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In this paper, a 𝜅−𝜀 transport model is presented as a turbulence reduction tool
for a typical ohmic L-mode discharge plasma in a divertor-configurated tokamak.
Taking a Tokamak à configuration variable (TCV) study case, a feedback loop pro-
cedure is performed using the SolEdge2D code to acquire plasma diffusivity at the
outer mid-plane. The 𝜅−𝜀 model is calibrated through its free parameters with the
aim of recovering the diffusivity calculated in the feedback procedure. Finally, it is
shown that the model can self-consistently calculate diffusivity in the whole domain,
recovering the poloidal asymmetries due to interchange instabilities.
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1 INTRODUCTION

In order to achieve successful operation of future magnetic confinement fusion devices like ITER and DEMO, it is inevitable
that many technological challenges, among which the handling of particle and power exhaust on narrow areas of the machine,
notably the divertor targets, are to be faced.

Depending on their composition and geometry, plasma-facing components can tolerate a prescribed amount of heat flux over
which degradation and melting can occur. An efficient design of the device involves the understanding of the physics governing
the width 𝜆SOL of the scrape-off layer (SOL), which is the distance from the magnetic separatrix over which plasma quantities
such as density and temperature are spread on open magnetic field lines. 𝜆SOL strongly depends on the competition between
parallel and perpendicular transport (of mass, momentum, and energy), and in particular on turbulence self-organization.

From the quasi-linear analysis of transport equations, assuming a scale separation between fast fluctuations and slowly evolv-
ing mean quantities, one can demonstrate[1] that the fluxes can be linearly related to the gradient of intensive quantities. In that
sense, the turbulent particle flux Γ⊥ is found to be proportional to the gradient of the density, and the proportionality constant
D⊥ is referred to the turbulent diffusivity: Γ⊥ =−D⊥𝛻⊥n. In this framework,[2] the SOL width, which is governed by the com-
petition between parallel and perpendicular transport, can be found equalizing 𝜏‖ =L‖/cs and 𝜏⊥ = 𝜆2

SOL∕D⊥, where 𝜏‖ and 𝜏⊥
are the parallel and perpendicular particle transport time scales, respectively, L‖ is the characteristic parallel length of spatial
variations along the SOL, and cs is the sound velocity in the plasma. Thus one obtains 𝜆SOL =

√
L‖D⊥∕cs. In practice, the

coefficient D⊥ is prescribed in order to reproduce the experimental results. This semi-empirical approach lacks the essence of
predictability, and so we propose in this paper a model trying to predict this coefficient on a more theoretical basis.

First-principles codes implement self-consistent equations for turbulent transport and would be adequate to provide a the-
oretical prediction for turbulent transport. However, their applications to realistic-scale tokamaks are still too demanding on
numerical resources. To go beyond this limit, an intermediate way between the empirical approach and the first-principles one
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would be to develop a reduced model that accounts for the physics driving the turbulence (e.g. interchange instability, flow
shear, etc.).

In this work, a first-step turbulence reduction is presented,[3] inspired by Reynolds averaged Navier–Stokes approach widely
used by the computational fluid dynamics (CFD) community, to investigate turbulence of neutral fluids. In the first section,
the turbulence intensity 𝜅 is defined and the 𝜅−𝜀 model is introduced, identifying interchange instability as the main source of
turbulence. Then, an expression for transport diffusivities is given from the turbulence intensity. The reduced approach brings
down the number of degrees of freedom. However, since it is not first principle, a few free parameters remain to be set. We
propose in this paper a method to set these free parameters from the experimental data. To do so, we present in the second
section a typical L-mode plasma on Tokamak à configuration variable (TCV) that we use to tune our model. In the third section,
a scan on the free parameters of the 𝜅−𝜀 model is performed to close the problem with a criterion of minimum error between the
experimentally inferred diffusivities and the ones calculated with the turbulence model. Finally, first results from the Soledge2D
simulation with the 𝜅−𝜀 model activated for the TCV study case are shown.

2 A 𝜅−𝜖 MODEL FOR TURBULENT DIFFUSIVITY

Being able to predict effective diffusivities describing edge plasma turbulence is a key issue for a proper analysis of the
experimental data and even more for extrapolations to future devices with transport codes. From the perspective of numeri-
cal simulations for ITER, this means to add to the mass, momentum, and energy balance equations a model to consistently
describe the turbulence intensity and its consequence on the transport coefficients. A large variety of transport-reduced models
can already be found in the literature.[4] Coupling turbulence models with transport code have also already been investigated.[5]

In this paper, we follow the approach proposed in ref. [3], where a reduced model inspired by the 𝜅−𝜀 approach has been applied
to the transport code SolEdge2D-Eirene.

We recall here the definition of the turbulence intensity 𝜅 = 1

2
⟨ũ2⟩, where ũ is the oscillating component of the velocity

field, which describes the energy associated with fluctuations. The evolution of 𝜅 is assumed to be governed by the transport
equation, where the source, the damping, and the transport of turbulence are described as

𝜕t(𝑛𝜅) + 𝛻(𝑛𝜅vd
⊥
+ 𝑛𝜅u‖b) = 𝛻(𝑛𝐷𝜅𝛻⊥𝜅) + 𝛾𝜅𝑛 + S𝑖𝑧

n 𝜅 − n𝜀, (1)

where vd
⊥

is the perpendicular component of velocity due to drifts, b=B/B, 𝛾 is the interchange instability growth rate, Siz
n is a

source term due to ionization of neutrals, and n𝜀 is a sink term characterizing turbulence damping. In this work, we consider
that 𝜀 is the self-saturation of turbulence: 𝜀=Δ𝜔𝜅2, where the self-saturation coefficient is defined as Δ𝜔 = Δ𝜔0

cs

R
, R being

the device’s major radius.
Concerning the turbulence drive, the growth rate of the interchange instability is given by

𝛾 = cs

R
⋅

(
𝛾0

√
R2

𝛻pi ⋅ 𝛻B𝜙

piB𝜑

− Θ + 𝛽T2
el

)
, (2)

where Θ = 𝜃01 + Ti∕Te is the threshold triggering the instability.[6] The term proportional to 𝛻pi ⋅ 𝛻B𝜑 makes interchange

growth rate positive only on the tokamak’s low-field-side region. Assuming
𝛻B𝜑

B𝜑

≈ 1

𝑅𝐵𝜑

, one can simplify R2 𝛻pi⋅𝛻B𝜑

piB𝜑

= R
𝜆p

, where

𝜆p is the pressure radial decay length.
One notices that in Equation 2 the term 𝛽T2

e has been added heuristically to model instabilities occurring at the core. It is
regulated by the 𝛽 parameter, which will be investigated in Section 3. Neglecting the transport terms and subtracting 𝜅 times
the continuity equation, Equation 1 reduces to

𝜕t𝜅 = 𝛾𝜅 − Δ𝜔𝜅2. (3)

At the steady state, the turbulence intensity is thus simply given by 𝜅 = 𝛾/Δ𝜔. Transport diffusivities are derived from the
turbulence intensity according to the expression proposed in ref. [3]:

D𝜅𝜀 =
R
cs

⋅ 𝜅 = 1
Δ𝜔

⋅

(
𝛾0

√
R
𝜆p

− Θ + 𝛽T2
e

)
. (4)

In Equation 4, four free parameters have to be determined in order to close the problem: Δ𝜔0, 𝛾0, 𝜃0, 𝛽. It is possible to group
them as

D𝜅𝜀 = 𝛼0

√
R
𝜆p

− Θ + 𝜁T2
e , (5)

where 𝛼0 = 𝛾0/Δ𝜔0 and 𝜁 = 𝛽/Δ𝜔0. We choose 𝜃0 = 5 according to ref. [6].
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3 TCV REFERENCE TEST CASE AND EXTRACTION OF THE DIFFUSION COEFFICIENT

In order to determine the free parameters of the reduced turbulence model described in the previous section, we use a typical
L-mode ohmic discharge on the TCV studied in ref. [2] (TCV #51333). The main plasma characteristics are given in Table 1.

The magnetic configuration of the discharge is shown in Figure 1.

TABLE 1 Main discharge characteristic of shot Tokamak
à configuration variable (TCV) #51333

Bt (T) Ip (kA) POhm (MW) ne,sep(m−3)

1.4 210 0.21 6.8 × 1018

FIGURE 1 Magnetic configurations of the Tokamak à configuration variable (TCV) #51333 (by permission from ref. [2]). We consider the medium leg

configuration (blue solid line). HRTS collection points are shown in red

Electron density and temperature profiles are obtained in the outboard mid-plane by high-resolution Thomson scattering.
The sampling points are shown in Figure 1. Additionaly, measurements of electron temperature and density are obtained on the
divertor targets by Langmuir probes.

In order to estimate the intensity of the turbulent transport in the TCV shot described above, we analyse the experimental
data with the transport code SolEdge2D-Eirene.[7] As any transport code, SolEdge2D requires providing effective cross-field
diffusivities to properly account for the turbulent transport. In a “forward” simulation, one provides to the code ad hoc values for
the transport coefficients as input and obtains a 2D poloidal map of the plasma density and temperature as output. Experimental
mid-plane profiles can thus be compared with simulated ones, and if the match is not satisfactory, one must iterate on the
transport coefficient values to improve the agreement between the two. In this paper, we develop a procedure to simplify this
iterative process. Instead of providing transport coefficients as input to the code, we directly provide mid-plane profiles of the
density and temperature. The code will automatically adjust the transport coefficients so as to match in the end the simulated
mid-plane profiles with the experimental ones. More precisely, one uses the proportional–integral feedback loop shown in
Figure 2 to correct “on the fly” the transport coefficients while the temporal loop of the code is running.

The gain of the feedback loop 𝜏 i has been adjusted to ensure the code stability, while the difference of signals 𝜀 is given by
the following formula:

𝜀 = D⊥ − D⊥0 = 1
𝜏i ∫ (𝜕rnXP − 𝜕rnsimu)𝑑𝑡 + K(𝜕rnXP − 𝜕rnsimu), (6)
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FIGURE 2 Feedback loop used in the code to match simulated mid-plane profiles of density and temperature with the experimental ones. We set the gain

and integration time in such a way that the dynamic of the feedback loop is of the order of the parallel plasma characteristic time

FIGURE 3 Left and middle: Mid-plane profiles of density and temperature (symbol: experimental data, lines: SolEdge2D-Eirene simulation results with

feedback procedure) from Ref. [2]. Right: Cross-field transport coefficients obtained from the feedback procedure

where the subscripts “XP” and “simu” stand for “experimental” and “simulation”, respectively. Typically, the time constant
associated with the integral correction must be larger than the parallel time 𝜏‖ = L‖/cs(∼10−5 s). The technical details on the
implementation of the procedure are beyond the scope of this paper.

Using this automatic feedback loop procedure, the way of running SolEdge2D is made simple for experimental interpretation.
As input of the code, one directly provides experimental measurements of density and temperature in the mid-plane. As output,
one still obtains a 2D poloidal map of the density and temperature but additionally gets a 1D profile of the cross-field diffusivities
that were ad hoc earlier. The poloidal variation of these coefficients is, however, not taken into account. Since we set the 1D
radial profiles of density and temperature at the outer mid-plane, we get 1D radial profiles of diffusivities. The diffusivities are
assumed to be homogeneous on each flux surface. Figure 3 shows results of the feedback procedure on the transport coefficients
applied to TCV #51333. In this simulation, we consider a pure deuterium plasma. Drift velocities are not taken into account.

Once the code’s free parameters (namely transport coefficients) are set by the feedback procedure, we know that experimental
and simulated mid-plane quantities are in rather good agreement.

4 REDUCTION AND OPTIMIZATION OF THE DEGREES OF FREEDOM OF THE MODEL

After running SolEdge2D-Eirene as an interpretative tool on TCV #51333, one obtains 2D poloidal maps of density and tem-
perature as well as an estimation of the transport coeffcients required to describe the turbulent transport of the discharge in a
diffusive fashion. From these data, we propose in this section to optimize the free parameters of our turbulence reduced model.
To do so, we apply Equation 4 to the maps of density and temperature computed by SolEdge2D-Eirene for different values of
the free parameters of the reduced turbulence model, and compare the diffusivity maps with the transport coefficients obtained
from the experiment with the feedback procedure.

As seen in Section 1, we can rewrite Equation 5 as a function of two free parameters: 𝛼0 and 𝜁 .
A scan is performed on these two quantities in order to minimize the error between the diffusivities computed with the reduced

𝜅–𝜀model (D⊥, 𝜅𝜀) and those obtained from the experimental analysis (feedback procedure, D1D
⊥,𝑓𝑏

). In Figure 4, the absolute error

𝐸𝑟𝑟(𝛼0, 𝜁) = ‖D⊥,𝜅𝜀 − D1D
⊥,fb‖2 is parameterized with respect to the two free parameters. The minimum error is found to be for

𝛼0 = 1.33× 103 (m2/s2) and 𝜁 = 1.3× 10−3 (m2 s−1 eV−2). The minimum absolute error is found to be Errmin = 2× 10−2 (m2/s),
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FIGURE 4 Scan of the relative error 𝐸𝑟𝑟(𝛼0, 𝜁 ) = ||D⊥,𝜅𝜀 − D1D
⊥,fb|| with respect to the free parameters

FIGURE 5 Left: Feedback loop D1D
⊥,fb vs. D⊥, 𝜅𝜀 vs. Bohm diffusivity DBohm (the dotted line is the position of the separatrix): flux surface-averaged profiles.

Although usually considered as the standard scaling for diffusion coefficients, and in particular an upper limit, DBohm is actually too small to account for blob

convective transport particularly effective in the SOL region,[8] as one can see in the plot. Right: 2D map of diffusivity self-consistently calculated with the

𝜅−𝜀 model. Strange behaviour in the far SOL is due to numerical effects (thresholding of the density)

FIGURE 6 Mid-plane profiles of density and temperature (symbol: experimental data, lines: SolEdge2D-Eirene simulation profiles auto-consistently

calculated)

which gives a relative error Errrel,min = 8.6%. Figure 5 shows 2D poloidal maps and flux surface-averaged profile of the
cross-field diffusivities obtained from the reduced turbulent model for the optimum values of the free parameters 𝛼0 and 𝜁 . It is
important to stress that the diffusivity is determined for the whole geometrical domain and that the model captures the poloidal
asymmetry of the plasma transport due to interchange instability; in particular, the ballooning effect at the low magnetic field
side (LFS) is recovered for a divertor geometry as a strong poloidal variation of turbulence transport.[3]

We have implemented the optimized 𝜅−𝜀 model into SolEdge2D. The results of this simulation are shown in Figure 6.
To run the simulation, ion and electron thermal conductivity have been set proportional to the self-consistently calculated

diffusivity. This is an assumption whose validity will not be discussed in this paper but will be investigated in the future work.
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FIGURE 7 Profiles of electron density and temperature at the outer target compared to data collected by the Langmuir probes for shot #51333. Here, s is the

curvilinear abscissa along the wall of the vessel, while sSP is the position of the separatrix at the outer target

FIGURE 8 Flow chart representing the loop to infer a self-consistently calculated diffusivity into SolEdge2D. The green path shows the feedback procedure,

the red one is the 𝜅−𝜀 optimization strategy, with 𝐸𝑟𝑟(𝛼0, 𝜁 ) = ||D⊥,𝜅𝜀 − D1D
⊥,fb||

The outer mid-plane profiles in Figure 6 resulting from the simulation with self-consistently calculated and optimized diffu-
sivity show good accordance with the experimental data. A qualitative accordance is also found for the outer target profiles of
electron density and temperature, as can be seen from Figure 7. The discrepancy observed for the density target profile is under
investigation.

5 CONCLUSIONS

A 𝜅−𝜀 model has been introduced with the aim of solving the Reynolds averaged Navier–Stokes equations for the SOL plasma.
A method to tune the free parameters of the model from experimental data has been presented as well. A summary of this work
is sketched in Figure 8. The green line represents the feedback loop between experimental data and SolEdge2D free parameters
(anomalous diffusivities). The red line loop represents the strategy consisting of optimizing the 𝜅−𝜀 free parameters to recover
diffusivity profiles and perform a more consistent comparison between simulation and experimental data, at the outer mid-plane
as well as at the outer target. This 𝜅−𝜀 procedure allows us to reduce the original number of free parameters and capture the
poloidal asymmetries of turbulence, which is a promising first step towards predictive transport models for tokamak plasmas.
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