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The three-dimensional (3D) turbulence code TOKAM3X-EIRENE, coupling the

3D non-isothermal version of TOKAM3X to the EIRENE Monte Carlo solver has

been developed with the ability to simulate self-consistently the interactions between

large-scale flows and turbulence both in limited and diverted plasmas, including

recycling. This is especially important for diverted plasmas, where neutrals play

a key role and where the recycling source is strongly dominant. The code pack-

age relies on the same interface as the Soledge2D-EIRENE code, which retains

state-of-the-art plasma–wall interaction, as well as atomic and molecular physics.

In this paper, we present the first results obtained in WEST divertor geometry, in

laminar mode, with the aim of verifying the new code package. The divertor den-

sity regimes are recovered, and the code results are shown to be consistent with the

results of the two-point model, thus opening the way for turbulent simulations.
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1 INTRODUCTION

Particle and power exhaust, that is, the removal of the helium ash and the fusion power without damage to the reactor itself,

specifically its plasma-facing components (PFCs), is a key issue for next-step devices. The control of the deposited heat flux and

erosion at the divertor target plates is a major issue for the design and operation of next-step, high-power, long-pulse devices

such as the International Thermonuclear Experimental Reactor (ITER).[1]

Heat flux calculations presently rely on transport codes, which are a combination of two-dimensional (2D) fluid codes for

charged particles and a kinetic Monte Carlo code modelling the neutral species behaviour as well as their interaction with the

background plasma (e.g., SOLPS,[2] SOLEDGE2D-EIRENE,[3,4] EDGE2D[5]). All these codes solve mean-field equations in

which the gradient diffusion hypothesis is applied to model turbulent fluxes.[6] However, so far the anomalous transport coef-

ficients introduced through this procedure are not consistently calculated, and are simply taken as the input parameters of the

simulations. When used to interpret experiments, these transport coefficients are chosen so that upstream radial profiles match

with the experimental profiles. As a result, these tools have limited predictive capabilities. Going beyond these mean-field mod-

els requires resolving turbulent fluctuations, in a global three-dimensional (3D) geometry, since strong interactions between

mean/mesoscale flows and micro-turbulent fluctuations have been evidenced.[7,8] Going for global simulations (in the geometri-

cal sense) also requires paying more attention to the forcing of the turbulence, especially for the charged particle source. In fact,

the dominant particle source in the scrape-off layer (SOL)/edge is generally recycling, which occurs close to the divertor plates

in diverted plasmas operated in the relevant regimes. Density profiles are thus expected to be mostly flat in the core (excluding

pinches and/or neutral beam injection (NBI)-related sources in the plasma core). Compared to a situation where the particle
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source is located at the inner boundary condition of the simulation, this affects the pressure gradient in the edge region and

thus the drive for interchange turbulence there. Recycling also strongly affects parallel flows in the SOL, especially in diverted

configurations.[9]

Over the last decades, considerable simulation efforts have been dedicated to developing the 3D turbulence codes

BOUT++,[10] GBS[11] and TOKAM3X[12] to investigate edge turbulent transport. This work relies on TOKAM3X, which

includes both open and closed field lines in both limiter and diverted geometries. So far, the isothermal version of TOKAM3X

has given new insights into the properties of edge/SOL turbulence, with first simulations in the X-point diverted geometry.[7,8]

However, in order to bring the simulations closer to experimental situations in divertor operation, it is necessary to include recy-

cling physics in the models. This is mandatory to address regimes relevant for next-step machines, high recycling regimes, and

even detached regimes,[13,14] all the more because experimental evidence points towards changes of transport with the density

regimes.[15] Several groups have implemented neutral models in their code, either in 2D[16–18] or 3D codes: a simplified kinetic

model in GBS[19] and a fluid model in BOUT++.[20] Moreover, it has been pointed out that additional non-linearities introduced

by neutral particle physics lead to additional closure issues in transport codes,[21–23] which are difficult to address quantitatively

in mean-field models. Building on the experience gained during the development of Soledge2D-EIRENE, the TOKAM3X

code has been fully coupled to the EIRENE Monte Carlo solver.[24] The resulting TOKAM3X-EIRENE code package is first

described in this paper, the focus being on code verification.

The rest of the paper is organized as follows: in Section 2, we present the governing fluid equations and the physical setting

including description of the geometry. In Section 3, we perform an upstream density scan to recover the density regimes in

WEST-like diverted cases. Furthermore, we verify the computations by quantitatively comparing the modified two-point model

(2PM) with those from TOKAM3X-EIRENE. The conclusion is provided in Section 4.

2 THE TOKAM3X-EIRENE CODE

TOKAM3X is a 3D global transport and turbulence fluid code for the edge and SOL plasma of tokamaks, with full geometrical

flexibility for the poloidal plasma equilibrium. The particle conservation equation, or continuity equation, is

𝜕tN + −→
𝛻 ⋅ [N(u|| + −→u E + −→u e

𝛻B)] =
−→
𝛻 ⋅ (DN

−→
𝛻⊥N) + SN . (1)

The parallel momentum conservation equation is
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where R|| = 0.71 N𝛻||Te + 𝜂||NJ || and E|| =−𝛻||𝜙. The energy balance for electrons is
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while for ions, it is
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The charge conservation equation is

𝜕tW + −→
𝛻 ⋅

(
W Γi

N
−→
b + W−→u E + W−→u i

𝛻B

)
= −→
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where −→qe = −𝜒||e𝛻||Te
−→
b , −→qi = −𝜒||i𝛻||Ti

−→
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𝛻 ⋅
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𝛻 (𝑁𝑇 i)

]
.
−→
b is a unit vector along the magnetic field, and

𝜂 is the normalized parallel collisional resistivity of the plasma. The energy exchange term between electrons and ions is denoted

by Q||i = −Q||e = 3
me

mi

N
𝜏e
(Te − Ti). Equations (1)–(5) are, respectively, the particle balance equation, the parallel momentum

balance equation, the energy balance equations, and the charge balance equation. The parallel Ohm’s law with the electron terms

neglected is given by NeE|| =−𝛻||pe +R||. The derivation and normalization were carried out as in Ref. 12. In this work, the

2



FIGURE 1 The WEST-like mesh grid used in TOKAM3X-EIRENE. Distances are

expressed in Larmor radii 𝜌L, with 𝜌L = 0.256 mm here. The colours show the domain

decomposition in use, with 16 zones

code is run in the non-isothermal mode, evolving the electron and ion temperatures, which play an important role in recycling

physics. The magnetic field is fixed and given as the input of the code, and in the following a full-scale WEST equilibrium is

used (Figure 1), together with a simplified wall/divertor target geometry retaining the WEST open divertor feature. The particle

source term Sn, parallel momentum source term SΓ, and energy source term SEi/e due to interactions with neutrals (atoms and/or

molecules) are computed with the EIRENE code.

2.1 Coupling with the neutral code EIRENE

In order to include neutral physics, the TOKAM3X code has been coupled to EIRENE,[24] which is based on a Monte Carlo

process. EIRENE tracks the test particles trajectories (atoms and molecules) and their interactions with the plasma electrons

and ions, such as ionization, charge exchange, molecule dissociation, and backscattering of neutrals on the plasma surface. The

coupling of the two codes entails data exchange (to be described below), but also physics issues, in particular at the sheath. All

the developments available in Soledge2D-EIRENE,[4] in particular to treat the sheath, are available to TOKAM3X-EIRENE

since the two codes use the same interface, named STYX. The latter also manages the set-up of EIRENE in coupled runs. In

terms of data exchanges, EIRENE takes the TOKAM3X ion flux profiles along the wall (more accurately, at the magnetized

sheath entrance) and sample ions hitting the wall accordingly. The latter are then recycled into neutrals (atoms or molecules)

according to TRIM databases for backscattering coefficients. The atoms or molecules thus created are followed in the plasma

background calculated by TOKAM3X. The resulting particle, momentum, and energy sources are calculated accordingly, and

handed back to TOKAM3X. Since TOKAM3X relies on a mixed implicit/explicit scheme, time steps are typically of the order

of w−1
𝑐𝑖

(𝜔ci is the ion gyro-frequency, i.e., ∼ 10−8 s), and the EIRENE solver is not called at every time step of the fluid solver

(“short cycling”). The STYX interface allows running EIRENE in the time-dependent mode, but this feature is not used here.

This means that neutrals do not see any “time horizon”, that is, they are tracked during times larger than the time step Δt if they

are not ionized or pumped after a timeΔt. Note that actually using this feature in turbulent simulations will require careful tuning

of the size of the buffer where neutrals reaching the time horizon are stored. Finally, we also mention that while TOKAM3X is

a hybrid openmp/MPI code, EIRENE is parallelized with MPI only, a situation requiring further consideration.

2.2 Geometry and parameters

The TOKAM3X code is designed to run with complex equilibria including X-points. The magnetic field can be expressed as
−→
B = F0R0

−→
𝛻𝜙 + −→

𝛻Ψ × −→
𝛻𝜙, where F0 is a total flux number, Ψ is a poloidal flux function, and 𝜙 denotes the toroidal angle.
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FIGURE 2 (a) Target plasma density nt and (b) temperature Tt as a function of the outer upstream separatrix plasma density nup, for the inner and outer

lower divertor

FIGURE 3 Dependence of total recycling flux in the inner and outer lower

divertor legs as a function of the outer upstream separatrix density nup

The function Ψ is chosen so as to have a dimensionless magnetic field B= 1 at the tokamak axis. The poloidal flux function has

been taken from those prepared for the operation of WEST, with two X-points. The minor radius a is equal to 1800𝜌L, where 𝜌L is

the ion Larmor radius calculated for the reference parameters used to normalize the plasma fields (n0 = 2× 1019 m−3, T0 = 50 eV,

and B0 = 4 T). The aspect radio R/a= 5.1; that is, the major radius is R= 2.3 m. The simulation domain extends from rmin = 0.8a
in the closed field-lines region to rmax = 1.2a. The diffusion coefficients for density, parallel momentum, and vorticity are set

as DN =DΓ =DW = 0.5 m2 s−1 (4× 10−2 in dimensionless units, the normalization factor being 𝜌2
L𝜔𝑐𝑖, again calculated for the

reference parameters). They are uniform in the simulation volume. The parallel resistivity is given as 𝜂|| = 1×10−5 B0

𝑒𝑛0

. The total

input power in the present simulations is 1.4 MW, which is equally shared between ions and electrons, and the power influx at

the core edge interface is modelled by a Gaussian source of width 25𝜌L. In the simulations presented here, there is a particle

source at the core, but ultimately the code will be run using a gas puff as primary particle source. The flux of atoms reaching

the core edge interface is added to this source, with a uniform poloidal distribution. The outermost magnetic flux surface is

assumed to have an effective recycling coefficient (albedo) of R= 0.99. Since the focus is on divertor regimes, the code is run

with a deuterium plasma without drifts, and the electrostatic potential is calculated in the adiabatic approximation. Furthermore,

the code is run in 2D mode (axisymmetry is enforced by conservative averaging in the toroidal direction), hence producing

laminar (i.e., non-turbulent) plasma solutions. The effective diffusion coefficients (DN/Γ/W ) modelling turbulent transport in

these laminar simulations are prescribed as input data. The code is thus run in exactly the same way as a transport code as a
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FIGURE 4 TOKAM3X-EIRENE simulation results. Electron temperature (Te), ionization source (log[SI]), and recombination sinks (log[SR]) in the

attached regime (a)–(c) and detached regime (d)–(f)

first but key step of the verification procedure. Convergence towards a steady-state solution (in fact, a statistically stationary

state due to statistical noise from EIRENE[25]) is assessed by checking for stationarity of all the fields and verifying the global

particle and energy balances in the simulations. We thus check that the flux absorbed in the wall (𝜙wall = R(𝜙D+ +𝜙D +𝜙D2
∕2))

plus the neutral flux at the core edge interface are equal to the influx from the core sustaining the simulation (i.e., the integral

of the forcing). As far as energy is concerned, we calculate the energy flux transferred to the wall, which includes the net (i.e.,

incident minus reflected) kinetic energy flux from both plasma and neutrals, the recombination energy flux on the surface,

and the radiated flux, and compare it with the total input power. For simulations presented here, the agreement is within a few

percent, both for particles and energy.

3 RESULTS OF CALCULATION AND MODEL VERIFICATION

The purpose of this section is to show, first qualitatively, that the code correctly reproduces density regimes as the upstream

density increases. The scan is made by increasing the particle source in the core from 5.2× 1019 to 1.3× 1022 part/s, keep-

ing the power constant at 1.4 MW. Figure 2 shows the evolution of the target density nt, measured in the outer divertor at

the separatrix as a function of upstream mid-plane density. The latter ranges from 1019 to 9× 1019 m−3. Note that, based on

Greenwald density considerations, it is not expected that the separatrix density can rise above ∼3.5× 1019 m−3 in WEST. How-

ever, as previously noted, this work is devoted to verifying the code package, so we ignore such concerns. As the upstream

density increases, so does the target density nt in both lower divertor legs, while the target temperature Tt, very close to the

upstream temperature Tu at lowest nu, decreases strongly. For the highest upstream density, the temperature is down to ∼ 1 eV,

hence corresponding to the onset of detachment. This behaviour is thus qualitatively in line with common wisdom on divertor

regimes, showing the transition from the sheath limited to the high recycling and even detached regime. A divertor imbalance

is observed, with the inner divertor showing higher density/lower temperature in all the attached cases. The latter results from
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FIGURE 5 Temperature ratio Tt/Tu as a function of the upstream separatrix

plasma density nup obtained from the simulation (blue line with circles) compared

to the standard (orange stars) and modified two-point model (2PM) scalings (green

diamonds and red triangles are, respectively, the results from the modified 2PM

[with f r] and from the modified 2PM [with f r] taking into account the loss factors)

the low-field-side/high-field-side asymmetry of the magnetic configuration (e.g., Ref. 26). These results are confirmed by the

evolution of the total recycling flux in both legs as a function of upstream density, shown in Figure 3, showing a roll-over at a

separatrix density of 7.7× 1019 m−3. With increasing nup, as shown in Figure 4, recombination becomes stronger (Figure 4f) and

the cold plasma region in the divertor extends towards the X-point (Figure 4d). Virtually, the divertor is occupied by the cold

dense plasma, and the plasma ionization source and the recombination sink are localized close to the X-point and the targets,

respectively.

In order to verify whether these trends are quantitatively correct, we compare the results with the 2PM[9] of the SOL in the

following. The 2PM connects the upstream and downstream densities and temperatures, using (a) (total) pressure conservation,

that is, nuTu = 2ntTt, (b) parallel energy balance, and (c) sheath physics to express the parallel heat flux as function of the target

temperature, namely qt = 𝛾ntcsTt. Here, 𝛾 is the total sheath heat transmission coefficient, and cs = (2Tt/mi)
1/2 is the sound

speed. The total sheath heat transmission coefficient is taken to be 𝛾 = 7, in accordance with the values used in the code. Power

balance leads to T7∕2
u = T7∕2

t + 7

2

qtL
𝜅0

, where 𝜅0 is the electron conductivity (𝜅0 = 2000 when electron temperature is expressed

in eV) and L the parallel connection length between the upstream location and the target location. The latter is estimated by

L≃𝜋qR. Correction factors[9] are usually introduced to account for volumetric momentum (resp. power) losses, f mom (resp.

f pow). f mom describes the effects resulting from interactions with neutrals, that is, for momentum losses, friction and volume

recombination. The latter can be measured from the simulations. We here assume that all the power is conducted (f cond = 1).

Further corrections can be made to account for the total flux expansion,[27] leading to the following expression valid when

Tt ≪Tu (in fact, T7∕2
t ≪ T7∕2

u ):

Tt

Tu
=
(

7

2

q||L
𝜅

)8∕7(
4𝜅

7𝐿𝛾nu

)2(
ln fr
fr − 1

)−6∕7 f 2
𝑚𝑜𝑚f 6∕7

cond

(1 − f𝑝𝑜𝑤)2
, (6)

where f r is the total magnetic flux expansion. q|| is no longer constant along the flux tube (q||∝ B), thus q|| = qtf r. Here, f r ≃ 0.7

so that accounting for flux expansion leads to a correction factor of ∼1.4 for Tt/Tu (green diamonds as shown in Figure 5). Note

that with reasonable values for our simulations, namely f mom = 0.8, f cond = 1, and f pow = 0.2, we have f 2
𝑚𝑜𝑚f 6∕7

cond∕(1 − f𝑝𝑜𝑤)2 = 1.

When Tt is not small compared to Tu, we solve for the full model. Comparisons to the 2PM allow checking whether the transition

from the sheath-limited regime to the high-recycling regime occurs in the correct range of upstream density nu, for the power

input chosen. The values obtained for Tt/Tu in the simulations (using the outer mid-plane data) are compared with those from

the 2PM in Figure 5, and they show good agreement. The 2PM calculations assume here f mom = 0.8, f cond = 1, and f pow = 0.1

in the attached regime, and f mom = 0.2, f cond = 1, and f pow = 0.5 in the detached regime (red triangles shown in Figure 5), in

accordance with pressure losses observed in the simulations. The agreement shows that the code predictions for the transition

to the conduction-limited and high-recycling regimes are in the correct nu range.

4 CONCLUSIONS

The coupling of the TOKAM3X 3D turbulence code with the Monte Carlo code EIRENE has been verified in the laminar mode

in X-point geometry, clearing the way for simulations of global electrostatic plasma turbulence including state-of-the-art neutral

particle physics. The TOKAM3X-EIRENE verification has been carried out by analysing the results of a density scan, where
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standard divertor regimes are observed. The results of the code are consistent with 2PM considerations, for which we considered

different refinements. Importantly, the “attached regime” and the “detached regime” are recovered, the total recycling flux along

the wall showing a roll-over at very high density case, when the electron temperature in the divertor reaches ∼1 eV.
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