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Anumerical method for longitudinal wave propagation in nonlinear elastic solids is presented. Here, we consider polynomial stress-strain relationships, which are widely used in nondestructive evaluation. The large-strain and infinitesimal-strain constitutive laws deduced from Murnaghan'sl aw are detailed, and polynomial expressions are obtained. The Lagrangian equations of motion yield ahyperbolic system of conservation laws. The latter is solved numerically using afi nite-volume method with flux limiters based on Roe linearization. The method is tested on the Riemann problem, which yields nonsmooth solutions. The method is then applied to acontinuum model with one scalar internal variable, accounting for the softening of the material (slowdynamics).

Introduction

Rocks and concrete are known to behave nonlinearly when vibrating longitudinally,evenatvery lowamplitudes [START_REF] Guyer | Nonlinear mesoscopic elasticity: evidence for an ew class of materials[END_REF][START_REF] Tencate | Slowdynamics of earth materials: an experimental overview[END_REF]. Firstly,d ynamic acoustoelastic testing (DAET) [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF][START_REF] Rivière | Pump and probe wavesindynamic acoustoelasticity: comprehensive description and comparison with nonlinear elastic theories[END_REF] reveals that the speed of sound measured locally decreases with time, and recovers its initial value after the excitation is stopped. This softening occurs overatime scale larger than the period of the dynamic loading, which highlights the phenomenon of slow dynamics.S econdly,t he evolution of this speed with respect to the strain presents an hysteretical behavior.L astly,a ll these phenomena are enhanced when the forcing amplitude is increased. Such observations are not compatible with linear elastodynamics, where the speed of sound is aconstant.

Polynomial nonlinear stress-strain relationships are widely used in nondestructive testing [START_REF] Va Nden Abeele | Elastic pulsed wave propagation in media with second-or higher-order nonlinearity.P art I. Theoretical framework[END_REF][START_REF] Payan | Applying nonlinear resonant ultrasound spectroscopytoimproving thermal damage assessment in concrete[END_REF]. However, nonlinear elasticity is not sufficient to represent the softening and the hysteresis revealed by DAET.Several models can be found in the literature to reproduce these phenomena (see e.g. [START_REF] Meurer | Wave propagation in nonlinear and hysteretic media-a numerical study[END_REF][START_REF] Li | Pseudo-spectral simulation of 1D nonlinear propagation in heterogeneous elastic media[END_REF]). The soft-ratchet model by Va khnenkoe t al. [START_REF] Va Khnenko | Strain-induced kinetics of intergrain defects as the mechanism of slowdynamics in the nonlinear resonant response of humid sandstone bars[END_REF][START_REF] Favrie | Fast and slowdynamics in anonlinear elastic bar excited by longitudinal vibrations[END_REF] consists in introducing as calar variable g to describe the softening of the material. As imilar model with refinements wasproposed by Lyakhovskyand coauthors in aseries of papers [START_REF] Lyakhovsky | Distributed damage, faulting, and friction[END_REF][START_REF] Lyakhovsky | Nonlinear elastic behaviour of damaged rocks[END_REF]. Recently,a3Dmodel of continuum has been developed by the authors [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF] in the framework of continuum thermodynamics with internal variables of state [START_REF] Maugin | Thermodynamics with internal variables[END_REF][START_REF] Maugin | The sagaofinternal variables of state in continuum thermo-mechanics (1893-2013[END_REF]. This model, which generalizes the soft-ratchet model to 3D geometries and fixes thermodynamical issues, will be used along the present paper. Regardless the fact that slowd ynamics is taken into account or not, the equations of the model appear as a nonlinear hyperbolic system of conservation laws with relaxation, the solutions of which may be discontinuous (shock waves).The numerical computation of nonsmooth solutions requires aparticular care. Here, dedicated finitevolume methods [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF][START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF][START_REF] Ve Lasco-Segura | Afinite volume approach for the simulation of nonlinear dissipative acoustic wave propagation[END_REF] are used to compute such solutions in an on-oscillatory manner.A1D scheme based on the Roe linearization and flux limiters is adapted to the present system of equations. Due to the separation of timescales between the wave propagation and the softening of the material, the coupling between nonlinear elastodynamics and the slowdynamics is straightforward.

The article is organized as follows. Forpedagogical purposes, the case of nonlinear elastic solids without slowdynamics is first considered (sections 2and 3).Section 2derivest he equations of nonlinear elastodynamics, and the case of Murnaghan hyperelastic material [START_REF] Murnaghan | Finite deformations of an elastic solid[END_REF] is tackled. The use of this lawi sd iscussed, in particular the wayi t relates to polynomial stress-strain relationships [START_REF] Ostrovsky | Dynamic nonlinear elasticity in geomaterials[END_REF][START_REF] Payan | Determination of third order elastic constants in ac omplexs olid applying coda wave interferometry[END_REF]. The numerical method is presented in section 3, including the construction of aR oe matrix. In section 3.4, the numerical method is validated with the analytical solution of the Riemann problem of nonlinear elastodynamics [START_REF] Berjamin | Analytical solution to 1D nonlinear elastodynamics with general constitutive laws[END_REF]. Section 4introduces the modifications of the equations to account for the slowd ynamics, as well as the modifications of the numerical method. Then, the propagation of a sinusoidal wave in the material is addressed (section 4.4). The results are in qualitative agreement with experimental observations.

Nonlinear elastodynamics

Governing equations

Lagrangianhyperelasticity. Let us consider an homogeneous continuum in which no heat transfer occurs. Furthermore, self-gravitation is neglected. Aparticle initially located at some position x 0 of the reference configuration movest oap osition x t of the current configuration. The deformation gradient is as econd-order tensor defined by (see e.g. [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF][START_REF] Holzapfel | Nonlinear Solid Mechanics: AContinuum Approach for Engineering[END_REF][START_REF] Drumheller | Introduction to wave propagation in nonlinear fluids and solids[END_REF][START_REF] Norris | Finite-amplitude wavesinsolids[END_REF])

F = grad x t = I + grad u, (1) 
where u = x t -x 0 denotes the displacement field and grad is the gradient with respect to the material coordinates x 0 (Lagrangian gradient). In the reference configuration, the deformation gradient ( 1) is equal to the metric tensor I.

Here, the Euclidean space is described by an orthonormal basis (e 1 , e 2 , e 3 )a nd aC artesian coordinate system (O, x, y, z). In this case, the matrix of the coordinates of I is the identity matrix.

Here, the Lagrangian representation of motion is used. The material derivative of the deformation gradient satisfies

.

F = grad v, (2) 
where v(x 0 ,t)i st he velocity field. The conservation of mass implies ρ 0 /ρ = det(F ), where ρ denotes the mass density in the deformed configuration, and ρ 0 denotes the mass density in the reference configuration. The motion is also drivenbythe conservation of momentum

ρ 0 . v = div det(F ) σ • F -+ f v , ( 3 
)
where div denotes the divergence with respect to the material coordinates. The tensor σ = σ is the Cauchystress tensor,a nd f v is an external volume force applied to the material.

In hyperelasticity,the only variables of state are the specifice ntropy η and as train tensor.M oreover, the dissipation in the material is zero, i.e. the thermodynamic process is isentropic. Here, the deformation of the material is represented by the Green-Lagrange strain tensor,but other choices are possible. The Green-Lagrange strain tensor is defined as E = 1 2 (C -I) where C = F • F is the right Cauchy-Green strain tensor,o re quivalently as af unction of the displacement gradient tensor,

E = 1 2 grad u + grad u + grad u • grad u .(4)
The internal energy per unit of reference volume is W (E), where W is the strain energy density function. Under these assumptions, the expression of the Cauchystress tensor is

σ = 1 det(F ) F • ∂W ∂E • F . ( 5 
)
Thus, the first Piola-Kirchhoff tensor in (3) satisfies

det(F ) σ • F -= F • ∂W ∂E . ( 6 
)
In the isotropic case, the strain energy is afunction of the invariants of E defined by

E I = tr(E), E II = 1 2 tr(E) 2 -tr(E 2 ) , E III = det(E). (7) 
The derivative of the strain energy with respect to the strain tensor writes

∂W ∂E = α 0 I + α 1 E + α 2 E 2 , ( 8 
)
where

α 0 = ∂W ∂E I + E I ∂W ∂E II + E II ∂W ∂E III , α 1 = - ∂W ∂E II -E I ∂W ∂E III , α 2 = ∂W ∂E III , ( 9 
)
are functions of the invariants (E I ,E II ,E III ).

Longitudinal plane waves. We makethe assumption that the displacement field u has no component along e 2 and e 3 .M oreover, its component u along e 1 is independent on y and z.T herefore, the displacement gradient writes grad u = ε (e 1 ⊗ e 1 ), where ε = ∂ x u>-1i st he axial component of the displacement gradient. The invariants [START_REF] Meurer | Wave propagation in nonlinear and hysteretic media-a numerical study[END_REF] of the Green-Lagrange strain tensor are E I = ε + 1 2 ε 2 and E II = 0 = E III .T hus, the strain energy W is now af unction of ε only.I nt he longitudinal case, the 11coordinate of the first Piola-Kirchhoff tensor (6) is equal to the coordinate σ of the Cauchystress tensor.Equations ( 8)-( 9) and the expression of the invariants provide the stress-strain relationship

σ = (1 + ε) α 0 + E I α 1 + E I 2 α 2 = ∂E I ∂ε ∂W ∂E I = W (ε), (10) 
where the denotes the total derivative with respect to ε.

Constitutive laws. The Murnaghan model of hyperelasticity [START_REF] Murnaghan | Finite deformations of an elastic solid[END_REF] is widely used in the communities of geophysics and nondestructive testing [START_REF] Mccall | Theoretical study of nonlinear elastic wave propagation[END_REF][START_REF] Johnson | Nonlinear elasticity and stress-induced anisotropyi nr ock[END_REF][START_REF] Ostrovsky | Dynamic nonlinear elasticity in geomaterials[END_REF][START_REF] Payan | Determination of third order elastic constants in ac omplexs olid applying coda wave interferometry[END_REF]. Its strain energy density function is

W = λ + 2µ 2 E I 2 -2µE II + l + 2m 3 E I 3 -2m E I E II + n E III , (11) 
where (λ, µ)are the Lamé parameters and (l, m, n)are the Murnaghan coefficients. Sometimes, Landau'sl aw with parameters (A, B, C)isused instead, and the relationship with Murnaghan'sl aw [START_REF] Lyakhovsky | Distributed damage, faulting, and friction[END_REF] is specified in [START_REF] Norris | Finite-amplitude wavesinsolids[END_REF]. With the above expression of the strain energy [START_REF] Lyakhovsky | Distributed damage, faulting, and friction[END_REF],the axial component of the Cauchystress [START_REF] Favrie | Fast and slowdynamics in anonlinear elastic bar excited by longitudinal vibrations[END_REF] is

σ = M 0 ε 1 + 3 2 + ϑ ε + 1 2 + 2ϑ ε 2 + 5ϑ 4 ε 3 + ϑ 4 ε 4 , ( 12 
)
where M 0 = λ + 2µ>0i st he elastic modulus, and ϑ = (l+2m)/(λ+2µ). If the Murnaghan coefficients equal zero (ϑ = 0),o nly geometric nonlinearities remain, and the Saint Ve nant-Kirchhoff model of hyperelasticity is recovered. The later reduces to the classical Hooke'slaw in the case of infinitesimal strain ε 0. When geometric nonlinearities are neglected (e.g., when the Murnaghan coefficients are very large), the Green-Lagrange strain tensor is linearized with respect to the components of grad u,sothat the strain tensor ( 4) is replaced by the infinitesimal strain tensor: E ε.D oing this, the first invariant of the strain tensor is E I ε in the longitudinal case. Moreover, the first Piola-Kirchhoff stress is linearized with respect to the components of grad u as well, i.e. F • ∂W/∂E ∂W/∂ε in ( 6).D oing this, the longitudinal constitutive law( 10)r educes to σ = α 0 + α 1 ε + α 2 ε 2 ,and ( 12) becomes

σ = M 0 ε 1 + ϑε . ( 13 
)
This constitutive lawc orresponds to aq uadratic polyno-

mial σ = M 0 ε (1 -βε),with β = -ϑ.
Acubic polynomial constitutive law [START_REF] Meurer | Wave propagation in nonlinear and hysteretic media-a numerical study[END_REF][START_REF] Li | Pseudo-spectral simulation of 1D nonlinear propagation in heterogeneous elastic media[END_REF][START_REF] Favrie | Fast and slowdynamics in anonlinear elastic bar excited by longitudinal vibrations[END_REF]]

σ = M 0 ε 1 -βε -δε 2 (14) 
is also widely used to describe nonlinear elasticity in solids. If the geometric nonlinearities are negligible [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF], then the parameters β = -ϑ and δ = 0correspond to Murnaghan'slaw.Ifthe geometric nonlinearities are taken into account [START_REF] Lyakhovsky | Nonlinear elastic behaviour of damaged rocks[END_REF],then the choice -β = 3 2 + ϑ and -δ = 1 2 + 2ϑ makes the twomodels coincide up to the third order.Contrary to [START_REF] Lyakhovsky | Nonlinear elastic behaviour of damaged rocks[END_REF],orders 4and 5are not taken into account in [START_REF] Maugin | Thermodynamics with internal variables[END_REF],which shows that both models are not equivalent.

The major difference between the stress-strain relationships ( 12) and ( 14) is the number of independent parameters. In ( 14),the cubic term can be set independently of the quadratic term. In [START_REF] Lyakhovsky | Nonlinear elastic behaviour of damaged rocks[END_REF],the cubic term is not independent on the quadratic term: if ( 12) and ( 14) are assimilated, then δ = 5 2 + 2β.However,e xperimental evidence shows that δ is larger than β by several orders of magnitude, so that aconstitutive lawofthe Murnaghan type is not sufficient to represent accurately elastic nonlinearity in geomaterials [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF]. From nowon, the cubic polynomial law( 14)is used.

Hyperbolic system of conservation laws

The equations of motion ( 2)-( 3) write as an on-homogeneous system of conservation laws with respect to the variables q = (ε, v) ,where v is the particle velocity component along e 1 ,

∂ t q + ∂ x f (q) = s. ( 15 
)
The flux function is f (q) = -(v, σ(ε)/ρ 0 ) ,and the forcing is s = (0,f v /ρ 0 ) ,where f v is the volume force component along e 1 .The Jacobian matrix of the flux is

f (q) = - 01 σ ( ε ) /ρ 0 0 , ( 16 
)
where σ = W is the derivative of σ with respect to ε. The eigenvalues of f (q)are {-c(q),c(q)},where c(q) = σ (ε)/ρ 0 is the speed of sound. The system of conservation laws is strictly hyperbolic if σ (ε) > 0, i.e. overadomain where the strain energy W is astrictly convex function of ε.Some properties of the system (15) are listed belowwithout proof. Interested readers are referred to standard textbooks for more details about hyperbolic systems [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF][START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF].

In the case of the cubic law( 14), strict hyperbolicity is ensured if [START_REF] Berjamin | Analytical solution to 1D nonlinear elastodynamics with general constitutive laws[END_REF] ε ∈ 1

β -β 2 + 3δ , 1 β + β 2 + 3δ . ( 17 
)
If β = δ = 0, then the polynomial law( 14)a mounts to Hooke'sl aw,a nd the characteristic fields are linearly degenerate. If β = 0a nd δ = 0, then the polynomial law is quadratic, and the stress is either as trictly convex or a strictly concave function of the strain. The characteristic fields are genuinely nonlinear.I fδ =0, then the polynomial law [START_REF] Maugin | Thermodynamics with internal variables[END_REF]isneither convex nor concave.Indeed, an inflexion point is located at ε 0 = -β/3δ.The characteristic fields are neither genuinely nonlinear nor linearly degenerate (i.e., theyare nongenuinely nonlinear). In the case of Murnaghan'slaw [START_REF] Lyakhovsky | Nonlinear elastic behaviour of damaged rocks[END_REF],asimilar analysis is carried out in the appendix.

Finite volumes with flux limiters

Conservative scheme

In the examples presented later on, the physical domain is unbounded. We consider afi nite numerical domain [x 0 ,x N ].I ti sd iscretized using ar egular grid in space with step Δx = (x N -x 0 )/N .A lso, av ariable time step Δt = t n+1 -t n is introduced. Therefore, q(x i ,t n )d enotes the solution to (15) at the abscissa x i = x 0 + i Δx and at the time t n .The volume force f v is assumed to be apoint load f v = δ s (x)ϕ(t), where δ s (x) = δ(x -x s )isthe Dirac delta located at the abscissa x = x s ,and ϕ(t)isthe source signal.

The non-homogeneous system of conservation laws (15) is integrated explicitly:

q n+1 i = q n i - Δt Δx (f n i+1/2 -f n i-1/2 ) + Δt Δx s n i , ( 18 
)
where q n i q(x i ,t n )approximates the solution at the grid nodes, and s n i = s(x i ,t n ). The numerical flux f n i+1/2 of the flux-limiter method is specified later on. This scheme is stable under the classical CFL condition

κ = Δt Δx c n max 1, ( 19 
)
where κ is the Courant number,and c n max is the maximum sound speed that is encountered at time t n .Ifσis convex or concave,then the maximum sound speed at time t n is

c n max = max 0 i N c(q n i ). ( 20 
)
If the constitutive lawisneither convex nor concave,sound speeds larger than (20) may be reached (see e.g. section 16.1 in [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF]). The local maximum sound speed is obtained by maximizing c(q)for q between q n i and q n i+1 .Then, one obtains

c n max = max 0 i<N 1 ρ 0 max ε∈D i σ (ε) , ( 21 
)
where D i is the interval with bounds ε n i and ε n i+1 .F inally,the method has av ariable time step satisfying Δt = κ Δx/c n max . Since the flux function f is nonlinear with respect to q, an initial-value problem (orC auchyp roblem)o ft he homogeneous system defined by the data q(x, 0) at the time t = 0can have several weak solutions (i.e. solutions of an integral form of ( 15)). It is not straightforward for an umerical method to convergetowards the correct weak solution. In particular,the numerical fluxes f n i+1/2 in (44) must be computed carefully.G iven that the eigenvalues ±c(q) of ( 16) have constant sign, no transsonic rarefaction can occur.Moreover, no slow-moving shock can occur either, due to the monotonicity of σ overt he domain of hyperbolicity [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF].T herefore, Roe linearization can be used to construct an accurate numerical scheme.

Roe linearization

The nonlinear flux f (q)i sa pproximated locally by the linear flux A i+1/2 q.ARoe matrix A i+1/2 approximates the Jacobian f (q n i+1/2 )a tt he midpoint of [x i ,x i+1 ]a nd the time t n ,insuch away that

1. A i+1/2 is diagonalizable with real eigenvalues; 2. A i+1/2 q n i+1 -q n i = f (q n i+1 ) -f (q n i ); 3. lim q n i+1 →q n i A i+1/2 = f (q n i ).
According to section 15.3.2 of [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF], such amatrix may be expressed by the formula

A i+1/2 = 1 0 f q n i + ξ (q n i+1 -q n i ) dξ, (22) 
which ensures that the properties 2. and 3. are satisfied.

In the case of the system [START_REF] Maugin | The sagaofinternal variables of state in continuum thermo-mechanics (1893-2013[END_REF],w hich corresponds to exercise 15.1.(a) p. 349 of [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF], the following matrix is obtained:

A i+1/2 = 0 -1 -a i+1/2 0 , ( 23 
)
where

a i+1/2 = W (ε n i+1 ) -W (ε n i ) ρ 0 ε n i+1 -ε n i . ( 24 
)
To avoid divisions by zero when ε n i = ε n i+1 ,one computes

a i+1/2 = W (ε n i ) ρ 0 , ( 25 
)
in this particular case. The eigenvalues of the matrix ( 23) are {-s i+1/2 ,s i+1/2 },w here s i+1/2 = a i+1/2 .S ince the strain energy function W is convex overthe hyperbolicity domain, the coefficient a i+1/2 is positive.T herefore, the eigenvalue s i+1/2 is real, and the property 1. is satisfied.

The matrix (47) is aRoe matrix.

Forlater use, we introduce the decomposition of q n i+1q n i in the basis of right eigenvectors of the Roe matrix

p 1 i+1/2 = 1,s i+1/2 , p 2 i+1/2 = 1,-s i+1/2 . ( 26 
)
The jump of the solution can be expanded as

q n i+1 -q n i = 2 k=1 α k i+1/2 p k i+1/2 , = 2 k=1 W k i+1/2 , ( 27 
)
with the coefficients

α 1 i+1/2 = 1 2 ε n i+1 -ε n i + v n i+1 -v n i s i+1/2 , α 2 i+1/2 = 1 2 ε n i+1 -ε n i - v n i+1 -v n i s i+1/2 .
(28)

Flux limiter

We describe nowt he flux-limiter scheme. The numerical flux in [START_REF] Ve Lasco-Segura | Afinite volume approach for the simulation of nonlinear dissipative acoustic wave propagation[END_REF] takes the form (section 15.4 in [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF])

f n i+1/2 = f L i+1/2 + f H i+1/2 , ( 29 
)
where f L i+1/2 is the flux of Godunov'sm ethod or one of its approximated versions, and f H i+1/2 is ah igher-order correction deduced from the Lax-Wendroff method. Here, the Godunovflux is approximated linearly by the classical Roe flux, and the Roe matrix (47) is used. Thus, where W k i+1/2 is defined in [START_REF] Mccall | Theoretical study of nonlinear elastic wave propagation[END_REF].The higher-order correction of the flux-limiter method writes

f L i+1/2 = 1 2 f (q n i ) + f (q n i+1 ) - 1 2 s i+1/2 W 1 i+1/2 + W 2 i+1/2 , (30) 
f H i+1/2 = 1 2 s i+1/2 1 - Δt Δx s i+1/2 • φ(θ 1 i+1/2 )W 1 i+1/2 + φ(θ 2 i+1/2 )W 2 i+1/2 , ( 31 
)
where

θ 1 i+1/2 = W 1 i+3/2 • W 1 i+1/2 W 1 i+1/2 • W 1 i+1/2 , θ 2 i+1/2 = W 2 i-1/2 • W 2 i+1/2 W 2 i+1/2 • W 2 i+1/2 , ( 32 
)
and φ is alimiter function. Here, the minmod limiter

φ(θ) = max{0, min{1,θ}} (33) 
is used. The weights φ(θ k i+1/2 )a re designed to avoid spurious oscillations in the numerical solution. If the weights φ(θ k i+1/2 )equal one in [START_REF] Berjamin | RiemannElasto1D Toolbox[END_REF],then the Lax-Wendroff method based on the Roe matrix (47) is recovered. In the case of nonconvex flux functions, the minmod limiter (33) has shown better convergence properties than other limiter functions. Similar observations are reported in [START_REF] Kurganov | Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws[END_REF][START_REF] Vo Ss | Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state[END_REF].

To carry out one iteration in time at some grid node i, the numerical values of q at the grid nodes i -2,...,i+2 are required. Therefore, two" ghost cells" must be added on the left and on the right of the numerical domain. Here, az ero-order extrapolation of the numerical solution can be used to achieve outflowboundary conditions. Thus, we simply set

q n -2 = q n -1 = q n 0 , q n N+2 = q n N+1 = q n N , (34) 
at each time step [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF].

Numerical test case

The orders of magnitude of the elastic parameters for Berea sandstone ρ 0 , M 0 , β, δ in table Ihavebeen taken in Table Iand Figure 5a of [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF]. From [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF],itfollows that the model ( 15) is hyperbolic if |ε| < 5.7 • 10 -5 .The numerical domain is [x 0 ,x N ] = [-0.5,0.5] m. To avoid instability, the Courant number ( 19) is set to κ = 0.95. This test is carried out to validate the ability of the numerical scheme to represent accurately nonsmooth solutions. Here, no volume force is applied in the material. We consider piecewise constant initial data with as ingle discontinuity at the abscissa x = 0, i.e. aRiemann problem. Here, the initial data is ε = 2 • 10 -5 , v = 0ifx<0, and ε = -2.6 • 10 -5 , v = 0.097 m/s if x>0. The analytical solution to this initial-value problem is displayed in Figure 1a. Details about its computation can be found in [START_REF] Berjamin | Analytical solution to 1D nonlinear elastodynamics with general constitutive laws[END_REF]. Moreover, an interactive application and aM atlab toolbox [START_REF] Berjamin | RiemannElasto1D Toolbox[END_REF] can be found at http://gchiavassa.perso.centralemarseille.fr/RiemannElasto/.

The numerical solution (44) is computed up to t = 0.19 ms on agrid with N points. Figures 1b and1c compare the analytical solution with the numerical solution. On Figure 1b, the left-going discontinuity is represented (shock wave). On Figure 1c, the right-going compound wave with ac ontinuous part followed by ad iscontinuous part is represented (rarefaction shock wave). Both waves are well-located and accurately computed by the numerical scheme. In particular,n os purious oscillations arise, and no convergence failure is noticed as N increases from 1000 to 2000.

Coupling with slowd ynamics

As specified in the introduction, nonlinear elastodynamics presented in Section 2i sn ot sufficient to describe the softening of the material. In [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF], as imple approach was proposed to account for such phenomena. The model was presented in 3D, and analytical computations were carried out in the longitudinal case. Here, we showh ow the previous numerical method is adapted to this model of slow dynamics.

Modified equations of motion

Internal-variable model. An internal-variable g in [0, 1[ is introduced, to represent the softening of the material. The internal energy per unit of reference volume ρ 0 e = W (ε)becomes [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF] 

ρ 0 e = (1 -g) W (ε) +Φ(g), ( 35 
)
where e is the specificinternal energy.In( 35), Φ(g)r epresents astorage energy with expression

Φ(g) = - 1 2 γ ln 1 -g 2 , ( 36 
)
where γ>0i sa ne nergy per unit volume, buto ther choices are suitable. As discussed in [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF], the storage energy ( 36) is chosen such that equilibrium points of the model are unique, g = 0i sa ne quilibrium point, and g is bounded by 1. With such achoice, one observes that the internal energy per unit of reference volume (35) is equal to the strain energy W when g is equal to zero. The second principle of thermodynamics yields the axial component of the Cauchystress [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF] [START_REF] Favrie | Fast and slowdynamics in anonlinear elastic bar excited by longitudinal vibrations[END_REF]. The simplest thermodynamically admissible choice of evolution equation is [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF] 

σ = 1 -g W (ε)( 37) instead of W (ε)
τ 1 . g = W (ε) -Φ (g), ( 38 
)
where τ 1 = τ • 1J/m 3 and τ>0isatime constant. With the laws (37) and (38),the dissipation per unit of reference volume is [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF] 

ρ 0 T . η = -ρ 0 ∂e ∂g . g = τ 1 . g 2 0, ( 39 
)
where T>0isthe absolute temperature, and η is the specificentropy.

Conservation laws with relaxation. The variable g is added to the vector of unknowns q,sothat q = (ε, v, g) . The system of conservation laws (15) becomes

∂ t q + ∂ x f (q) = r(q) + s, (40) 
where

f (q) = -v, (1 -g) W (ε)/ρ 0 , 0 , r(q) = 0, 0, W (ε) -Φ (g) /τ 1 , s = (0,f v /ρ 0 , 0) . ( 41 
)
The Jacobian matrix f (q)o ffhas the eigenvalues {-c(q),c(q),0},where

c(q) = (1 -g) W (ε) ρ 0 (42)
is the speed of sound. The speed of sound ( 42) is real and nonzero -ino ther words, the system (40) is strictly hyperbolic -provided that g<1and W (ε) > 0. This second condition wasalready required in the elastic case [START_REF] Maugin | The sagaofinternal variables of state in continuum thermo-mechanics (1893-2013[END_REF]. Nowlet us examine the spectrum of the relaxation function in (40).The Jacobian matrix r (q)ofrhas the eigenvalues {0, 0, -Φ (g)/τ 1 }.T he expression (36) ensures that r (q)i sn egative semi-definite. Its spectral radius is

Υ = γ τ 1 1 + g 2 (1 -g 2 ) 2 , (43) 
which involves the relaxation time τ 1 /γ characteristic of the slowdynamics [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF].

Modified numerical method

Conservative scheme. Applying the same explicit discretization as [START_REF] Ve Lasco-Segura | Afinite volume approach for the simulation of nonlinear dissipative acoustic wave propagation[END_REF] to (40) yields

q n+1 i =q n i - Δt Δx (f n i+1/2 -f n i-1/2 ) +Δtr(q n i )+ Δt Δx s n i , (44) 
where the numerical flux f n i+1/2 is specified later on. According to the time-marching formula (44),explicit singlestep time integration is used.

Numerical stability imposes abound of the form

Δt min Δx c n max , 2 Υ n max , ( 45 
)
where c n max is the maximum sound velocity (42) that is encountered at time t n ,a nd Υ n max is the maximum spectral radius of the relaxation function (43).Since the relaxation time of the slowdynamics is much larger than the period of exciting signals, the condition (45) reduces to the classical CFL condition [START_REF] Murnaghan | Finite deformations of an elastic solid[END_REF].Ifthe constitutive law ε → W (ε) is convex or concave,t hen the maximum sound speed at time t n is givenby [START_REF] Ostrovsky | Dynamic nonlinear elasticity in geomaterials[END_REF], with the sound speed (42).Ifthe constitutive lawi sn either convex nor concave,t hen (21) becomes

c n max = max 0 i<N 1 -min{g n i ,g n i+1 } ρ 0 max ε∈D i W (ε) , ( 46 
)
where D i is the interval with bounds ε n i and ε n i+1 .

Roe linearization. In the case of the system (40),the following matrix is obtained from [START_REF] Berjamin | Analytical solution to 1D nonlinear elastodynamics with general constitutive laws[END_REF]:

A i+1/2 =   0 -10 -a i + 1 / 2 0 b i + 1 / 2 00 0   , (47) 
where

a i+1/2 = σ n i+1 -σ n i ρ 0 ε n i+1 -ε n i + g n i+1 -g n i ε n i+1 -ε n i b i+1/2 , b i+1/2 = W (ε n i+1 ) -W (ε n i ) ρ 0 ε n i+1 -ε n i , (48) 
and the stresses (37) are

σ n i = (1 -g n i ) W (ε n i ).
To avoid divisions by zero when ε n i = ε n i+1 ,one computes

a i+1/2 = 1 - g n i + g n i+1 2 W (ε n i ) ρ 0 , b i+1/2 = W (ε n i ) ρ 0 , (49) 
in this particular case. The eigenvalues of the matrix (47) with the coefficients (48)-(49)a re {-s i+1/2 ,s i+1/2 ,0},w here the expression s i+1/2 = a i+1/2 is unchanged. We rewrite the coefficient a i+1/2 from (48) as

a i+1/2 = W (ε n i+1 ) -W (ε n i ) ρ 0 ε n i+1 -ε n i -g n i W (ε n i+1 ) -W (ε n i ) -W (ε n i ) ε n i+1 -ε n i ρ 0 ε n i+1 -ε n i 2 -g n i+1 W (ε n i ) -W (ε n i+1 ) -W (ε n i+1 ) ε n i -ε n i+1 ρ 0 ε n i+1 -ε n i 2 . ( 50 
)
One can note that the first term in (50) corresponds to the elastic case [START_REF] Holzapfel | Nonlinear Solid Mechanics: AContinuum Approach for Engineering[END_REF].M oreover, the next terms vanish when g n i = 0 = g n i+1 ,i .e. when no softening occurs. Since the strain energy function W is convex and g<1o vert he hyperbolicity domain, the coefficient a i+1/2 in (50) is positive.F inally,t he eigenvalue s i+1/2 is real, and the property 1. is satisfied. The matrix (47) is aR oe matrix for (40). Now, the jump q n i+1 -q n i is decomposed in the basis of right eigenvectors of the Roe matrix (47)

p 1 i+1/2 = 1,s i+1/2 ,0 , p 2 i+1/2 = 1,-s i+1/2 ,0 , p 3 i+1/2 = 1,0, a i+1/2 b i+1/2 . ( 51 
)
The jump of the solution can be expanded as as um [START_REF] Mccall | Theoretical study of nonlinear elastic wave propagation[END_REF] of three W k i+1/2 = α k i+1/2 p k i+1/2 ,where the coefficients are

α 1 i+1/2 = 1 2 v n i+1 -v n i s i+1/2 + σ n i+1 -σ n i ρ 0 s i+1/2 2 , α 2 i+1/2 = 1 2 - v n i+1 -v n i s i+1/2 + σ n i+1 -σ n i ρ 0 s i+1/2 2 , α 3 i+1/2 = ε n i+1 -ε n i - σ n i+1 -σ n i ρ 0 s i+1/2 2 . ( 52 
)
Since the eigenvalue corresponding to k = 3inthe decomposition of the jump is zero, W 3 i+1/2 does not appear in the numerical flux [START_REF] Kurganov | Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws[END_REF] of the flux-limiter method. Therefore, the formulas ( 29) to [START_REF] Shu | High order weighted essentially nonoscillatory schemes for convection dominated problems[END_REF] can be applied without modification with the flux function (41),t he eigenvalue s i+1/2 deduced from (48)-( 49), and the decomposition of the jump (51)-(52).

Pulse propagation

Figure 3of [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF] provides an order of magnitude of the characteristic time of the slowdynamics, and an order of magnitude of the average softening ΔM/M for agiven strain amplitude V .According to [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF], the characteristic time of the slowdynamics is τ 1 /γ,and the average softening satisfies ΔM/M -1 4 ( M 0 /γ + 6δ) V 2 .Ifthis scaling rule is combined with the values in [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF], then an egative value of γ is obtained, which is not reliable. Thus, the parameters γ and τ in table Iare not chosen to reach quantitative agreement with [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF], butrather to obtain comparable orders of magnitude for the characteristics of softening.

The numerical domain and the Courant number are the same as in section 3.4, buth ere, the softening is taken into account. The initial data is zero, and ap oint load f v = δ s (x)ϕ(t)l ocated at the abscissa x s = 0g enerates as mooth pulse with angular frequency ω c = 2πf c ,w ith f c = 6kHz. The source signal in (40) satisfies

ϕ(t) = 2M 0 V 4 m=1 a m sin 2 m-1 ω c t , (53) 
where V = 6.64 • 10 -6 , a 1 = 1, a 2 = -21/32, a 3 = 63/768, and a 4 = -1/512. It is turned on from t = 0t o t=1 /f c ,w hich corresponds to one fundamental period. Chosen for the smoothness of its time-evolution (53),the point source generates left-going and right-going waves with strain amplitude 1.507 V ≈ 10 -5 . The reference solution is an oversampled numerical solution (44) computed at t = 0.19 ms on ag rid with N ref = 2 15 points (Figure 2a). The pulse injected at x s = 0 has propagated towards both increasing and decreasing x. By symmetry,only the right-going part is displayed here. No shock wave is observed: the waveform is slightly distorted butk eeps smooth. Figure 2b illustrates the convergence of the numerical method. Foragiven coarse spatial discretization where N N ref ,the numerical solution is computed up to t ≈ 0.19 ms, and is compared to the reference numerical solution at the same final time. The evolution of the L 2 global error between both strain waveforms is represented in Figure 2b with respect to Δx = 1/N .One can observethat the order of convergence is between one and two.

Dynamic acousto-elasticity

The setup is the same as in the previous section, buthere, the point load generates asinusoidal strain with amplitude V ≈ 10 -6 and angular frequency ω c = 2πf c ,w ith f c = 5kHz:

ϕ(t) = 2M 0 V sin ω c t . ( 54 
)
The source (54) is turned on from t = 0t ot = 40 ms, which corresponds to 200 periods of signal. Ar eceiver records the numerical solution at the abscissa x r = 0.3m. The numerical solution (44) is computed up to t = 80 ms on ag rid with N = 80 points, which corresponds until the source is stopped. Simultaneously,the strain signals are smooth sinusoids, so that N = 80 is sufficient. After the source is stopped, the elastic modulus recovers slowly its initial value, while the strain is equal to zero.

Figure 3b focuses on the steady-state solution. Here, the last 80 numerical values before t = 40 ms are used, which corresponds to twop eriods of signal at the frequency f c . When ΔM/M from (55) is represented with respect to the strain recorded at the position of the receiver x r ,a hysteresis curvei so btained. The orders of magnitude of these phenomena -duration of the transients, magnitude of the softening, size and shape of the hysteresis curvesare very similar to those reported in [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF] for Berea sandstone. In particular,o ne can note that the average softening ΔM/M is proportional to V 2 ,a sp redicted in [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF]. However, only qualitative agreement with Figure 5a of [START_REF] Renaud | Revealing highly complexelastic nonlinear (anelastic)behavior of Earth materials applying anew probe: Dynamic acoustoelastic testing[END_REF] is obtained.

Conclusion

Afi nite-volume method with flux-limiters for nonlinear longitudinal elastodynamics is implemented, with various polynomial constitutive laws. Based on Roe linearization, this numerical method is well-suited to the present system of partial differential equations, and has been validated with the Riemann problem of nonlinear elastodynamics. Nonsmooth solutions such as shock wavesa re well-captured, even in the case of nonconvex stress-strain relationships. The method is adapted to acase with an additional scalar evolution equation, which is deduced from the internal-variable model [START_REF] Berjamin | Nonlinear wavesi ns olids with slowd ynamics: an internalvariable model[END_REF] of slowdynamics. The numerical model reproduces qualitatively experimental observations related to dynamic acoustoelasticity.

We mention here afew improvements to be introduced. Boundary conditions such as free edges and oscillating walls need to be implemented so as to reproduce real configurations in amore realistic way(section 7of [START_REF] Leveque | Finite-Volume Methods for Hyperbolic Problems[END_REF]). Due to resonance, viscoelastic attenuation needs then to be incorporated in the model, which has been carried out simi-larly to [START_REF] Favrie | Fast and slowdynamics in anonlinear elastic bar excited by longitudinal vibrations[END_REF] in recent works [START_REF] Berjamin | Modeling longitudinal wave propagation in nonlinear viscoelastic solids with softening[END_REF]. Currently,higher-order shock-capturing methods [START_REF] Shu | High order weighted essentially nonoscillatory schemes for convection dominated problems[END_REF] are developed, as well as similar methods in multiple space dimensions.
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Figure 1 .

 1 Figure 1. (a) Analytical solution to aR iemann problem. Comparison with the numerical solution (b) on the left-going strain wave,(c) and on the right-going strain wave.

Figure 2 .

 2 Figure 2. Assessment of the numerical method'sconvergence on the propagation of asmooth pulse. (a) Reference solution at t = 0.19 ms: strain, particle velocity,and softening variable. (b) Error measurement.

Figure 3 .Figure 4 .

 34 Figure 3. (Colour online)( a) Strain signal and softening of the material, as recorded by the receiveratthe abscissa x r = 0.3m. (b) Hysteresis curves in steady-state. The arrowi ndicates how time increases along the curve.to 40 points per wavelength at the angular frequency ω c . The computations are performed in C++.Each simulation lasts around 1.5 s, when arecent desktop computer is used (Intel Core i5-4690, 3.5 GHz,16 Go, 2015). Figure3adisplays the strain ε and the variation of the elastic modulusΔM M = ρ 0 c 2 -M 0 M 0 (55)deduced from the sound speed (42),which are recorded at the position x r of the receiver. Aslowdecrease of the elastic modulus combined with fast oscillations is observed

Table I .

 I Physical parameters of Berea sandstone.

	ρ 0 (kg/m 3 ) M 0 (GPa)	βδγ (J/m 3 ) τ (ms)
	2.2 • 10 3	14	50 10 8	1.0	10
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Appendix

In the case of Murnaghan'sl aw [START_REF] Lyakhovsky | Nonlinear elastic behaviour of damaged rocks[END_REF],s trict hyperbolicity of ( 15) is ensured if

Therefore, one must have

where

The constitutive law(12)isconvex if σ (ε) 0, i.e.

3

Hence, Murnaghan'slaw is locally concave at small strains (ε 0) provided that ϑ -3/2, otherwise it is locally convex at small strains. The inflexion point

is represented in Figure 4, as well as the hyperbolicity domains (A2) of Murnaghan'slaw.