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a b s t r a c t 

To take advantage of modern generation computing hardware, a scalable numerical method, based on 

higher-order compact scheme, is described to solve rotating stratified flows in cylindrical annular do- 

mains. An original approach combining 2d-pencil decomposition and reduced Parallel Diagonal Dominant 

is proposed to improve the parallelization performance during the computation of Poisson/Helmholtz 

solvers and time explicit terms. The developed technique is validated with respect to analytical solutions, 

using the method of manufactured solutions, and available data for two specific configurations. The pur- 

pose is to demonstrate its ability to correctly capture the flow characteristics in strato-rotational insta- 

bility and in baroclinic instability with associated small-scale features. Moreover, this code is found to 

drastically reduce the huge execution times often preventing detailed numerical investigations of these 

complex phenomena. Strong scaling test is carried out to assess the performance for up to 1024 cores 

using grid up to 128 × 568 × 568 in radial, axial and azimuthal directions. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Current trends in computational science stem from the increas-

ing prominence of modern multi- and many-core hardware such as

graphics processing units (GPUs) in high-performance computing

(HPC) infrastructure. Improved multi-core central processing units

(CPUs) associated with GPU-accelerated computing can greatly

accelerate scientific studies especially in large-scale simulations

[1–3] . However, the reduction of execution times strongly depends

on the optimization of the performance of discretization methods

used on each node while good computational scaling results from

small communication footprint [4] . 

Even though finite element methods are becoming common-

place for simulations of most engineering and biomedical applica-

tions on complex geometries, low-order discretizations suffer from

strong mesh refinement required to capture certain specific com-

plex solution features. In contrast, high-order techniques, such as

spectral approaches, provide improved numerical characteristics at

reduced computational cost for a given number of degrees of free-

dom but they usually remain restricted to regular configurations.

Recently, the spectral/hp element methods [5–7] combine high ac-

curacy, known as the spectral convergence, and geometric flex-
∗ Corresponding author. 
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bility to tackle challenging aeronautical flow simulations using

etween O(10 4 ) and O(10 5 ) nodes [8] , and even up to O(10 6 )

odes [9] . 

In the present study, a higher-order compact scheme solver

10] is tailored for solving complex rotating stratified flows in an-

ular domains to take advantage of modern generation computing

ardware. Our goal is to reduce the huge total time due to the

ery long transient stage resulting from the thermal stratification

ssociated with the rotation. We have chosen to treat two specific

dealized configurations: a Taylor–Couette setup submitted to ax-

al stratification for the strato-rotational instability (SRI) [11] and

 uniformly rotating cavity submitted to radial thermal gradient

or the baroclinic instability [12] . In the first case, the geometry

s defined by a large aspect ratio while the second one is charac-

erized by the coexistence of very different spatio-temporal scales

13] . Before considering more deeply actual physics arising in these

wo configurations, this work reports on the validation of the de-

eloped numerical tool with respect to data available in the litera-

ure. We have restricted our simulations to remain in the domain

f the Boussinesq approximation: weak density stratification and

eak rotation rate to neglect the centrifugal acceleration. 

Most of common discretization such as finite volumes, finite

ifferences, finite elements or lattice Boltzmann method, is ef-

ciently implemented in parallel computing environment, even

hough massively parallel linear solvers still remain a challeng-

ng work [14–17] . Concerning high accuracy discretization, the

https://doi.org/10.1016/j.compfluid.2018.07.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.07.016&domain=pdf
mailto:stephane.abide@univ-perp.fr
https://doi.org/10.1016/j.compfluid.2018.07.016
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icture is more mixed. The computational stencils of such dis-

retizations are larger than those of the common lower-order for-

ulations, therefore inducing large parallel communications. The

d-pencil decomposition became the common strategy to deal

ith large computational stencils [18–22] . The successful exam-

le of the massively parallel FFT computations with 1d then 2d

encil decomposition [21] has been tailoring to the Navier–Stokes

olvers based on higher-order discretizations [18,23] . Nowadays,

his strategy of parallelization offers a significant reduction of the

all-time and allows the study of highly turbulent flows. Be-

ause of the expensive cost of the communications inherent to 2d-

encil decompositions, some choices in the design of the numeri-

al method must be made to limit communications. For instance,

ne can choose time-explicit advancement schemes for the diffu-

ive terms, Fourier series expansions, or a collocated variable lay-

ut [18] . Compact schemes are finite differences based on implicit

elations [24] which rely on solutions of tridiagonal or pentadiag-

nal linear systems. Therefore, higher-order compact schemes can

e considered as an interesting alternative to spectral methods, as-

ociating the robustness of finite difference with improved accu-

acy. In a recent work, Abide et al. [10] proposed an approximate

arallel tridiagonal solver [25] to avoid the use of 2d-pencil de-

omposition for the computation of compact derivatives and inter-

olations. In this case, the communications between neighbor pro-

ess rely on halo exchange algorithm. Nevertheless, the 2d-pencil

ecomposition is still considered to tailor a parallel version of the

ull diagonalization method [26] , despite the cost of the commu-

ications involved by the data transpositions. The combination of

he two parallelization strategies allows the authors to successfully

imulate incompressible flow in truly three-dimensional cartesian

omain. Moreover, the basic numerical method features for turbu-

ent flow simulations such as the staggered grid and implicit vis-

ous terms are conserved, while exhibiting a good strong scaling. 

The proposed numerical method is based on Fourier/Fourth-

rder compact scheme discretization defined on staggered grid.

he second order Adams–Bashforth/Backward Euler time scheme

ombined with an efficient projection scheme has been consid-

red: this approach relaxes the stringent time step constraints in-

erent to the diffusive terms [27] . It corresponds to an extension of

 previous numerical code, developed in cartesian coordinates [10] ,

or solving rotating stratified flows in annular domains. Moreover,

he present parallelization strategy is concerned with a 2d-pencil

ecomposition and reduced Parallel Diagonal Dominant (rPDD) to

ddress the numerical solutions of Helmholtz/Poisson problems

nd the computations of the compact derivatives and interpola-

ions respectively. The implementation of the combination of these

wo techniques brings novelty and originality to the present ap-

roach in comparison with previous works based on higher-order

odes [18] . 

The rotating stratified flows concern a wide spectrum of appli-

ations as well as in geophysics such as large scale circulations in

tmosphere and oceans, astrophysics such as accretion disk, than

n disk storage, turbomachinery … The Strato-Rotational Instabil-

ty (SRI) is a purely hydrodynamic instability with distinctive lo-

al features and may be studied from specifically designed labora-

ory experiments and numerical simulations in an axially-stratified

aylor–Couette setup [11,28,29] . Here axial stratification is obtained

y cooling the bottom and heating the upper lid [11] . The tempera-

ure stratification represents the axial stratification of an accretion

isk centered around a hot star and the rotation of the cylinders

imics the astrophysical rotation laws with rotation rate decreas-

ng outwards. Understanding the mechanisms that can result in

n outward angular momentum transport is the central problem

f planet formation, particularly in the theory of accretion disks.

hen a planet forms in a disk, angular momentum has to be car-

ied away from the planet otherwise its rotation speed would be
ar too large. Only turbulence can achieve such a large angular mo-

entum transport. Recent studies mentioned that, at fixed value

f the Froude number, F r = �i /N, with N = 

√ 

gα∂ T /∂ z the buoy-

ncy frequency and �i the angular velocity of the inner cylinder,

he system is more stable when increasing the Reynolds number

e = �i R i (R o − R i ) /ν [30,31] . The final objective is to eventually ex-

lore the not yet understood turbulent flows, to get closer to actual

strophysical applications, by taking advantage of optimized HPC. 

Baroclinic instability is recognized to be one of the dominant

nergetic processes in the large-scale atmospheres of terrestrial

lanets, such as the Earth and Mars [32] , and in the oceans [33] . Its

ime-dependent behaviour exerts a dominant influence on the in-

rinsic predictability of the atmospheric circulation and the degree

f chaotic variability in its large-scale meteorology [32,34,35] . Iner-

ia gravity waves (IGWs) are ubiquitous in the atmosphere and the

ceans and are known to play a fundamental role in a wide vari-

ty of processes. The contributions mainly concern the transport of

 significant amount of energy and momentum, the initiation and

rganization of convection, the induction and modulation of turbu-

ence, as well as the modification of the mean circulation and ther-

al structure of atmospheric and oceanic motions [36] . Observa-

ions and simulations have revealed their spontaneous occurrence

uring the development of baroclinic instability. In spite of inten-

ive research activities carried out over the last decades, the gener-

tion mechanism and the propagation of IGWs, as well as their in-

eraction with large-scale structures, remain poorly understood. A

etter understanding of these phenomena is therefore mandatory

or the improvement of the IGW parameterization schemes actually

equired to upgrade numerical global weather predictions. Since

he pioneering works of Hide [12] , the differentially heated, rotat-

ng cylindrical annulus has been an archetypal means of studying

he properties of fully-developed baroclinic instability in the labo-

atory. Recent works mainly based on direct numerical simulations

eported the occurrence of IGWs in water-filled baroclinic cavity

long the inner cold cylinder [37–39] . Moreover, Von Larcher et al.

39] observed the presence of additional small-scale ripples result-

ng from hydrodynamical instability along the hot wall. 

The paper is organized as follows. First, the physical and math-

matical models of the SRI and Baroclinic configurations are de-

ailed. The numerical methods to solve the coupled Navier–Stokes

nd energy equations in annuli are introduced before describing

he parallelizations strategies. The last section is devoted to the

alidation of the new numerical solver. Accuracy will be checked,

alidations with existing findings for strato-rotational and baro-

linic instabilities are performed including a strong scaling test. 

. Physical and mathematical models 

.1. Physical model 

This study focuses on flows in rotating annular cavities filled

ith an incompressible fluid and submitted to either a radial or a

ertical thermal gradient. In these configurations, the flow results

rom the competition between the rotation of the cylinders and the

uoyancy force arising from the prescribed temperature gradient. 

The two configurations considered together with the notations

re depicted in Fig. 1 . 

The first configuration corresponds to a Taylor–Couette system

 Fig. 1 a) where the fluid is submitted to a stable vertical thermal

radient, which means that the top boundary is heated whereas

he bottom one is cooled. The inner cylinder rotates faster than

he outer one. To reduce the edge effects, stress-free conditions

re prescribed for velocity on the two horizontal disks. Despite

he stabilizing effect of the vertical stratification induced by the

table thermal gradient, an hydrodynamic instability, named the

trato-rotational instability, may develop for specific values of the
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Fig. 1. Rotating annular cavities configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Source terms F and boundary conditions in the SRI and baroclinic flows ( T h and 

T c stand for the hot and cold temperatures). 

Vertical ∇T Radial ∇T 

F α(T − T 0 ) g α(T − T 0 ) g + 2 � × u + � × (� × r ) 

Top wall Free stress Free stress 

Bottom wall Free stress No-slip 

Lateral walls Differential rotation No-slip 

Top wall T h Adiabatic 

Bottom wall T c Adiabatic 

Inner wall Adiabatic T c 
Outer wall Adiabatic T h 

�  

f

�  

w

∂  

I  

t

C  

fi  

g  

f  

C  

s  

t

3

3

 

E  
control parameters which are the angular speed ratio μ, the

Reynolds number Re and the Froude number Fr defined by: 

μ = 

�o 

�i 

, Re = 

�i dR i 

ν
, F r = 

�i 

N 

(1)

with d = R o − R i , ν the kinematic viscosity, �i and �o the angu-

lar speeds of the inner and outer cylinders respectively, and N the

Brunt–Väisälä frequency which is a measure of the vertical strat-

ification scale. In the framework of the Boussinesq approximation

(see section 2.2), N is defined by: 

N 

2 = 

αg�T 

H 

(2)

with α the thermal expansion coefficient. 

In the second configuration ( Fig. 1 b), a radial temperature gra-

dient is prescribed by heating the outer cylinder and cooling the

inner one. Unlike the previous case, the two vertical cylinders ro-

tate with the same angular velocity �. The top boundary is an

open free surface. This configuration was found to be a suitable

testbed for studying mid-latitude atmospheric flows where a baro-

clinic instability together with inertia gravity waves may develop.

The classical control parameters are the Taylor number Ta and the

Rossby number Ro [12] , defined by: 

T a = 

4�2 d 5 

ν2 H 

, Ro = 

α�T gH 

�2 d 2 
(3)

2.2. Mathematical model 

In both configurations, the flow and heat transfer are governed

by the incompressible Navier–Stokes equations coupled with en-

ergy equation through the Boussinesq approximation. With these

assumptions, the set of equations reads: { ∇ . u = 0 in D 

∂ t u + 

1 
2 [ (u . ∇) u + ∇ . (uu ) ] = −∇p + ν�u + F in D 

∂ t T + 

1 
2 [ (u . ∇) T + ∇ . (u T ) ] = κ∇ 

2 T in D 

(4)

D being the computational domain, κ the fluid thermal diffusiv-

ity and u = (u r , u θ , u z ) , p and T standing for the velocity, pres-

sure and temperature fields, respectively. The vectorial Laplacian
u expressed in cylindrical coordinates is given by the following

ormula: 

u = 

( ∇ 

2 (u r ) − u r /r 2 − (2 /r 2 ) ∂ θ u θ∇ 

2 (u θ ) − u θ /r 2 + (2 /r 2 ) ∂ θ u r 

∇ 

2 (u z ) 

) 

(5)

here ∇ 

2 (.) stands for the scalar Laplacian defined by: 

 

2 
r + (1 /r) ∂ r + (1 /r 2 ) ∂ 2 θ + ∂ 2 z (6)

n Eq. (4) , the source term F accounts for external forces, mainly

he buoyancy force. For the first case corresponding to a Taylor–

ouette configuration ( Fig. 1 a), the equations are expressed in a

xed frame. For the second configuration with a radial thermal

radient ( Fig. 1 b), the equations are solved in a rotating reference

rame and, as a consequence, in addition to the buoyancy force,

oriolis and centrifugal forces are also included in F . The expres-

ion of F and the boundary conditions are given in Table 1 for the

wo configurations. 

. Numerical method 

.1. Time discretization and projection scheme 

The second order semi-implicit Adams–Bashforth/Backward-
uler scheme is used for the time advancement of Eq. (4) . The
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Table 2 

Compact scheme coefficients. 

Inner nodes Boundary nodes 

Operators α a α a b c 

D c f 

ξ
1/22 12/11 −1 −1 2 −1 

D f c 

ξ
1/22 12/11 23 −25 26 −1 

I c f 

ξ
1/6 2/3 5 15/4 5/2 −1 / 4 

I f c 

ξ
1/6 2/3 1 1/4 3/2 1/4 

d  
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s  

H  

f  

i  

r  
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m(
 

w
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iffusive terms are implicitly treated except for the crossed terms
f the vectorial Laplacian, resulting from cylindrical coordinates,
hich are explicitly evaluated. The temporal scheme reads: 
 

 

 

 

 

 

 

∇ · u n +1 = 0 
1 

2�t 

(
3 u n +1 − 4 u n + u n −1 

)
+ 2 H 

n 
u − H 

n −1 
u = −∇p n +1 + ν�u n +1 + F n + 1 

1 

2�t 

(
3 T n +1 − 4 T n + T n −1 

)
+ 2 H 

n 
T − H 

n −1 
T 

= κ∇ 

2 T n +1 

(7) 

here H u and H T account for non-linear convective terms. For

he momentum equations, the crossed contributions in the dif-

usive term are also included in H u . The velocity-pressure cou-

ling is solved by a projection algorithm. Specifically, we used the

mproved method proposed by Hugues and Randriamampianina

27] which allows a temporal evolution of the normal pressure gra-

ient at boundaries. This projection algorithm is detailed in [27,40] .

hus, the discretized Boussinesq–Navier–Stokes equations (7) re-

uce to two Poisson problems for a preliminary pressure and a

ressure correction respectively, and four Helmholtz problems aris-

ng from the momentum and energy equations. The accuracy and

he computational efficiency rely on the choice of the space dis-

retization. In this work, we choose the spectral discretization in

he azimuthal direction, using Fourier series, and the compact fi-

ite differences scheme in the two other directions. A short de-

cription is given hereafter. 

.2. Compact scheme discretization 

The spatial approximation in the non-periodic r and z directions

f the different terms of Eq. (4) is based on a fourth-order compact

cheme discretization [24,41,42] . Compact schemes have a bet-

er resolution at high wavenumber than explicit finite differences.

owever, compact schemes induce a computational overhead due

o the solution of tridiagonal/pentadiagonal linear systems. This

verhead remains acceptable since the algorithm complexity is lin-

ar. A staggered grid arrangement of the velocity and the pressure

s considered to ensure some conservation properties [42,43] . For

nstance, in the radial direction, the grid in the interval ( R i , R o )

s composed of the pressure nodes, r i +1 / 2 = R i + ( i − 1 / 2 ) h r with

 ≤ i ≤ n r + 1 , and of the velocity nodes r i = ih r with 0 ≤ i ≤ n r . The

niform space step is h r = (R o − R i ) /n r . Non-uniform grids are ob-

ained by means of an analytical mesh transformation, introducing

he metric coefficients which are analytically computed [41] . The

taggered fourth-order compact scheme approximations from the

ressure to velocity nodes, reads for the staggered derivation: 

f ′ i −1 + f ′ i + α f ′ i +1 = a 
(

f i +1 / 2 − f i −1 / 2 

)
/h r (8)

nd for the staggered interpolation: 

f i −1 + f i + α f i +1 = a 
(

f i +1 / 2 + f i −1 / 2 

)
/ 2 (9)

here the coefficients α and a are calculated from accuracy re-

uirements [24] . The boundary condition relations are: 

f (p) 
1 

+ α f (p) 
2 

= a f −1 / 2 + b f 1 / 2 + c f 3 / 2 
f (p) 
n + α f (p) 

n −1 
= a f n +1 / 2 + b f n −1 / 2 + c f n −3 / 2 

(10) 

he implicit nature of this finite difference scheme is expressed

y the equivalent matrix formulation M f (p) = B f of Eqs. (9) and

10) where superscript p refers to either derivation ( ′ ) p = 1 or in-

erpolation p = 0 , and M refers to a square tridiagonal matrix. All

he coefficients defining the fourth-order accurate compact scheme

perators used in this study are detailed in Table 2 . 

.3. The full diagonalization method 

This section presents the full diagonalization method used for

olving the Helmholtz/Poisson problems ( Eq. (7) ) which is an ef-

cient direct solver for linear systems arising from higher-order
iscretizations [26] . The main advantage of this approach is to

liminate the bad condition number of the operator matrices re-

ponsible for high computational costs with iterative solvers [44] .

owever, it is worth mentioning the three major drawbacks of the

ull diagonalization method which are the high algorithm complex-

ty, the limitation to constant coefficients, and the required tenso-

ial framework. For the sake of clarity of the following sections,

his linear solver is detailed in the case only for a Poisson equa-

ion in cylindrical coordinates. With the tensorial notations and us-

ng Fourier series expansion, we have to compute for each Fourier

ode i the following 2D solution: 

D 

2 
ir � I z + I r � D 

2 
z 

)
ˆ φi = 

ˆ s i , 0 ≤ i ≤ n θ / 2 (11)

here the operators D 

2 
ir 

and D 

2 
z are defined by: 

 

2 
ir = 

1 

r 
δ f c 

r r δc f 
r − i 2 

r 2 
, D 

2 
z = δ f c 

z δ
c f 
z (12)

nd ˆ s i represents the i th mode of the 1D Fourier transform in

he azimuthal direction of the source term s denoted by F θ (s ) .

t should be noted that these operators are modified to include

oundary conditions [41] and that the radial operator depends on

he wavenumber i . The full diagonalization method consists of a

wo step method. Consequently, in the first step named prepro-

essing stage, the eigenvalues ( �) and eigenvectors (P) of the oper-

tors are computed such as D 

2 
ir 

= P −1 
ir 

�ir P ir and D 

2 
z = P −1 

z �z P z . This

xpensive step is performed only once during the preprocessing.

uring the processing stage the solution is computed at each time

tep. It involves fast Fourier transforms and tensorial/pointwise

roducts for each wavenumber of the Fourier transform as follows:

1. compute the forward FFT of the source term: ˆ S = F θ (S) . 

2. perform tensorial product F i = 

(
P −1 

ir 
� P −1 

z 

)
ˆ S i 

3. compute pointwise product F i jk = F i jk / 
(
λir, j + λz,k 

)
4. perform tensorial product F i = ( P ir � P z ) F i 
5. compute the backward FFT to get the solution φ = F 

−1 
θ

F 

The second step involves 2 Fast Fourier Transforms and 4 ten-

orial products. The algorithm complexity of this linear solver is

 

(
(n 2 r n z + n r n 

2 
z + n r n z log n θ ) n θ

)
. Thus, the Fourier series expan-

ion in the azimuthal direction contributes to reduce computa-

ional resources, otherwise a full 3D solver has a higher linear

omplexity O 

(
n θ n 2 r n z + n θ n r n 

2 
z + n r n z n 

2 
θ

)
. 

.4. Code parallelization 

The parallelization of the present code relies on two distinct

trategies: to evaluate the compact derivative/interpolation and

o get solutions of Poisson and equation problem [10] . Both ap-

roaches are described in the following sections. 

.4.1. Helmholtz/Poisson solvers 

First, the parallelization of the full diagonalization method still

emains a tricky task. Indeed, the core of the method is mainly

ased on tensorial products to cross between the physical and
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Fig. 2. The 3 pencil decomposition states defined on 3 × 4 processor grids. 
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eigenvectors spaces, and the lack of sparsity in the eigenvector ma-

trices involves expensive communications. Here, the 2d-pencil de-

composition is considered to get a parallel version of the full diag-

onalization method [10] . The guideline of the 2d-pencil decompo-

sition is to provide a 2D block decomposition where processors are

filled into a 2D grid. Two of the dimensions of 3D data arrays are

distributed on the processor grid. Such a decomposition leads to

entirely maintain one dimension of the grid within the local mem-

ory. On this former direction, FFT or tensorial products can be per-

formed in a serial way. An example of such an implementation is

provided by the libraries P3DFFT or 2DECOMPFFT [45,46] . Fig. 2

illustrates the 2d-pencil decomposition in the cylindrical configu-

ration, and the three pencil states. 

Global data transposes are performed to switch between the

three states inducing expensive MPI-all-to-all communications. The

parallel algorithm of the diagonalization method can be summa-

rized as follows: 

1. compute ˆ S = F θ (S) on the θ-pencil state, 

2. transpose ˆ S from θ to r -pencil then compute F i = 

(
P −1 

ir 
� I z 

)
ˆ S i 

3. transpose ˆ F from r to z -pencil then compute G i = 

(
I r � P −1 

z 

)
F i 

4. compute F i jk = G i jk / 
(
λir, j + λz,k 

)
5. compute G i = ( I r � P z ) F i then transpose G from z to r -pencil, 

6. compute F i = ( P ir � I z ) G i then transpose F from r to θ-pencil,

7. compute the final solution using a backward FTT: φ =
F 

−1 
θ

(F ) 

The previous algorithm involves 4 all-to-all communications

during steps (2–3) while (5–6) are provided by a 2d-pencil decom-

position library. Due to the implicit nature of the boundary con-

ditions [41] two additional transpositions are required. Therefore,

the total number of all-to-all communications necessary to solve

each Helmholtz/Poisson problem is 6. Although the all-to-all com-

munications are expensive, this approach exhibits a correct strong

scaling [10] and contributes to drastically reduce the real execution

time of a simulation. However, it should be stressed that a poor

weak scaling is expected due to the O(n 4 ) algorithmic complexity

of the diagonalization method. This is inconsistent with the con-

cept of weak scaling, unlike methods with O(n ) algorithmic com-

plexity as the multigrid methods. 

3.4.2. Derivative and interpolation computations 

The spectral evaluation of derivatives and interpolations in the

periodic direction θ involves real-to-complex and complex-to-real

FFT. Computations are made in a serial manner since the default

pencil-state is the θ-pencil ( Fig. 2 ). The reduced Partial Diagonal

Dominant (rPDD) algorithm of Sun [25] underlies the computation

of the compact derivatives and interpolations in the present ap-

proach. This method of solving tridiagonal linear systems shows in-

teresting parallel performances [10,25] . The diagonal dominance is
xploited to derive an approximate solver involving only neighbor-

o-neighbor communications, greatly improving the parallel effi-

iency. Specifically, 2 × 2 linear systems involving interface nodes

reduced system) is derived by dropping terms through the diag-

nal dominance property [25] . The analysis and the reliability of

he rPPD algorithm in the specific framework of the incompressible

avier-Stokes equations in cartesian coordinates is detailed by [10] :

 description is briefly recalled hereafter. The calculation of a com-

act scheme derivative like Eqs. (9) and ( 10 ) using rPDD , consists

f a three-step algorithm involving mainly the solution of the dis-

ributed tridiagonal linear systems M p on P processors. These steps

re summarized hereafter: 

1. compute an approximate compact scheme derivative ˜ u ′ p =
M 

−1 
p B p u p , p standing for a subdomain partition, 

2. exchange boundary informations (neighbor-to-neighbor

communications) and compute solutions of the reduced

systems, 

3. update the solution 

˜ u ′ p from solutions of the reduced sys-

tems independently on each processor. 

The accuracy of this approximation depends on the diagonal

ominance of the linear system [25] . For the fourth-order compact

chemes ( Table 2 ), it is shown that using about 16 nodes per sub-

omain does not bring significant deterioration of either the ac-

uracy or conservation properties. A good strong scaling has been

bserved for up to 10 4 processors [10] . It is worth mentioning that

he staggered grid layout involves about 20 nodes for the convec-

ive terms which would require naively about 80 all-to-all mpi-

ommunications with the pencil-decomposition strategy. In con-

lusion, the main advantage of the reduced PDD algorithm is to

ddress a less intensive parallel communication than the pencil de-

omposition. 

. Results and discussions 

This section investigates the effects of the rPDD algorithm

ithin the context of rotating flows, and estimates its parallel per-

ormances. First, the accuracy of the temporal and spatial schemes

s demonstrated over an analytical solution of the Navier–Stokes

quations. Then, results for the two configurations described in

ection 2.1 are presented to assess the rPDD algorithm perfor-

ance and its parallel efficiency. 

.1. Numerical accuracy 

Both spatial and temporal accuracies are determined with the

ethod of Manufactured Solutions (MMS) [47] . A fluid of viscosity

= 0 . 1 is considered in an annular cavity defined by η = R i /R o =
 . 5 , d = R o − R i = 1 and � = H/d = 2 . According to the MMS, a

ource term is derived from an analytical divergence-free velocity



S. Abide et al. / Computers and Fluids 174 (2018) 300–310 305 

Fig. 3. Accuracy assessment of the space discretization scheme (a) the numerical errors versus size mesh, (b) difference error versus the partition size. 

Fig. 4. Accuracy assessment of the temporal scheme (a) time history of the numerical errors, (b) maximum of the numerical error versus time step. 
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nd associated pressure fields satisfying the Navier–Stokes equa-

ions. Here, the following divergence-free velocity and pressure

elds have been considered: 

 r = + 

1 

2 π
sin 

2 
( π( r − r i ) /d ) cos ( θ ) sin ( 2 πz/H ) 

( 1 + β cos ( 2 πt ) ) (13) 

 θ = − 1 

2 π
sin 

2 
( π( r − r i ) /d ) sin ( θ ) sin ( 2 πz/H ) 

( 1 + β cos ( 2 πt ) ) (14) 

 z = − H 

2 πd 
sin 

2 
( 2 π( r − r i ) /d ) cos ( θ ) sin ( πz/H ) 

( 1 + β cos ( 2 πt ) ) (15) 

p = ( sin ( π( r − r i ) /d ) + sin ( πz/H ) ) cos ( θ ) 

( 1 + β cos ( 2 πt ) ) (16) 

he steady solution is obtained for β = 0 , whereas β = 1 leads

o unsteady solution. The discussion on the numerical accuracy is
ased on the maximum relative error: 

φ(t) = 

‖ 

φnum 

− φex ‖ ∞ 

‖ 

φex ‖ ∞ 

(17) 

here φnum 

and φex stand respectively for the numerical and ana-

ytical fields of the velocity components and the pressure. 

First, the space accuracy is estimated from error (17) using

arious grids with increasing sizes. Tests are performed with the

teady solution ( β = 0 ), and the numerical error for each variable

s reported in Fig. 3 a. 

The numerical error decreases with a −4 slope corresponding to

he expected accuracy of the present compact scheme discretiza-

ion. 

The temporal accuracy is then evaluated by considering the un-

teady solution ( β = 1 ) leading to a time-dependent maximum rel-

tive error. The time-accuracy analysis is performed on the maxi-

um value of this error during several periods. Fig. 4 shows the

istory of the numerical error and its maximum values after sev-

ral periods versus the time step. Fig. 4 exhibits a −2 slope for

ach variable, in agreement with the expected order 2 of accuracy.

hese findings confirm that the accuracy requirements are well ful-

lled by the present code. 
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Fig. 5. Occurrence of the SRI: time history of the sampled velocity at mid-cavity for (Re, Pr, F r, μ) = (600 , 1 , 1 . 4 , 0 . 354) (skipped symbol 20). 

Fig. 6. The β-viscosity for F r = 1 . 4 , η = 0 . 5 and μ = 0 . 354 (a) Reynolds stress pattern for Re = 600 , (b) Variation of β-viscosity with respect to the Reynolds number Re at 

mid-gap. 
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The influence of the rPDD algorithm over the computed solu-

tions is now investigated. For this purpose, node-wise comparisons

between simulations using the rPDD and the classical ones are per-

formed. It is recalled in Section 3 that the accuracy of the rPDD

algorithm depends on the number of nodes involved in a partition.

This parameter is denoted by n / p . Thus, the deviation introduced

by the rPDD on the numerical solution is measured as: 

�φ(n/p) = 

∥∥φrpdd − φstd 

∥∥
∞ 

‖ 

φstd ‖ ∞ 

(18)
here std refers to the standard evaluation of compact scheme,

r without error. In the following tests, the size number of the

artition is kept identical in each non-periodic directions ( n/p =
 r /p r = n z /p z ). The maximum difference �φ versus the partition

ize n / p is plotted in Fig. 3 b. It is observed that the maximum

ifference drastically decreases with respect to the parameter n / p ,

n accordance with previous analysis [10,25] . This behaviour in-

icates that above a partition size n/p = 15 no significant dif-

erence is observed, and consequently that the accuracy is not

eteriorated. 
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Table 3 

Effects of the approximate rPDD algorithm at Re = 600 for different node densities 

n / p ( n/p = 96 corresponds to the simulation without using PDD algorithm and x(m) 

denotes x × 10 m ). 

n / p �u r �u φ �u z �T ∇ · u �β

96 − − − − − 9.72( −12) 

48 3.60( −11) 3.20( −12) 2.52( −11) 3.14( −13) 5.51( −13) 1.19( −11) 

24 3.51( −11) 2.95( −12) 2.63( −11) 3.20( −13) 5.20( −13) 1.00( −11) 

12 3.13( −09) 3.34( −10) 1.82( −09) 8.09( −11) 1.72( −10) 1.00( −11) 

6 2.98( −04) 1.23( −04) 2.67( −04) 1.75( −05) 3.22( −05) 3.66( −06) 
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.2. Taylor–Couette flow with an axial temperature gradient 

Increased attention has recently been paid to the Taylor–

ouette flow with a vertical stably stratified temperature field.

ndeed, despite the stabilizing differential rotation and thermal

tratification, the flow may become unstable at specific values of

he Reynolds and Froude numbers. This instability, named Strato-

otational Instability (SRI), is suspected to be responsible for the

utward angular momentum flux which is a necessary condi-

ion for materials to be transported inwards towards the central

ody in accretion disks. The major difficulty encountered in the

umerical study of this configuration stems from the very long

ransient regime before the occurrence of the instability. As a

onsequence, simulation times to reach converged solutions are

xtremely lengthy, leading to huge computational times when us-

ng a sequential code. Moreover, the large aspect ratio in the ax-

al direction, typical in this specific configuration, requires conse-

uent number of modes, further increasing the simulation times.

hus, the present algorithm is a promising strategy to strongly

educe wall-clock times, without nevertheless reducing the al-

orithm complexity of the diagonalization method but excluding

deal weak scaling. For instance, the Fig. 5 illustrates the occur-

ence of a Strato-rotational instability by probing the velocity com-

onents at mid- height and radius of the cavity. 

The converged solution requires about 30 0 0 0 0 temporal itera-

ions. In this section, several simulations are carried out to check

he effects of the rPDD algorithm on the variation of the angular

omentum transport. 

We consider the flow in a tall annular cavity with η = R i /R o =
 . 5 , d = R o − R i = 1 and � = H/ (R o − R i ) = 6 . The flow and heat

ransfer are governed by the dimensionless parameters Re, Fr and

(see Section 2.1 ). The angular momentum is related to the nor-

alized Reynolds stress, represented by the β viscosity [11] : 

= 

〈
u 

′ 
r u 

′ 
θ

〉
R 

2 
i 
�2 

i 

(19) 

here fluctuating velocities u ′ r and u ′ 
θ

correspond to deviations

rom the mean value in the azimuthal direction. 

First, the β-viscosity is computed for Re = 40 0 , 60 0, 70 0 and

00 with fixed values of parameters (P r, F r, μ) = (1 , 1 . 4 , 0 . 354) .

he mean β-viscosity along the z -axis is considered for compar-

son with the simulations of Gellert and Rüdiger [11] at mid-gap

 = 1 . 5 d. Computations were carried out on a grid size 48 × 96 × 96

n ( r, θ , z ), found to be sufficient for describing the angular mo-

entum. Fig. 6 a shows the Reynolds stress pattern in a r − z plane

or Re = 600 . The evolution of the β-viscosity versus the Reynolds

umber is displayed in Fig. 6 b. Despite a discrepancy from the pro-

les reported by Gellert and Rüdiger [11] , which can be explained

y the very different numerical techniques used including grid res-

lution, the linear dependence on the Reynolds number is recov-

red for Re ≥ 600. 

To investigate the effects of the approximation introduced by

he rPDD algorithm (section 3.4.2), the β-viscosity is computed for

everal node densities n / p at Reynolds number Re = 600 . Table 3
athers the differences between the solutions obtained with and

ithout the rPDD algorithm. 

The rPDD algorithm is used for different partition size rang-

ng from 48 nodes to 6 nodes per subdomain. The simulation per-

ormed with n/p = 96 corresponds to the standard evaluation of

he compact scheme derivatives. Table 3 reveals noticeable discrep-

ncies on the velocity field and divergence below n/p = 12 nodes

er subdomain. A significant difference is obtained for 6 nodes

er subdomain, where a difference of about 10 −4 is observed. It

hould be mentioned that the divergence of the flow is around

 10 −12 , and according to our experience this value corresponds to

he threshold of the round-off error of the present simulation. 

.3. Uniformly rotating flow with a radial temperature gradient: The 

aroclinic cavity 

The aim of this section is to assess the parallel performance of

he present solver in the baroclinic cavity, in particular its abil-

ty to capture the different scales reported by Von Larcher et al.

39] within the same configuration. For this purpose, the flow in

 differentially heated rotating annulus is considered, and more

pecifically the regime involving baroclinic instability. This flow

onfiguration was extensively studied in the literature. Among oth-

rs we can refer to the experimental work of Harlander et al. [48] ,

he numerical simulations of von Larcher and Dörnbrack [49] and

he recent benchmark of Vincze et al. [50] . The test case to validate

he code is for a 6 rpm rotation rate and with a radial temperature

ifference of �T = 8 K. The governing dimensionless parameters

re the Taylor and the Rossby numbers defined by Eq. (3) . In the

ollowing validation tests T a = 1 . 69 × 10 6 and Ro = 0 . 2 . 

Fig. 7 a displays a snapshot of the free surface temperature

howing the occurrence of the dominant azimuthal mode m = 3

n the baroclinic instability. This wave-3 structure is confirmed by

he corresponding Hövmoller azimuth-time diagram at mid- radius

nd height, presented in Fig. 7 b. 

It is worth mentioning that the initial state to start the present

imulation is an under-resolved solution (64 × 64 × 64 in radial, az-

muthal and axial directions respectively) which was interpolated

 t = 0 ) to a finer grid 256 × 128 × 150. Both plots of Fig. 7 qualita-

ively show good agreement with previous results [50] . 

The Fig. 8 shows instantaneous isocontours in ( θ , z ) plane of

he horizontal divergence of the velocity ∇ h . u ≡ − ∂w 

∂z 
along the in-

er cold wall ( Fig. 8 a) and along the outer hot cylinder ( Fig. 8 b).

his variable is introduced to exhibit the occurrence of small-scale

eatures simultaneously with the large-scale baroclinic waves. In

he first plot, the small-scale structures, developing towards the

ottom wall, have been identified as inertia gravity waves (IGWs)

y different authors [37–39] in similar water-filled cavities. The

resent observed features recall such IGWs reported by these au-

hors. Recently, for the same present configuration, Von Larcher

t al. [39] mentioned the presence of ripples resulting from hydro-

ynamical instability along the outer hot cylinder. We also capture

he same phenomenon, as illustrated by the isocontours of the hor-

zontal divergence. 

A quantitative validation is obtained from the comparison of

he values of drift rate of the large-scale baroclinic waves. The drift

ate c m 

( t ) of a wave mode m is calculated from the phase shift

m 

( t ) at each time t by : 

 m 

(t) = 

1 

m 

d φm 

d t 
(20) 

ig. 9 shows the time history of the phase shift divided by the az-

muthal wavenumber m . 

The uniform drift for the dominant mode m = 3 and the

ssociated slave mode m = 6 can thus be obtained. The pre-

icted drift associated with the dominant mode m = 3 is c (t) =
3 
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Fig. 7. Temperature at upper free-surface: (a) Snapshot (b) Hövmoller diagram at mid- radius and height in azimuth-time. 

Fig. 8. Instantaneous isocontours in ( θ , z ) plane of the horizontal divergence of the velocity: at radius close to inner wall (a), at radius close to outer wall (b). 
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0 . 0115 rad.s −1 , which favorably compares with the values previ-

ously obtained experimentally and numerically (see Fig. (10) in

[50] ). The code being validated on the prediction of the baroclinic

instability and associated small-scale features, we now focus on

the parallel performance of the proposed method. 

A strong scaling test is performed to assess the computa-

tional performance. It consists in measuring the computational

time versus the number of cores. Three meshes are considered:

128 × 128 × 128, 128 × 264 × 264 and 128 × 568 × 568. The mesh in

the r and z−directions is distributed on a square process grid of

size P 2 ranging from 4 to 1024 cores. The computational costs to

calculate the convective terms, t conv , to solve a Poisson equation,

t diag , and to simulate one time step, t it , are measured. These val-

ues are presented in order to compare the performances of the

two parallel strategies: the rPDD (explicit terms) and the 2d-pencil

decomposition (implicit terms). The tests were performed on the
ALMIPs EOS cluster facilities which consists of 612 computation

odes of 2 Intel(r) IVYBRIDGE 2,8 GHz 10-cores. Fig. 10 shows the

omputational times versus the number of used cores. 

For each mesh size, a similar behaviour is observed. The

omputational cost decreases with respect to the core number

 Fig. 10 a). For small core numbers, the scalability is satisfactory,

ut for the largest ones, a loss of scalability is observed with the

oarser meshes. It is reasonable to speculate that this loss of per-

ormance will also occur with finer mesh for larger core numbers.

his behaviour can be attributed to the ratio between the volume

f computations per core and the data exchange involved in the

PI communications. Fig. 10 b concerns the strong scaling test for

he solution of a Poisson equation based on the 2 d -pencil decom-

osition. The trend observed in Fig. 10 a still holds. This can be

xplained by the large communication volume in the switch be-

ween two states of the 2d-pencil decomposition [18] . Indeed, a
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Fig. 9. Time history of the azimuthal distances �m / m of wave modes m = 3 and 

m = 6 . 
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lobal communication has to be tuned according to the cluster to

et better efficiency. Fig. 10 c shows the strong scaling test during

he computation of convective terms. This computation relies only

n the calculation of the compact interpolations and derivatives

sing the rPDD approach. In this case, a good scaling is noted for

he two finest grids up to 10 3 cores. In comparison with the 2 d -

encil decomposition, the rPDD involves only neighborhood com-

unications which are less expensive. However, with the coarsest

rid, the scalability from 10 2 cores is deteriorated, which can be

lso explained by the unbalance between volume of computations

nd communications. Finally, it must be noted that the scalabil-

ty and the computational time are dominated by the solution of

oisson/Helmholtz equations as shown by the similarities of the

urves in Fig. (10 a) and ( 10 b). It should be noted that better per-

ormances are observed in Fig. 10 b with the largest grid, wich may

e explained by a memory cache effect. Even if a specific tuning

an further improve performances, the present method exhibits a

all time reduction from 25 s with 4 cores to 0.35 s with 1024

ores when using a standard mesh of 128 × 264 × 264. 

. Conclusion 

In this manuscript, we have extended a cartesian parallel

igher-order compact scheme solver to cylindrical coordinates. The
Fig. 10. Strong scaling test (a) temporal iteration (b) so
zimuthal direction has been discretized using Fourier series ex-

ansion to benefit from the natural periodicity, and the favorable

omplexity algorithm of the Fast Fourier Transform. The space dis-

retization in the two wall-bounded directions relies on the fourth-

rder compact scheme approximations. The guideline concerns

he simulation of two specific configurations of rotating stratified

ows: the Taylor–Couette setup under an axial thermal stratifi-

ation and the baroclinic cavity. The code parallelization strategy

ombines two approaches. The first one is the 2 d -pencil decom-

osition to address the parallel solution of the implicit viscous

erms and the pressure-like equations based on the diagonaliza-

ion method. The second strategy of parallelization consists in the

alculation of the compact derivatives/interpolations. The approxi-

ate tridiagonal solver named reduced Partial Diagonal Dominant

rPDD) algorithm is used to evaluate compact derivatives and in-

erpolations. According to our knowledge, the proposed paralleliza-

ion strategy is a totally new method. 

The present code is successfully validated against the Method

f Manufactured Solution, and in the two test configurations. The

ffects of the approximation introduced by the rPDD on the so-

ution accuracy is evaluated. Precisely, we show that with parti-

ion domains beyond 16 nodes the rPDD does not introduce no-

iceable error. Finally, a strong scaling test is performed to out-

ine the potentiality of the present parallel strategy to simulate

specific rotating stratified flows”. In particular, the present tool

as allowed to drastically reduce the execution time for the two

onfigurations, in comparison with sequential approach. Moreover,

he proposed technique is able to correctly capture all the char-

cteristic solution features : the SRI, the baroclinic instability and

he associated small-scale structures (IGWs and outer ripples). Fur-

her exploration of these complex phenomena is now considered.

t particularly concerns DNS of the turbulence in SRI. For the baro-

linic configuration, the next studies should be dedicated to the

arge-tank facilities available at BTU, Cottbus-Senftenberg Germany

team of Professor U. Harlander). This setup allows for investigat-

ng IGWs in “atmosphere-like” situation with rotation rate smaller

han thermal stratification. Nevertheless, the scalability test puts

orward the pitfall introduced by the large communication scheme

n the 2d-pencil decomposition. Performances could benefit from

he hybrid OpenMP/MPI parallelization to enhance the computa-

ion/communication balance. 
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