of the m¼ 1

mode, but smaller than the one of the m¼ 2 mode.

For m¼ 2 mode, ions are ejected between the arms and

rotate with them at a velocity lower than the wave rotation

velocity. But for m¼ 1 mode, ions are radially ejected inside

the arm, while on the edge of the structure the ionic fluxes

are azimuthally oriented inward. The phase shift between the

azimuthal velocity and the density perturbation is null for the

m¼ 2 mode, but close to p=5 for the m¼ 1 mode. Finally, no

axial perturbation is present for the m¼ 2 mode, whereas it

is observed for the m¼ 1 mode with an ion flux always

directed through the collecting grid.

Centrifugal, Kelvin-Helmholtz and drift wave instabil-

ities can play an important role in bounded magnetized plas-

mas.19,20 The first two ones are flute like instabilities,

contradictory to our observation of axial perturbation by

LIF. The third one has a theoretical radial velocity shift with

respect to density equal to p=2, which is not in agreement

with our experimental results (Fig. 5). Consequently, our

results show a complex plasma physics which is not fully

explained by current linear theories.

V. DISCUSSION AND SUMMARY

The time-resolved LIF diagnostic shows that the physics

underlying m¼ 1 and m¼ 2 rotating instabilities is strongly

different. The boundary conditions of the plasma column

(grids polarisations and the presence of two half-cylinders in

the m¼ 1 case) play an important role in the balance of the

incoming/outcoming fluxes of charged particles, leading to

different physics. As in the m¼ 2 study,5 the naive image of

a plasma exhibiting a global rotation is invalidated by our

results but in a different way. Modified Simon-Hoh type

instabilities21–23 are suspected to be at the root of the

FIG. 8. Temporal evolutions of the

density (dashed line), the azimuthal

(continuous line) and radial (squares)

electric fields at r¼ 5 cm.

FIG. 9. Temporal evolutions of axial ion fluid velocity (continuous line) and

density (dashed line).



observed m¼ 1 structure, but the physics seems to be much

more complicated.

Annaratone10 proposed an analytical model to reproduce

the pressure and magnetic field dependence of the rotation

frequency of the m¼ 1 unstable modes in MISTRAL. This

simplified model takes into account the radial variations of

the radial ion velocity obtained by LIF measurements and is

in global agreement with our results.

Recently, Pierre24 proposed another simple theoretical

analysis of the rotation frequency of the instability in

MISTRAL. He considered that the angular frequency of the

drifting ions determines the rotation frequency of the m¼ 1

mode, taking into account the effect of ion-neutral collisions

on the ~E � ~B ionic velocity.25 But as indicated by this

author, this model strongly depends on the value of the cross

section of ion-neutral collisions, which is not known with

enough accuracy.

Kinetic simulations by Boeuf14 have shown the possible

role of the critical ionization velocity (CIV) in the ~E � ~B
rotation of a plasma column. This could be compatible with

our experimental results, even though the rotation frequency

at r¼ 6 cm corresponding to the argon CIV (8700 m/s) is

more than 4 times larger than our experimental results.

For a better understanding of the complex physics revealed

by the time-resolved LIF diagnostics, there is now a strong

need for more detailed numerical simulations. Our results could

be used for a careful analysis of the underlying physics.
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