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Abstract 
 

The competition between dissociative photodetachment and 

photodissociation of cold benzoate and naphthoate anions was studied through 

measurement of the kinetic energy of the neutral fragments and intact parent 

benzoyloxy and naphtoyloxy radicals as well as by detecting the anionic 

fragments whenever they are produced. For the benzoate anion, there is no 

ionic photodissociation and the radical dissociation occurs near the vertical 

photodetachment energy. This is in agreement with DFT calculations showing 

that the dissociation energy in CO2 and C6H5
 is very low. The dissociation 

barrier can be deduced from experimental results and calculations to be (0.7± 

0.10) eV, which makes the benzoyloxyradicalC6H5COO very unstable, although 

more stable than the acetyloxy radical. In the case of naphthoate, the 

observation of negative fragments at low excitation energies demonstrates the 

opening of the ionic photodissociation channel in the excited state of the 

naphthoate anion, whose yield decreases at higher energies when the 

dissociative photodetachment channel opens. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
 

The alky/aryl carboxylate anions are the conjugated bases of the 

corresponding organic acids. These acids are very important in organic 

chemistry since they serve as reactants for many reactions. The 

photodecarboxylation of the anions is often used to produce the corresponding 

alkyl/aryl radical. As a first general approach, it is suggested that the primary 

process is the photodetachment to produce the corresponding alkyloxy/aryloxy 

radical internally hot, followed by the elimination of the CO2 molecule, giving 

rise to the dissociative photodetachment. 

Dissociative photodetachment (DPD) is a process that has been 

observed for many small molecular systems1 and recent progresses on this 

topic can be found in a review by Continetti et al.2 For the acetyl carboxylate 

anion CH3CO2
- the DPD has been studied by coincidence experiments and both 

the unbroken acetyloxy radical and its fragments have been observed implying 

the presence of a barrier in the exit channel for the dissociation into CO2+CH3.3 

This barrier has been calculated4 to be around 0.2 eV. 

Interestingly, in the case of the aryl carboxylate anions, if an optically 

active excited state is lower in energy than the Adiabatic Detachment Energy 

(ADE), the photodissociation of the anion can compete with the DPD as 

observed for the green fluorescent protein chromophore (p-hydroxybenzylidene-

2,3-dimethylimidazolone).5-
6

7 For aromatic molecules, it is well known that the 

excited states shift to lower energies as the size of the aromatic ring increases, 

and thus it is possible to change the position of the excited states of the anion 

by changing the size of the aromatic moieties. In the case of the smallest aryl 

carboxylates, one can go from the situation where the excited state is higher 

than the ADE to the inverse one, which would allow studying the competition 

between photodetachment and anionic photodissociation. 

Although benzoate (BzCO2
-) and naphthoate (NpCO2

-) are the simplest 

aromatic carboxylate anions, there are not so many detailed studies at the 

molecular level that allow understanding their properties (excited states 

dynamics, stability, etc.) and those of their corresponding benzoyloxy (BzCO2
●) 

and naphtoyloxy (NpCO2
●) neutral radicals. 



The benzoate anion has been well characterized by its photoelectron 

spectrum8 at low temperature. The onset of the electron binding energy is quite 

ill-defined, which prevents a clear determination of the ADE of the benzoate 

anion. An experimental value is estimated to be (3.59 ± 0.16) eV. The benzoate 

anion vibrational spectroscopy has been characterized by infrared multi photon 

electron detachment and the ADE has been calculated with different methods to 

be in the range (3.33 - 3.44) eV.9 

As far as we know, there are no experimental data for naphthoate and 

only a low resolution electronic spectrum of neutral naphthoic acid is known,10 

from which the origin of the S1 S0 transition has been determined to be at 

around 335nm as expected for naphthalene derivatives. 

From the methodological point of view, the study of DPD requires either 

the detection of the electron or the detection of neutral fragments, which is not 

so easy to achieve in experimental setups built to detect ions with a MCP 

detector (Multi Channel Plates). One way to detect neutrals on such a detector 

is to accelerate the parent ions to a few keV before fragmentation, the 

fragments will then keep the kinetic energy of the parent ions allowing their 

detection.11–13 This technique is very often used in coincidence experiments by 

detecting the energy resolved electron and the neutral2,14–16 or the ionic and 

neutral fragments when fragmentation occurs instead of photodetachment.17 

Two kinds of information can be obtained from this type of experiments: the 

fragmentation efficiency when the energy in the system can be varied or 

determined (photoelectron neutral coincidence) or the kinetic energy of the 

fragments.  

The measurement of the dissociation threshold requires the control of the 

internal energy of the neutral after the electron ejection. This can be achieved 

either by coincidence experiments or by varying the photon energy and having 

the knowledge of the electron binding energy8 which allows to know the internal 

energy distribution. In order to increase the accuracy of the measurement it is 

useful to control the temperature of the ion by using cold ions. 

In this line, and with the goal of studying the competition between DPD 

and anionic photofragmentation, we present here experimental results on the 

photoinduced fragmentation processes of cold benzoate and naphthoate anions 

obtained by measuring the variation of the kinetic energy of the neutral 



fragments as a function of the photon energy, as well as the presence of the 

neutral aryloxy parent radical and the corresponding anionic fragments, when 

they are present. The experimental results are complemented by DFT 

calculations to help their interpretation.  

 

Methodology 
Experimental 

Benzoate (BzCO2
-) and 2-naphthoate anions (NpCO2

-) were produced in 

the ESI source by injecting a solution of benzoic or 2-naphthoic acid 10-4 M in 

1:1 mixture of methanol:water.  

The experimental setup for cold ions photofragmentation spectroscopy 

has been already described in previous publications.18–20 

Ion trap

Extraction
300/0V

Gauss tube 
2.5/0kV

V1 V2

MCP

1.2m

Dissociation in the trap: ionic fragmentation

Excitation after the acceleration in the gauss tube: detection of 
neutral

TOF
 

Figure 1: Scheme of the experimental setup. The two regions where the laser interacts 
with the ion packet are represented.1) in the cold trap, 2) in the gauss tube. 
 

In this work, the experimental setup was modified to detect negative ions 

and neutral particles and only the details of these modifications are reported 

here. Briefly, the ions produced by the electrospray source (ESI) are injected in 

the ion trap just after the helium pulse has been sent in. They are stored in the 

cold trap for 80 ms, the time necessary for the cooling up to 30 K21 and the 

decrease of the pressure in the trap. The ions are then extracted and 

accelerated at 2.6 kV. The voltage of the extracting electrode of the trap and the 

accelerating grid are adjusted in order to fulfill the Wiley McLaren focusing 

V1=V2  (-2 kV to +2kV)        



conditions.22 After the accelerating grid, the ions enter in the Gauss tube whose 

function is to avoid having everything floating. Once the ions are inside the tube, 

it is set at the accelerating grid potential and it is switched to ground before the 

ions exit the tube. The ions then travel in the field free region of the time of flight 

(TOF) mass spectrometer with a kinetic energy due to the accelerating voltage 

and they are referenced to the ground. After 1m of flight, they enter the post 

accelerating/decelerating “box”. The ions or the neutrals are detected after the 

“box” with a MCP detector mounted in the positive detection mode, which 

avoids the destruction of the subsequent electronics in case of current failure 

(since the kinetic energy of the negative ions is much larger than the voltage on 

the first MCP, the ions are detected efficiently).  

 

The laser can interact with the ions in two different parts of the setup: 

1) In the ion trap: this allows monitoring the photodissociation process leading 

to a daughter ion and a neutral fragment by extracting the ions after the 

laser shot. 

2) In the Gauss tube: since the parent ions are accelerated, the neutral parent 

radicals produced after the photodetachment or the neutral daughter 

fragments can be detected by the MCP. The intact parent radical will 

arrive at the same time as the anion precursor and the signal will be as 

narrow as the anion signal. In contrast, the neutral fragments will travel 

with the kinetic energy of the parent ion plus the kinetic energy released 

in the dissociative process. They will be observed at the same time-of-

flight as the parent but with a peak broadening due to kinetic energy 

release.  

To discriminate between the parent anion and the parent neutral 

photodetached radical, three methods can be used: 

a) Placing deflection plates perpendicular to the ion travel direction to prevent 

the anions to reach the detector. 

b) Accelerating or decelerating the anions by applying high voltages (1.2 kV) in 

the post accelerating/decelerating box (eg. if a negative voltage is applied, the 

ions are decelerated in the box and will travel slower than the neutral in the box 

and then will arrive after the neutrals to the detector). 



c) Leaving the voltage on the Gauss tube in order to decelerate the anions at 

the output of the tube and prevent them to reach the detector whereas the 

neutral are not perturbed. This method minimizes the time and the distance 

travelled by the ions and thus minimizes the background signal due to neutral 

molecules produced by collisions of the parent ion with the residual gas. 

 

Photodissociation of the ions was achieved with a tunable OPO laser 

(EKSPLA) (10 Hz repetition rate, 10 ns pulse width and a spectral resolution of 

~ 10 cm-1). The linear polarization of the laser was perpendicular to the ion path 

and no changes in the neutrals profiles were observed when the linear 

polarization of the laser was set parallel to the ion path. 

 

Calculations 

Simple calculations using the density functional theory (DFT) with the 

B3LYP functional as implemented in the Turbomolesoftware,23 with basis sets 

up to cc-pVTZ24 were performed in order to determine theAdiabatic and Vertical 

Detachment Energies (ADE and VDE, respectively) as well as the dissociation 

energy and the Sn S0adiabatic transition energy of the anions (Ead). 

 The Intrinsic Reaction Coordinate (IRC) or Minimum Energy Path (MEP) 

and excited state calculations for the decomposition of the BzCO2
● and NpCO2

● 

radicals were performed with the CAM-B3LYPfunctional and the cc-pVDZ basis 

set with the Gaussian 09 suite of programs.25 

 

Results 
Benzoate (BzCO2-): 
At first we tried to observe photodissociation of the benzoate anion 

BzCO2
- sending the laser in the ion trap (region 1 of Figure 1) as was done for 

protonated species, but no ionic fragments were observed indicating the 

absence of the photodissociation channel over the photon energy range probed 

in this work (3.2 – 5.4) eV. 

The photodetachement of BzCO2
- and/or the radical fragmentation were 

performed in the Gauss tube (region 2 of Figure 1) by leaving the voltage in the 

tube in order to prevent the parent anions to reach the detector and minimizing 



the background signal due to neutrals produced by collision induced 

dissociation. 

The symmetrized TOF profiles of the neutrals fragments produced by 

interaction of the laser with BzCO2
- at different photon energies are shown in 

Figure 2. A symmetrization procedure is necessary due to imperfections in the 

MCP electronic circuit that induces a deformation on the high time part of the 

TOF profiles and is explained in the S.I. (Figure SI-1). 

The TOF profiles of the neutral species are composed of two kinds of 

peaks: a narrow one which has the width of the parent signal (i.e. 20 ns) and a 

broad peak with a width of a few hundreds of nanoseconds. The narrow peak 

corresponds to the intact neutral benzoyloxy (BzCO2
●) radical produced as a 

consequence of the photodetachment process and the broad one to neutral 

CO2 and C6H5
● (phenyl radical) fragments. 

Figure 2: TOF profiles of the neutrals generated from the interaction of the laser with 
cold BzCO2

- anions (40K) in the Gauss tube at different photon energies. Left: laser at 
315 nm (3.94eV) and right: laser at 225nm (5.50 eV). (o) Experimental profile, (______) 
Gaussian function corresponding to intact NpCO2

● radical, (______) step-function 
corresponding to Np● radical, (______) step-function corresponding to CO2 and (______) 
total fitting. The experimental peaks were symmetrized according to the procedure 
described in the S.I. 
 

The TOF profiles are strongly dependent on the photon energy: the 

intensity of the narrow peak associated to BzCO2
● is present at all the excitation 

energies explored and continuously decreases with increasing photon energy, 

while the broad component increases with the photon energy. This is 

interpreted as follows: the primary process is the photodetachment to produce 

internally excited BzCO2
● radical. As the photon energy increases also does the 
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fraction of BzCO2
● radicals with internal energy above the energy barrier for 

dissociation to CO2 and C6H5
● and as a consequence the broad component 

associated to these fragments also increases while the narrow peak decreases. 

The fitting was then performed as the sum of a narrow Gaussian function 

(accounting for the BzCO2
● component) and two step-functions (accounting for 

CO2 and Bz● fragments) with variable widths and slopes. 

The fragmentation yield shown in Figure 3 as a function of the photon 

energy is given by (Abroad/2)/(Anarrow+Abroad/2), where Abroad is the total integral of 

the two broad step functions corresponding to the recoiling CO2 and C6H5
● 

fragments and Anarrow is the integral of the narrow one representing the intact 

BzCO2
● radical. The factor ½ for the broad component takes into account that 

there are 2 fragments. As show in Figure 3, even at the lowest energy (3.88 eV) 

the fragmentation yield is quite high (45 ± 10) %, reaching 90 % of dissociation 

at 4.5eV. 

From the width of the step function, the relative kinetic energy of the 

fragments was (0.32 ± 0.04) eV at 5.39 eV (230 nm) of excitation energy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Fragmentation yield of the BzCO2

● radical as a function of the photon energy 
(red squares and broken line). In blue the electron binding energy obtained at 18K 
adapted  from Woo et al.8 The vertical red line is the estimated fragmentation threshold 
(see discussion section). 
 



Naphthoate (NpCO2-): 
 Unlike BzCO2

-, the interaction of NpCO2
- with the laser in the ion-trap 

(region 1) leads to the production of a daughter anion of m/z = 127 assigned to 

the C10H7
- anion (Np-),its counter fragment being CO2 as explained below. The 

dependence of the intensity of the Np- fragment on the excitation wavelength, 

depicted in Figure 4, shows a threshold for the photodissociation below 3.4 ± 

0.2 eV (360 nm), a maximum signal around 4.2 eV and the fragment signal 

vanishes at energies above 4.8 ± 0.2 eV (258 nm).  

 

240 250 260 270 280 290 300 310 320 330 340 350 360

fr
ag

m
en

t/p
ar

en
t

Wavelength / nm

Energy / eV
5 4.8 4.6 4.4 4.2 4 3.8 3.6

0

2

4

6

8

10

 
Figure 4: Action spectrum of the NpCO2

- anion recorded on the mass of the Np- anion. 
The only reproducible feature in this spectrum is the broad band at 321nm. The 
absence of narrow bands implies a very fast non radiative process in the excited state 
of the parent anion. 

 
 

The photodetachment of NpCO2
- and DPD processes in the Gauss tube 

lead to more complex results than in the case of BzCO2
-. Figure 5 shows typical 

TOF profiles at different excitation wavelengths and three different regimes are 

observed: 

1) Low excitation energies (3.25 - 3.75 eV): The onset of the neutral 

fragment signal takes place at around 3.25 eV and it is composed of a single 

broad peak corresponding to one neutral fragment (Figure 5, left panel), but 

without contribution from the neutral parent NpCO2
● radical, as shown by the 

absence of the narrow peak, which indicates that the photodetachment is not 

the primary process at these photon energies. Then, the neutral fragment 



observed is produced from the photodissociation of the NpCO2
- anion, and is 

the counter fragment of the Np- anion detected when fragmenting in the ion 

trap. Therefore, the neutral fragment is assigned to the CO2 molecule.  

2) Intermediate excitation energies (3.75 – 4.59 eV): In this region the signal 

is quite complex since 3 processes are responsible for the observed shape: the 

photodissociation channel leading to release of CO2 is still open, the opening of 

the photodetachment channel leading to the neutral radical NpCO2
● appearing 

as a new narrow peak component and the DPD channel that leads to the 

release of two neutral fragments CO2 and Np●. 

3) High energy region (> 4.60 eV): the signal becomes bell-shaped clearly 

indicating the presence of 2 neutral fragments with quite a lot of kinetic energy 

and at even higher energies (5.27 eV). The relative intensity of the narrow peak 

monotonically decreases as compared to that of the broad peak. 

 

 
 
 
 
 
 
 
 
 

Figure 5: TOF profiles of the neutrals generated from the interaction of the laser with 
cold NpCO2

- anions (40K) in the Gauss tube at different photon energies. Left panel: 
laser at 350 nm (3.54eV) the experimental profile was fitted to a single Lorentzian 
function corresponding to the CO2 fragment issued from the anion photodissociation. 
Middle panel: laser at 270 nm (4.28 eV), both the anion photodissociation and 
photodetachment channels are competing. Right panel: laser at 230 nm (5.39 eV), at 
this energy the anion photodissociation channel is closed, only photodetachment and 
radical fragmentation are possible. (o) Experimental profile, (______) Gaussian function 
corresponding to intact NpCO2

● radical, (______) step-function corresponding to Np● 

radical, (______) step-function corresponding to CO2 and (______) total fitting. . The 
experimental peaks were symmetrized according to the procedure described in the S.I. 

 
  

The fitting was then performed as the sum of a narrow Gaussian function 

(accounting for the NpCO2
● component) and two step-functions (accounting for 

CO2 and Np● fragments) with variable widths and slopes. As observed in Figure 

5, the quality of the fitting is reasonable and the relative intensity of the narrow 

Gaussian component corresponding to the intact NpCO2
● radical is very small 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
(t - t0) µs

270 nm (4.28 eV)

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5
(t - t0) µs

 350 nm (3.54 eV)

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5
(t - t0)µs

 230nm (5.39eV)



(or absent) at low excitation energies, increasing at intermediate excitation 

energies and finally decreasing at the highest excitation energies. The 

appearance threshold for this component takes place around 3.75 - 4.00 eV. 

When comparing the shapes of the signals at all the excitation energies 

studied (Figure SI-2), a remarkable change in the shape of the peak is observed 

between 4.59 and 4.96 eV: the component corresponding to the fastest 

fragment (CO2) appears as wings on both sides of the central peak and can be 

fitted by step functions whose slopes become progressively steeper, which is 

also the case for the Np● fragment. This indicates the presence of faster 

fragments which are produced with repulsive energy release. 

At variance with BzCO2
-, for which only one fragmentation channel is 

observed, in the case of NpCO2
- two mechanisms are at play: the ionic 

photodissociation channel of electronically excited NpCO2
- anion and the DPD. 

In the intermediate excitation energy region the CO2 fragment is simultaneously 

produced by these two different primary processes. Therefore, the integrated 

area of their corresponding components cannot be used to estimate the 

fragmentation yield of the NpCO2
● radical as in the case of BzCO2

●. For the 

same reason, getting accurate information on the kinetic energy of the 

fragments is not feasible without a complex simulation and taking into account 

the internal energy distribution. However, the photodissociation channel 

becomes negligible at energies above 4.8 eV (Figure 4), therefore, at the 

highest excitation energy the neutral fragments are only produced from the 

fragmentation of the internally hot NpCO2
● radical and then, the widths of the 

step-functions can be used to estimate the kinetic energy of the fragments 

produced from this mechanism. 

The maximum kinetic energy of the Np● and CO2 fragments, obtained 

from the widths of the step functions of both fragments, gives a relative kinetic 

energy of (0.28 ± 0.02) eV at the excitation energy of 5.39 eV (230 nm). 

 In order to shed some light into the photodynamics of these anions, the 

Vertical and Adiabatic Electron Detachment energies (VDE and ADE, 

respectively), the adiabatic Sn S0 electronic transition energies (Ead) as well as 

the fragmentation thresholds, were calculated at the DFT and TD-DFT levels 
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with the B3LYP functional and the cc-pVTZ basis set. All the results are 

reported in Table 1 and shown in Figure 6. 

 
Table 1: Electronic transition energies, ADEs, VDEs and different fragmentation 
energies of the BzCO2

- and NpCO2
- anions and BzCO2

● and NpCO2
● radicals, 

calculated at the DFT and TD-DFT level using the B3LYP functional and the cc-pVTZ 
basis set. 
 

ArCO2
- BzCO2

- 
(eV) 

NpCO2
- 

(eV) 
Ead(Sn  S0)a 4.1b 3.2b 
ADE 3.1 3.2 
VDE 3.8 3.8 
ArCO2

- → Ar- + CO2 
            → Ar  + CO2

- 
            → Ar● + CO2 + e- 

2.8 
4.3 
3.3c 

2.3 
4.2 
3.2c 

ArCO2
●→ Ar● + CO2 0.2 0.0 

 

a Lowest excited state with strong oscillator strength. See SI. 
b Without ∆ZPE correction since it is very small (0.05 eV) as compare to the precision of the 
calculation. 
cThe Bz● electronic affinity is 1.1 eV experimentally,10 so that  the dissociation channel in Bz● + 
CO2 + e- should be at 3.9 eV, and similarly the Np● electron affinity being 1.4 eV 
experimentally,26 the dissociation channel Np●+CO2 +e- should be at 3.7 eV,1.4 eV above the 
Np-+CO2 channel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Energy diagram for the DPD and photodissociation processes of BzCO2

- (left 
panel) and NpCO2

- (right panel). The DPD and photodissociation are shown on the 
right and left part of each panel, respectively. The values were obtained from Table 1. 
The energy barriers for the DPD processes are estimated in the Discussion section. In 
both anions the excitation energy was varied from 3.2 eV to 5.4 eV. 
 
 



Discussion 
The experimental results clearly show that the primary photoinduced 

processes are different for BzCO2
- and NpCO2

-, so the results will be discussed 

separately. 

 

Benzoate: 

The primary process is the photodetachment to produce the BzCO2
● 

radical followed by its fragmentation in Bz● and CO2. This process becomes 

more important as the excitation energy increases since the internal energy of 

the BzCO2
● radical also increases. This behavior has already been observed in 

the simpler acetyloxyl anion CH3CO2
- that dissociates after photodetachment.3 

The signal corresponding to the BzCO2
● radical becomes detectable at 

excitation energies ≥ 3.88 eV, in good agreement with the calculated VDE (3.8 

eV). The large difference between the calculated VDE (3.8 eV) and ADE (3.1 

eV) suggests a large geometry difference between the anion and the radical, 

therefore very low Franck-Condon factors are expected for the adiabatic 

process. 

The dissociation energy of BzCO2
● in CO2 and Bz● was calculated in this 

work at the DFT (B3LYP/cc-pVTZ) level to be only 0.2 eV including ∆ZPE 

(Table 1). Thus, the observation of undissociated BzCO2
● radical at excitation 

energies ≥ 3.88 eV, which is 0.8 eV of excess energy above the ADE, implies 

that there is a barrier for the dissociation process. 

The photodetachment threshold is not well defined and the 

photodetachment efficiency increases slowly as the photon energy increases 

(Figure 3).8 At the lowest energy (3.88 eV) at which significant signal was 

obtained, the fragmentation yield is already quite high (45 ±10 %). This 

indicates that at this energy, 45% of the molecules have an internal energy 

larger than the dissociation barrier and 55% have an internal energy lower than 

the barrier. The internal energy distribution imparted to the radical can be 

obtained from the electron binding energy measured by Woo et al.8 By 

integrating the experimental electron binding energy from 0.0 eV to this lowest 

energy of 3.88 eV, one can find the energy at which the population is split in a 



ratio 45/55. The dissociation threshold is then obtained at (3.80 ±0.02) eV (see 

Figure 3 and Figure SI-3).   

The dissociation energy barrier depends on the ADE of the benzoate 

anion, which is reported in previous studies between 3.59 eV experimentally8 

and 3.33-3.44eV theoretically.8,9 Due to this discrepancy, the ADE value 

calculated in this work at the DFT/B3LYP/cc-pVTZ level (3.1 eV) was used in 

order to be able to compare with naphthoate anion for which the experimental 

ADE is not reported in the literature. Then, considering the calculated ADE (3.1 

eV) and the fact that the DPD channel opens at 3.80 eV, this leads to a barrier 

of 0.7 eV, which is larger than the barrier for dissociation of the acetyloxyl 

radical (0.2 eV).4 

 

Naphtoate 

The onset for the photodissociation of this anion takes place at around 

3.25 eV in good agreement with the calculated adiabatic transition energy of 3.2 

eV for the lowest excited electronic state with strong oscillator strength as 

shown in Table SI-1. Then, at low excitation energies the primary process is 

suggested to be the electronic excitation of NpCO2
- followed by the 

photodissociation to the lowest energy channel producing Np- and CO2 (the 

calculated energy threshold for this channel is 2.3 eV). Both fragments were 

observed experimentally in different experiments: the Np- anion was observed 

from the excitation in the trap and the neutral CO2 from the excitation of the fast 

ions in the “Gauss” tube.  

The experimental electron detachment energy of the Np- anion is 1.4 

eV,26 consequently at the fragments appearance threshold (3.25 eV), the 

excess energy (0.95 eV) is not enough to produce the electron detachment of 

the Np- anion. 

The ADE of NpCO2
- is calculated at 3.2 eV, however the 

photodetachment is not competitive with the photodissociation at this excitation 

energy (3.25 eV) since the Franck-Condon factors in the vicinity of the adiabatic 

transition are expected to be negligible as inferred from the large difference 

between the ADE and the VDE (3.8 eV). 

At excitation energies closer to the VDE, the photodetachment starts to 

compete with the photodissociation. The experimental threshold for the onset of 



the neutral NpCO2
● is 3.75 eV, in good agreement with the calculated VDE of 

3.8 eV.  

A fraction of the NpCO2
● radicals may undergo decarboxylation to 

produce Np● and CO2 through an energy barrier as in the case of BzCO2
●. 

However, in this case the analysis of the experimental data is not as 

straightforward as in the latter case, since the two fragmentation channels (ionic 

and neutral) are competing to produce the same neutral fragments.  

 At the highest excitation energies, above 4.6 eV, the ionic fragmentation 

channel is closed as observed from the Np- signal (Figure 4) and from the 

change of the shape of the neutral fragments signal (Figure SI-2). In addition, 

the width of the distribution is barely sensitive to the excitation energy. This 

suggests that the dissociation dynamics is mediated by a substantial exit 

barrier. 

 In the case of NpCO2
-, the photoelectron spectrum is unknown so that 

the barrier for the fragmentation of the NpCO2
● radical cannot be estimated 

from experimental data as in the case of BzCO2
-. However, some estimation of 

the barrier can be obtained from the comparison of the kinetic energy of the 

CO2 fragment in both systems at 230nm. 

In the results section it was reported that the relative kinetic energy of the 

fragments at 5.39 eV of excitation energy is (0.32 ± 0.04) eV and (0.28 ± 0.02) 

eV for BzCO2
- and NpCO2

-, respectively. Therefore, very similar energy barriers 

(0.7 eV) are expected in both cases. 

The kinetic energies measured at 5.39 eV for BzCO2
● (0.32 ±0.04) eV 

and NpCO2
● (0.28 ± 0.02) eV, represent 15% and 13 % of the maximum 

available energy Eavl = 2.09 eV (BzCO2
●) and 2.19 eV (NpCO2

●). According to 

the impulsive model27 used by Z. Lu et al.3 for the acetyloxy radical dissociation, 

the translational energy release is given by ET = Eavl*(µαβ/µAB), with µAB being the 

reduced mass of the two fragments (28 for BzCO2
● and 32.7 for NpCO2

●) and 

µαβ = 6 the reduced mass of the recoiling atoms involved in the dissociated 

bond C-C.27 Then, the calculated ET are 0.45 eV (21 % Eavl) and 0.40 eV (18 % 

Eavl), for BzCO2
● and NpCO2

●, respectively. 

The dissociation energy barriers for both radicals were calculated at the 

DFT and TD-DFT/CAM-B3LYP/cc-pVDZ level. The calculated values for 



BzCO2
● and NpCO2

● are 0.52 eV and 0.53 eV, respectively, in reasonable 

agreement with the corresponding experimental value of 0.7 eV. 

 As shown in Figure 7, the barriers in both radicals are developed as a 

consequence of the crossing between the corresponding ground and second 

doublet excited states. 

 As previously mentioned, the calculated energy barriers for the 

decarboxylation of these aromatic radicals (0.52 eV and 0.53 eV) are around 

0.3 eV larger than the energy barrier (0.2 eV) for the decarboxylation of the 

CH3CO2 aliphatic radical.4 In the aromatic radicals the π orbital on the CO2 

group is conjugated with the π orbital of the aromatic ring. As shown in Figure 

SI-4, the C-CO2 bond stretching along the MPE is accompanied by the OCO 

angle opening reducing the sp2 character of the C atom in the CO2 group to 

increase its sp character as needed by the CO2 fragment. This change partially 

breaks the conjugation of the CO2 π electrons with the aromatic ring and then it 

requires extra energy to reach the transition state (TS).  

To reach the TS geometry the C-CO2 bond distance has to be elongated 

by 0.46 Å and the OCO has to increase 41° from their corresponding values at 

the equilibrium geometry of the radical. At the very beginning of the MEP (blue 

vertical line in Figure SI-4) the C-CO2 distance increases 0.04 Å and the OCO 

angle increases 16°, while the energy is already 0.22 eV. These values 

represent 9%, 39% and 41% of the change required by the C-CO2 distance, the 

OCO angle and the energy, respectively, to reach the TS. This means that most 

of this energy (0.22 eV) is invested to open de OCO angle and partially 

breaking the π conjugation. Thus, it can explain the lower energy barrier 

determined for theC-CO2 bond breaking in the CH3CO2 radical, in which, the 

conjugation breaking does not takes place. 

The main difference observed between BzCO2
- and NpCO2

- is the 

absence of the ionic fragmentation channel at low excitation energies in the 

case of the former anion. 

 
 
 
 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 7: Potential energy function for the electronic ground state (red) and second 
excited electronic state (green) as a function of the C-CO2distance for the BzCO2

● (left) 
and NpCO2

● (right) radicals. The SOMO of both states at both sides of the curve 
crossing are also shown. The black lines correspond to the corresponding energy 
barriers obtained from MEP calculations. 

 
 

In the case of NpCO2
- the origin of the lowest electronic transition with 

strong oscillator strength is at the same energy as the ADE and 0.6 eV below 

the VDE at which the photodetachment is actually observed. Therefore, at low 

excitation energies the ionic fragmentation of NpCO2
- anion is the only process 

at play. According to calculations, the lowest excited state with strong oscillator 

strength in BzCO2
- lies at 4.1 eV, which is 1.0 eV above the ADE and at the 

same energy than the VDE. The onset for the photodetachment is observed 

between both the ADE and VDE and since the photodetachment is expected to 

be faster than the bond dissociation, the anion fragmentation is unlikely to be 

competitive with the photodetachment, in agreement with the fact that we have 

not been able to detect the Bz- anion in our experimental setup.  

 

Conclusions 
The photoinduced processes in BzCO2

- and NpCO2
- anions were studied 

by means of photofragmentation spectroscopy of cold ions, detecting neutral 

and ionic fragments.  

The photodetachment process followed by decarboxylation of the 

internally hot BzCO2
● and NpCO2

● radicals through an exit barrier is common to 

both anions as also reported in previous work for CH3CO2
-.3 
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From the knowledge of the binding energy of the electron in BzCO2
-

obtained through photoelectron measurements8 and the observation of stable 

and unstable radicals, the energy of the exit barrier for the dissociation process 

of this radical was determined to be (0.7eV). The barrier for NpCO2
● has been 

estimated to be the same as for BzCO2
●, within the experimental error, by 

comparison of the total kinetic energy of the fragments in both radicals. 

At variance with CH3CO2
- and BzCO2

-, in the case of NpCO2
- a new ionic 

fragmentation channel producing Np- and CO2 is open at low excitation energy. 

This process arises from the primary electronic excitation of the NpCO2
- anion 

likely followed by IC to the S0 state and subsequent dissociation. The fact that 

this channel is only observed in NpCO2
- is a consequence of the lower energy 

of the first optically active excited state of this anion as compared to the others 

due to a larger stabilization by resonance. 

The photodetachment of ArCO2
- followed by decarboxylation has been 

used for a long time to produce the corresponding aryl radicals, used as 

nucleophiles in organic chemist synthesis. Up to now the ionic fragmentation 

channel producing Ar- anions has always been dismissed. However, since the 

reactivity of the Ar- anion is different to that of the Ar● radicals, they have to be 

taken into account especially for large aromatic groups. 
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