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A new thermal lattice Boltzmann (LB) method is proposed for the simulation of natu
large temperature differences and high Rayleigh number. A regularization procedure
equation with a third order expansion of equilibrium distribution functions, in which
is involved to recover the equation of state for perfect gas. A hybrid approach is presen
techno
ngly d

ture, such as natural convection, thermal fl
cooling air flows around internal combust
other engineering applications. In these th
sity variations in the flow field are primari
ing and cooling. The density variation is due to large temperature sity changes [7], which is limited to open systems. Hung an
on with
d on LB
re term
Perfect gas law conservation equation, momentum conservation equations and temperature evolution equation. A sim-
ple and robust non-conservative form of temperature transport equation is adopted and solved by the
finite volume method. A comparison study between classical Double Distribution Function (DDF) model
and the hybrid finite volume model with different integration schemes is presented to demonstrate both
consistency and accuracy of hybrid models. The proposed model is assessed by simulating several test
cases, namely the two-dimensional non-Boussinesq natural convection in a square cavity with large hor-
izontal temperature differences and two unsteady natural convection flows in a tall enclosure at high
1. Introduction

In many natural phenomena and
sity and physical properties are stro
Rayleigh number. The present method can accurately predict both the steady and unsteady non-
Boussinesq convection flows with significant heat transfer. For unsteady natural convection, oscillations
with chaotic feature can be well captured in large temperature gradient conditions.

logical processes, den-
ependent on tempera-
ows in solar receivers,
ion engines and many
ermal process, the den-
ly induced by the heat-

computing unsteady flows with high accuracy and its suitability
to handle interaction between fluids and solids.

The LBM has achieved great success in simulating nearly incom-
pressible and thermal fluid flows [4–6]. Furthermore, there has
been an ongoing effort in construction of stable LB models and
schemes to simulate fully compressible and weakly compressible
thermal flows. An extended lattice Boltzmann model was proposed
for the simulation of low Mach number flows with significant den-
d Yang

differences, rather than to the pressure changes as in high speed
flows [1]. Due to their importance for engineering applications,

[8] and Li et al. [9] proposed a type of coupled double distribution
function (DDF) lattice Boltzmann model for thermal flows with a
the thermal convection with variable density in the low Mach
number limit has attracted a lot of interest over the years.

The lattice Boltzmann method (LBM) is a widely adopted
approach for simulating fluid flows and complex physical phenom-
ena [2,3]. Compared with the conventional computational fluid
dynamics methods, the kinetic nature of LBM leads to many dis-
tinctive features, e.g. parallel computing scalability, efficiency in

⇑ Corresponding author.
⇑⇑ Corresponding author.

E-mail addresses: yongliang.feng@univ-amu.fr (Y.-L. Feng), pierre.sagaut@
univ-amu.fr (P. Sagaut).
complicated correction term in two-dimensional space based on
a multiple relaxation time collision model. A three-dimensional
DDF thermal lattice Boltzmannmodel with general correcting term
for thermal flows with variable density was developed by Feng
et al. [10].

The numerical stability of collision models is among the key
issues faced when developing a LB model for thermal flows with
significant density variations and strong convection. The most
commonly used lattice Boltzmann collision model is the single
time relaxation process referred to as the Bhatnagar-Gross-Krook
(BGK) model [11]. In order to overcome the insufficient stability
observed in the BGK model, several improved collision models
with enhanced stability have been proposed. The multiple relax-
1
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ation time (MRT) model was proposed by Lallemand and Luo [12],
in which the collision process is modeled in the moment space
rather than in the discrete velocities space as in BGK model. The
entropic lattice Boltzmann (ELB) model was developed by intro-
ducing a stabilizing process via Boltzmanns H theorem [13].
Recently, both basic regularized LBGK (RLBGK) model and
improved one were extended to higher order lattices both for high
Reynolds number flows and for high Mach number flows [14–17].
In RLBGKmethod, a pre-collision operator is introduced to improve
convergence properties at a very moderate computational over-
head. These models were shown to provide significant improve-
ments over the LBGK method in many high Reynolds number
flows. Moreover, the regularized LBGK model appears to offer a
simple and parameter-free option to save significant computa-
tional costs over the LBGK model.

The accuracy and numerical stability of hybrid thermal lattice
Boltzmann method has been widely investigated in thermal flows
and scalar transport process. A hybrid thermal lattice Boltzmann
model was proposed by Lallemand et al. [18], where a finite differ-
ence algorithm was adopted to solve energy conservation equa-
tion. A hybrid finite difference thermal lattice model was studied
in nearly incompressible convective flows [19]. Besides, a hybrid
finite difference thermal model using two dimensional multiple
relaxation time collision model was presented for low Mach num-
ber compressible flows [20]. As reported in studies of Li et al. [21]
recently, the hybrid finite difference thermal model can simply
avoid a spurious source term in thermal lattice Boltzmann models
with force terms. Moreover, the robustness of hybrid approach was
performed in simulation of highly compressible flows [22].

As reported in the literature, the thermal lattice Boltzmann
models have been developed for thermal convection. However,
robustness and accuracy of thermal LB models in simulating natu-
ral convection with strong temperature gradient at high Rayleigh
numbers remains still an open question. In this paper, we aim at
developing a hybrid thermal lattice Boltzmann model for natural
convection with large temperature differences in the low Mach
number limit. The rest of this article is organized as follows. In Sec-
tion 2, both an explicit hybrid model and an implicit one are ana-
lyzed and numerically compared with a DDF thermal LB model. In
Section 3, a new regularized hybrid thermal LB model with imple-
mentation of perfect gas law is derived for thermal convection flow
with variable density. The validation of the present model on nat-
ural convection flows is conducted by simulating a two-
dimensional non-Boussinesq natural convection flow with large
horizontal temperature difference and two unsteady natural con-
vection in a tall enclosure at high Rayleigh number in Section 4.
Finally, a conclusion section is given.

2. Hybrid thermal lattice Boltzmann method

2.1. Isothermal lattice Boltzmann model

The lattice Boltzmann method approximates the continuous
Boltzmann equation via the discretization of both physical space
and velocity space [23,24]. In the DnQm model, physical space in
dimension n is filled with a regular lattice and microscopic velocity
space is discretized on a set of m velocity vectors
E ¼ ½c0; . . . ; ci; . . . ; cm�1�. On every lattice node x; f iðx; tÞ denotes
the density distribution of particle with velocity ci, thus the local
density q and momentum qu are defined as q ¼Pif i and
qu ¼Picif i. For D2Q9 model in this study, ci is given by

ci ¼
ð0;0Þ i ¼ 0
ð�1; 0Þ; ð0;�1Þ i ¼ 1—4
ð�1;�1Þ i ¼ 5—8

8><
>: ð1Þ
The single time relaxation process (BGK) is used to model the
collision term in this study.

f iðxþ cdt; t þ dtÞ ¼ f iðx; tÞ �
1

sþ 0:5
½f iðx; tÞ � f eqi ðx; tÞ� ð2Þ

where s is the relaxation parameter, dt is the time increment, which
is chosen such that dt ¼ dx=c. f iðx; tÞ; f iðxþ dx; t þ dtÞ are the distri-
bution functions associated with the ith discrete velocity ci, and f eqi
is the ith equilibrium distribution function, which is given by
[23,24].

f eqi ¼ qwi 1þ ci � u
c2s

þ ðci � uÞ2
2c4s

� u2

2c2s

" #
ð3Þ

where the weights wi ¼ 4=9; i ¼ 0;wi ¼ 1=9; i ¼ 1;2;3;4;
wi ¼ 1=36; i ¼ 5;6;7;8. cs is the sound speed (cs ¼ 1=

ffiffiffi
3

p
).

Using the Chapman-Enskog multiscale technique [25], the
Navier-Stokes equations at the second order of approximation
can be obtained as follows:

@q
@t

þr � ðquÞ ¼ 0 ð4Þ

@qu
@t

þr � ðquuÞ ¼ �rpþr � ½qmðruþ ðruÞTÞ� ð5Þ

where the pressure is related to the density by the equation of the
state p ¼ qc2s and the kinematic viscosity m has the relationship with
relaxation parameter as:

m ¼ c2s sdt: ð6Þ
2.2. Thermal LB models for incompressible thermal flows

Before extending a hybrid thermal LB model to simulate natural
convection flows with variable density, the accuracy and computa-
tional efficiency of different LB thermal models are comprehen-
sively investigated in this section. Since double distribution
function model and hybrid finite difference/volume thermal (HT)
models are widely applied in thermal flows, two different HT mod-
els are studied and compared with a DDF model in the following.

2.2.1. Double distribution function thermal LB model
In order to compare a DDF thermal model with HT models, we

briefly describe a simple lattice Boltzmann DDF model. The DDF
thermal LB model relies on an additional distribution function,
instead of the original single-particle distribution function, to
describe the evolution of the temperature field [26,27]. Neglecting
the viscous heat dissipation and the compression work in the stud-
ied thermal flows, the evolution equation of temperature distribu-
tion function h in terms of temperature relaxation time can be
expressed as follows:

hiðxþ cidt ; t þ dtÞ � hiðx; tÞ ¼ � 1
sh þ 0:5

½hiðx; tÞ � heq
i ðx; tÞ� ð7Þ

The equilibrium temperature distribution function is the
second-order truncated Taylor or Hermite polynomials of Maxwel-
lian distribution:

heq
i ¼ wiqT 1þ ci � u

c2s
þ ðci � uÞ2

2c4s
� u2

2c2s

" #
ð8Þ

where T is the local temperature, which can be obtained from
qT ¼ Rihi. The temperature relaxation time sh are relatedwith relax-
ation time of velocity filed s, which is tied by the following relation

Pr ¼ s
sh

¼ m
j

ð9Þ
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where Pr is the Prandtl number and j is the thermal diffusivity. The
DDF model is simple and well suited to thermal flows with different
Prandtl numbers.

2.2.2. Hybrid thermal LB models
In the hybrid lattice Boltzmann method investigated in this

study, the continuity equation and momentum equation are solved
by the lattice Boltzmann equation, while the energy conservation
equation is separately solved by a finite volume technique. The
enthalpy equation is used in this study for thermal flows at zero
or low Mach number, which is expressed by the following general
convection-diffusion form:

qcp
@T
@t

þ qcpu � rT ¼ rðkrTÞ þ Dp
Dt

þU ð10Þ

where U is the source term of the viscous heat dissipation.
Two types of time integration scheme are investigated in this

study. The first one is the explicit second-order Runge-Kutta
scheme (HTa) while the second one is the Adams-Bashforth/
Crank-Nicolson scheme (HTb). The two-step Runge-Kutta scheme
is given as

Tnþ1=2 ¼ Tn þ dt
2
RHSðTnÞ

Tnþ1 ¼ Tn þ RHSðTnþ1=2Þ
ð11Þ

For the Adams-Bashforth/Crank-Nicolson scheme, the convec-
tion term in Eq. (10) is discretized by Adams-Bashforth scheme
while the diffusion term is discretized by Crank-Nicolson scheme.
The resulted algebraic equations are solved by Bi-CGSTAB [28,29].

u � rT ¼ 3
2
u � rTn � 1

2
u � rTn�1 ð12Þ

rðkrTÞ ¼ 1
2
rðknþ1rTnþ1Þ þ 1

2
rðknrTnÞ ð13Þ

The energy conservation equation is spatially discretized using
Monotonic Upwind Scheme for Conservation Laws (MUSCL) and
central difference (CD) scheme [30], where MUSCL or CD scheme
is adopted for the convection term and the central difference
scheme for the diffusion term.

In the following, computational efficiency of two HTmodels and
the DDF thermal model is investigated by numerical experiments
on a typical incompressible thermal flow. Natural convection in a
square cavity with an aspect ratio equal to unity is investigated
by both the DDF model and the hybrid models, which is widely
investigated by lattice Boltzmann method [31–33]. The Prandtl
number is taken equal to 0:71. The Boussinesq assumption is
adopted and the buoyancy force due to gravity works downwards.
All surrounding walls are rigid and impermeable. The vertical walls
located at x ¼ 0 and x ¼ H are retained to be isothermal but at dif-
ferent temperature, Th and Tc , respectively. The horizontal laterals
are taken as adiabatic.

For the implementation of boundary conditions, the regularized
boundary condition [34] with the reconstruction of non-
equilibrium distribution functions is adopted on both density
velocity distribution function and energy distribution function in
the DDF model. In the HT models, the non-equilibrium regularized
boundary condition is only adopted on density velocity distribu-
tion function while the Dirichlet boundary condition and the Neu-
mann boundary condition in finite volume method are applied at
constant temperature boundary and adiabatic boundary, respec-
tively. At initial condition, the fluid inside cavity is assessed to obey
the static solution at uniform temperature of ðTh þ TcÞ=2, where
non-equilibrium scheme for initial condition is implemented in
density velocity and energy distribution function. In the hybrid
thermal models, the macroscopic temperature is directly set to ini-
tial value and the treatment of initial condition for velocity field is
the same with the DDF model.

Fig. 1 displays the temperature isocontours obtained by DDF,
HTa and HTb on 100� 100 grids at Ra ¼ 103;104;105 and 106,
respectively. It is found that the temperature fields obtained using
the different models are almost identical when the flow reaches a
steady state. Especially, the temperature contours of two hybrid
models are completely overlapped. There are only slight differ-
ences between results of the DDF model and the HT models at Ra
number 105 and 106. These deviations can originate in the treat-
ment of the boundary conditions. Comparison of flow field
obtained by the DDF model and two HT models is reported in
Fig. 2. The results on velocities are consistent with those compar-
ison on the temperature field. It is shown that the two HT models
yield almost the same velocity distribution compared with the DDF
model. The deviations increase when Rayleigh number is increased
from 103 to 106 and reached a maximum at Ra ¼ 106. However, the
maximum deviation is lower than 1%.

Above all, computational efficiency of different thermal models
is compared through the residual histories and CPU time cost. In
Fig. 3 the velocity and temperature residual history for natural con-
vection at Ra ¼ 105 by the DDF model and the HT models are plot-
ted along with x-axis at bottom and y-axis at left side. It can be
seen from CPU time that both types of HT models exhibit faster
convergence speed than the DDF model when these models are
applied to simulate steady natural convection. In other words,
two HT models spends less CPU time than the DDF model when
those models are used to simulate unsteady natural convection
developing in physical time. The hybrid thermal model with
Runge-Kutta scheme exhibits 1.5 times higher computational effi-
ciency than the DDF model. The computational efficiency of hybrid
thermal model with Adams-Bashforth/Crank-Nicolson scheme is
1.3 times higher than DDF model. Besides, the random-access
memory occupied by the HT models is much less than one used
by the DDF model. It is should be emphasized that the explicit
RK HT model is the fastest model among those thermal LB models.

Numerically, DDF model is not optimal from the computational
standpoint, even though this numerical inefficiency can be
improved somewhat by using some redundant degree of freedom
in LB models in diffusion dominated condition [35]. Thus, the
explicit HT model with the second order Runge-Kutta scheme will
be adopted and developed in the following studies on natural con-
vection with strong temperature gradients.

3. Thermal LB model for non-Boussinesq natural convection

3.1. Hybrid thermal LB model for perfect gas

The aim of this section is to extend the hybrid LB model to com-
pressible convection flows with variable density. Considering the
third order Hermite expansion of Maxwell-Boltzmann distribution
with a variation of temperature, one obtains the following equilib-
rium distribution function in discrete Gauss-Hermite space [36].

f eqi ¼ f ð0Þi ¼ qwi 1þ ciaua
c2s

þ Að2Þ
abQ

ð2Þ
iab

2c4s

" #
þ Að3Þ

abcQ
ð3Þ
iabc

6c6s

Að2Þ
ab ¼ uaub þ ðh� 1Þdab; Q ð2Þ

iab ¼ ciacib � c2s dab

Að3Þ
ab ¼ uaubuc þ ðh� 1Þ½ud�abc; Q ð3Þ

iab ¼ ciacibcic � c2s ½cd�abc

ð14Þ

where h ¼ RT=c2s , and the moment of equilibrium distribution func-
tion on nearest neighbor type lattices (D2Q9, D3Q19, D3Q27) are
summarized as follows:
3



Fig. 1. Temperature contours of natural convection obtained by DDF, HTa and HTb on 100� 100 grids, red line: DDF, green line: HTa, blue line: HTb. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
X
i

f ð0Þi ¼ q ð15Þ

X
i

f ð0Þi cia ¼ qua ð16Þ

X
i

f ð0Þi ciacib ¼ qRTdab þ quaub ð17Þ

X
i

f ð0Þi ciacibcic ¼ qRTðuadbc þ ubdca þ ucdbaÞ þ quaubuc þWabc

ð18Þ
where Wabc is deviation terms due to defect of symmetry of lattices
(D2Q9, D3Q19, D3Q27) on the third order moment. The detailed
formula can be refer to [9,10]. A force term si Incorporated with
gravity is used to compensate the deviation and the moments of
the external force term si can be defined as

X
i

si ¼ S0 ð19Þ

X
i

sicia ¼ Sa ð20Þ
X
i

siciacib ¼ Sab ð21Þ

To derive macroscopic equations in the hydrodynamic limit, the

density distribution function f i is expanded around the f ð0Þi as
follows:

f i ¼ f ð0Þi þ �f ð1Þi þ �2f ð2Þi þ � � � ð22Þ
withX
i

f ðnÞi ¼ 0;
X
i

f ic
ðnÞ
i ¼ 0;

X
i

f ðnÞi c2i ¼ 0 n ¼ 1;2; � � � ð23Þ

By matching the scales of �1 and �2, the following equations can be
obtained

�1 :
@

@t1
þ ci � r1

� �
f eqi þ f ð1Þi

sdt
¼ sð0Þi ð24Þ

�2 :
@f eqi
@t2

þ @

@t1
þ ci � r1

� �
f ð1Þi þ f ð2Þi

sdt
¼ 0 ð25Þ

After summing Eqs. (24) and (25) in the velocity phase space, the t1
and t2 order of the continuity equation and momentum equation
can be derived as
4



Fig. 2. Non-dimensional velocity profiles for different thermal LB models. Results
are obtained by DDF (lines), HTa (red symbols) and HTb (green symbols) on
100� 100 grids at Ra ¼ 103;104;105 and 106. Reference velocity v ref ¼

ffiffiffiffiffiffi
Ra

p
m=L. (For

interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
@q
@t1

þ @

@x1a
ðquaÞ ¼ S0 ð26Þ

@q
@t2

¼ 0 ð27Þ
Fig. 3. Residual history and CPU time cost for natural convection at Ra ¼ 105 by DDF mod
DDF: red line, hybrid model in RK (HTa): blue and hybrid model in AB/CN (HTb): green l
referred to the web version of this article.)
@

@t1
ðquaÞ þ @

@x1b
ðquaub þ pdabÞ ¼ Sa ð28Þ

@

@t2
ðquaÞ þ @

@x1b

X
i

ciacibf
ð1Þ
i

 !
¼ 0 ð29Þ

Rewriting f ð1Þi in Eq. (29) using Eq. (26), one obtains

X
i

ciacibf
ð1Þ
i ¼ �s

X
i

ciacib
@

@t1
þ ci � r1

� �
f eqi � sð0Þi

� �

¼ �s @

@t1
ðquaub þ pdabÞ � Sab þ @

@x1c
Wabc

�

þ @

@x1c
ðqRTðuadbc þ ubdca þ ucdbaÞ þ quaubucÞ

�
ð30Þ

Taking into account the fact that derivatives of pressure scale as
Mach number in the low Mach number limit, and Sab ¼ @

@x1c
Wabc,

and S0 ¼ 0, one simply obtains the following equations

X
i

ciacibf
ð1Þ
i ¼ �s p

@ub

@xa
þ @ua

@xb

� �
þ OðMa3Þ

� �
ð31Þ

It can be observed that there is a deviation on bulk viscous term
compared with fully compressible Navier-Stokes equations since
evolution of pressure is not fully included in the energy equation
adopted in this study. However, the deviation term is negligible
in thermal flows at low Mach number. Collecting with the energy
equation solved by hybrid finite volume approach, the final macro-
scopic equations are

@q
@t

þ @

@xa
ðquaÞ ¼ 0 ð32Þ
el and HT models. Results are compared on both 50� 50 grids and 100� 100 grids.
ine. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 4. Temperature profiles through horizontal middle line of cavity at different Rayleigh numbers. The present results (lines) are obtained by the hybrid LB model at
Ra ¼ 104;105;106 and 107. The symbols represent benchmark solution in [40].
@

@t
ðquaÞ þ @

@xb
ðquaubÞ ¼ � @

@xa
pþ @

@xb
l @ub

@xa
þ @ua

@xb

� �� �
þ Sa ð33Þ

@T
@t

þ ua
@T
@xa

¼ 1
qcp

@

@xa
ðk@xaTÞ þ U

qcp
ð34Þ

where p ¼ qRT and with the dynamic viscosity l ¼ sp. It is worth
noting that there is a correction terms to recover the equation of
state. Due to partial symmetry of nearest neighbor lattices, e.g.
D2Q9 on the third moments, the correction term on implementa-
tion of perfect gas law is given in a simple form

si;c ¼ Qixx
@

@x
½qð1� h� u2

x Þ� þ Qiyy
@

@y
½qð1� h� u2

yÞ� ð35Þ

The spatial gradients are numerically implemented using an
isotropic second order central difference scheme [37]. It is noted
that the Prandtl number of the present model is Pr ¼ lcp=k, which
can be adjusted in the present hybrid thermal lattice model.

3.2. Regularization procedure

In order to enhance the stability of proposed model in simulat-
ing thermal flows with large temperature differences and strong
convection. A regularization procedure is incorporated in the pre-
sent framework of hybrid thermal LB model. The regularization
procedures were proposed for improve stability of lattice Boltz-
mann methods [14]. They play the role of a filter on spurious ghost
moments of the numerical scheme. The accuracy and stability of
regularized BGK model were well analyzed in both inviscid acous-
tic problems [38] and turbulent flows [17]. Practically, a regular-
ized distribution function is introduced through recomputing the
non-equilibrium parts prior to the collision step.

Rewriting the lattice Boltzmann BGK equation with external
force terms using the trapezoidal rule, the LBGK equation can be
expressed equivalently as
f iðxþ cdt; t þ dtÞ ¼ f eqi ðx; tÞ þ 1� 1
s

� �
½f iðx; tÞ � f i

eqðx; tÞ� þ 1
2
siðx; tÞ

ð36Þ

f i
eq ¼ f eqi � 1

2
si;

f i ¼ f i þ
1
2s

ðf i � f eqi Þ � 1
2
si

ð37Þ

where s ¼ sþ 1=2, and a regularization procedure is adopted on

non-equilibrium distribution f neq ¼ f i � f i
eq to suppress the non-

hydrodynamic ghost moment:

Pð1Þ
ab ¼

X
i

f i
neqciacib; ð38Þ

Rðf ineqÞ �
wi

2c4s
ðciacib � c2s dabÞPð1Þ

ab ; ð39Þ

f iðxþ cdt; t þ dtÞ ¼ f eqi ðx; tÞ þ 1� 1
s

� �
Rðf ineqÞ þ

1
2
siðx; tÞ ð40Þ

In this study, the force term si consists of correction term si;c and
gravity term si;g , which is given by

si ¼ si;c þ si;g ð41Þ

si;g ¼ wi
ciaFa
c2s

þ ðciacib � c2s dabÞFab
2c4s

� �
ð42Þ

where Fa ¼ qga and Fab ¼ uaFb þ ubFa. The correction term si;c is cal-
culated from Eq. (35).
4. Results and discussion

First, a two-dimensional non-Boussinesq natural convection in
square cavity is studied by the proposed method in different
Rayleigh numbers from 104 to 107. Next, two unsteady natural
6



convection with strong temperature gradients in a tall enclose is
analyzed and compared with benchmark solutions.

4.1. Non-Boussinesq natural convection in a square cavity

A non-Boussinesq natural convection is investigated by the pro-
posed thermal model and to assess the capability of the hybrid
thermal model for thermal convection with significant heat trans-
fer. In the well known Boussinesq approximation it is assumed that
all fluid properties (density, viscosity, thermal diffusivity) can be
considered as constant except the density q in the body force term,
where it is assumed to be a linear function of the temperature
q ¼ q0½1� bðT � T0Þ�, with q0 and T0 the reference fluid density
and temperature, respectively, and b the coefficient of thermal
expansion. In the following study of natural convection, the Boussi-
nesq approximation is not appropriate, since temperature differ-
ence is large and flow field and temperature field are fully
coupled through an equation of state for perfect gas.

The left vertical wall located at x ¼ 0 at a high temperature
Th ¼ 960 K and the right vertical wall located at x ¼ H at a low
temperature Tc ¼ 240 K, respectively. The horizontal laterals are
taken as adiabatic. The boundary conditions and initial condition
are implemented as the same with setting in the Boussinesq natu-
ral convection in Section 2.

In this case, variations of thermal physical properties dependent
on temperature have been taken into account in both lattice
Fig. 5. Streamlines and temperature contours of non-Boussinesq natural convec-
tion at Ra ¼ 106. The solution is obtained by the present LB model on grids of
200� 200.
Boltzmann equation and finite volume equation. The dynamic
viscosity and thermal conductivity are defined by Sutherland
law [39]:

lðTÞ
l� ¼ T

T�

� �3=2 T� þ S
T þ S

ð43Þ

kðTÞ ¼ cplðTÞ
Pr

ð44Þ

where T� ¼ 273 K, S ¼ 110:5 K and l� ¼ 1:68� 10�5 kg/m/s for air.
The temperature-dependent viscosity and conductivity are realized
by the variable relaxation parameter s ¼ lðTÞ=p with a fixed Pr. The
Rayleigh number is defined as:

Ra ¼ Pr
gq2

0ðTh � TcÞL3
T0l2

0

ð45Þ

where Pr ¼ 0:71, the reference temperature T0 ¼ ðTh þ TcÞ=2;q0 and
l0 are the reference density and the reference dynamic viscosity at
reference temperature, respectively.

The simulations based on the present hybrid LB model are con-
ducted considering four Rayleigh numbers (Ra ¼ 104;105;106 and
107) on grid resolution ranging from 50� 50 to 400� 400. Besides,
a simulation on a very fine grid with 800� 800 is carried at
Rayleigh number Ra ¼ 107. Fig. 4 displays the temperature profiles
through horizontal middle line of cavity at the four Rayleigh
Fig. 6. Streamlines and temperature contours of natural convection at Ra ¼ 107.
The solution is obtained by the present LB model on grids of 400� 400.
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numbers, in which the plotted results of Rayleigh numbers
Ra ¼ 104;105;106 are obtained on the 200� 200 grid and
Ra ¼ 107 on the 400� 400 grid, respectively. The slope of temper-
ature profiles are nearly horizontal at high Rayleigh number
(106;107), which indicates that the effect of convection becomes
Fig. 7. Comparison of temperature profiles along horizontal middle line and vertical line
results (lines) are obtained by the hybrid LB model and the symbols represent benchma
stronger with the increase of the Rayleigh number. It can be
observed in Fig. 4 that the temperature profiles along the horizon-
tal line crossing the center of the cavity are in good agreement with
reference values [40]. The reference values in [40] were computed
by a compressible NS solver on a 1024� 1024 stretched grid. The
agreement indicates that the hybrid thermal LB model with the
in the cavity of natural convection at Ra ¼ 107 on different resolutions. The present
rk solution in [40].
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regularized procedure can give accurate results on non-Boussinesq
natural convection in a large range of Rayleigh numbers.

Figs. 5 and 6 display the streamlines for natural convection at
Ra ¼ 106;107. A significant difference with Boussinesq natural con-
vection in a square cavity with constant physical properties, is that
a vortex appears near the cold wall rather than near the center for
the non-Boussinesq natural convection studied here. As the Ray-
leigh number increases from 106 to 107, unsteady feature of flow
field increases because of the stronger buoyancy effects. The flow
patterns are obviously different from those observed in Boussinesq
natural convection [41], which are caused by the thermal com-
pressibility and variable thermal properties. The temperature con-
tours obtained by the present LB model are also shown in Figs. 5
and 6. The isotherms become nearly horizontal at the large Ray-
leigh numbers. Both streamlines and temperature contours are in
excellent agreement with the benchmark solutions [40]. These
consistences strongly suggest that the proposed hybrid LB model
exhibits good accuracy and numerical stability in simulation of
natural convection with large temperature difference and high
Rayleigh number.

The temperature profiles along horizontal middle line and ver-
tical line in the cavity at Ra ¼ 107 is plotted with comparison of dif-
ferent grid resolutions in Fig. 7. As can be seen from the figure, the
temperature profiles obtained on fine mesh along the middle line
are in excellent agreement with reference values. Moreover, the
robustness of the proposed method is also validated on very coarse
mesh at high Rayleigh number.

To quantitatively validate the present solutions, Table 1 reports
the comparison of average Nusselt number and average pressure
by the proposed LB method with the solutions given in literature
[40]. The local and averaged Nusselt numbers are determined by:

NuðyÞ ¼ L
k0ðTh � TcÞ k

@T
@x

����
wall

ð46Þ
Nu ¼ 1
L

Z y¼L

y¼0
NuðyÞdy ð47Þ

The Nusselt number dramatically increases with Rayleigh num-
ber. It indicates that the effect of heat transfer between the two lat-
eral walls becomes stronger with the increase of thermal
convection. The deviations are within 3% in all cases. This demon-
strates that the good performances of the present method for this
type of natural convection problems.

4.2. Unsteady natural convection in a tall cavity

The second test problem about natural convection deals with
the thermal flow inside a heated cavity. It is somewhat similar to
the previous one, but it mainly differs in two aspects: (i) the ana-
lyzed cavity is not square and is significantly larger and (ii) the
flow has an unsteady character. The ratio of the height (W) to
width (L) of the cavity is W/L = 8/1. A nondimensional parameter
� ¼ ðTh � TcÞ=ðTh þ TcÞ is introduced to represent the temperature
Table 1
Comparisons on averaged Nusselt number and averaged pressure. The results of Rayleigh n
400� 400.

Ra Nu

Benchmark Present

104 2.22 2.28

105 4.48 4.55

106 8.69 8.82

107 16.24 16.26
difference in two simulated cases. Two cases are investigated and
validated using the present LB method: (i) Case 1 with a small tem-
perature difference of � ¼ 0:1 which gives DT ¼ ðTh � TcÞ ¼ 12 K;
(ii) Case 2 with a large temperature difference of � ¼ 0:8 leading
to DT ¼ 960 K. The reference temperature is
T0 ¼ ðTh þ TcÞ=2 ¼ 600 K in the both cases.

The Case 1 with a small temperature difference has been exten-
sively studied in the framework of Boussinesq approximation and
was considered as the benchmark problem for unsteady flows dri-
ven by the natural convection [42–44]. It was found that for
Ra ¼ 3:4� 105 the flow oscillates with precisely determined
amplitude and frequency.

The simulations are normalized in the same way as for natural
convection under the Boussinesq approximation. The analyzed
non-dimensional quantities are the temperature and time
expressed as: T� ¼ ðT � T0Þ=T; t� ¼ t=tr . The reference time is
tr ¼ L=Ur where the reference velocity is Ur ¼ gbLT and b is the
thermal expansion coefficient and equal to 1=T for perfect gas.

The computations were performed on uniform grids with
100� 800 for Case 1 and 200� 1600 grids for Case 2 with a time
step equal to Dt ¼ 0:001 and 0:000125, respectively. Both for Case
1 and Case 2 the solutions have been initialized enforcing a zero
velocity field along with a uniform temperature T0. Both the initial
condition and the boundary conditions in density distribution
functions are implemented in the same way used in the previous
test case.

Despite of small density changes in Case 1 with a small temper-
ature difference, the variations of velocities and temperature exhi-
bit a strongly unsteady behavior, which gives opportunity to assess
the stability and accuracy of the proposed method for time depen-
dent problems. Fig. 8 presents the contours of instantaneous values
of temperature, horizontal velocity and vertical velocity obtained
by the present LB method in Case 1 when the flows archived a fully
developed state. The contours of temperature are smooth and
without any spurious wiggles in Fig. 8. It is shown that this test
case with small temperature difference can be well analyzed by
the present model using the perfect gas law.

Table 2 summarizes the present computational results and
benchmark solutions available in open literature. The computed
mean values and oscillation amplitudes are denoted by an over
bar and a prime, respectively. All time-mean data reported in this
table are averaged over 20 periods. The Nusselt number Nu0 is
computed along the hot wall and Nuc is calculated along the center
line, respectively. The difference is calculated between the present
result and data in [42]. The present results are in excellent agree-
ment with the reference data. This demonstrate the accuracy of
the proposed LB model in simulation of unsteady natural
convection.

The case 2 with � ¼ 0:8 is chosen to assess the robustness of the
proposed LB method in simulation of strongly unsteady convection
with large density variations (qh=qc ¼ 9). Fig. 9 displays the con-
tours of instantaneous values of temperature, horizontal velocity
and vertical velocity obtained in Case 2. And, Fig. 10 shows the
time evolution of the non-dimensional temperature for � ¼ 0:8.
umbers Ra ¼ 104;105;106 are obtained on grids of 200� 200 and Ra ¼ 107 on grids of

p=p0

Benchmark Present

0.91463 0.92076

0.92196 0.92732

0.92449 0.93274

0.92263 0.92745

9



Fig. 8. Contours of temperature, velocities obtained on 100� 800 grid by the
present LB model in natural convection with a small temperature difference of
� ¼ 0:1.

Table 2
Comparison of Nusselt number obtained on 100� 800 grid by the present hybrid LB
model with benchmark solution. Nu0 is computed along the hot wall and Nuc is
calculated along the center line.

Nu0 Nu0
0 Nuc Nu0

c

Xin and Le Quéré 4.57946 0.07094 4.57947 0.17790
Gjesdal et al. 4.57933 0.07010 4.57946 0.17761
Present results 4.57253 0.07120 4.57255 0.17924

Difference (%) �0.151 0.367 �0.151 0.753

Fig. 9. Contours of temperature, velocities on 200� 1600 grid obtained by the
present LB model for natural convection in a tall enclosure with a large temperature
difference of � ¼ 0:8.
In the present study the variations of temperature are analyzed
and compared with benchmark solutions. The time evolution of
temperature at a control point was recorded during unsteady
process. The coordinates of this point was defined in [44] as
(0.181, 7.37). On the mesh used in the present study the coordinate
of grid nodes closest to that location is (0.18, 7.37).

Figs. 11 and 12 report the time evolution of temperature for
� ¼ 0:1 and � ¼ 0:8, respectively. For natural convection with a
small temperature difference � ¼ 0:1 the oscillations grow slowly
and become regular and sinusoidal. The mean value, oscillation
period and amplitude of fluctuations are precisely computed in
Case 1. However, for natural convection with a large temperature
difference � ¼ 0:8 the solution is completely different and achieve
the chaotic flows.

Moreover, the accuracy of the results on unsteady evolution is
quantitatively studied on natural convection with a small temper-
ature difference, which is compared with the reference results in
[42,45]. The compared quantities are: the mean temperature

T� ¼ 0:5 � ðT�
max þ T�

minÞ, the amplitude T�0 ¼ ðT�
max � T�

minÞ and the
10



Fig. 10. Instantaneous temperature obtained on 200� 1600 grid by the present LB model for natural convection in a tall enclosure with a large temperature difference of
� ¼ 0:8.

Fig. 11. Time evolution of the normalized temperature at the control point (0.181, 7.37) in a tall cavity with small temperature difference of � ¼ 0:1.
oscillation period Ts. Table 3 details the results taken from open lit-
erature and obtained presently in the grid closest to the control
point. The ranges of values presented in Table 3 for the literature
data cover the results obtained by various research groups partic-
ipating in the benchmark computations. As can be seen from
Table 3, the differences between the results obtained by the pre-
sent LB model are small. The proposed LB method provide accurate
solutions which are closely confirmed with the reference data.
11



Fig. 12. Time evolution of the normalized temperature at the control point (0.181, 7.37) in a tall cavity with small temperature difference of � ¼ 0:8.

Table 3
Comparison of mean temperature, amplitude and oscillation period for natural
convection in a tall cavity with a small temperature difference of � ¼ 0:1.

Compared quantity T� T�0 Ts

Xin and Le Quéré 0.265 0.043 3.412
Klein et al. 0.262 0.047 3.420
Present � ¼ 0:1 0.261 0.047 3.420
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Based on the solution obtained for the case with a small tem-
perature difference and the case with a large temperature differ-
ence, a concluding remark for this section is that the proposed LB
method is stable and accurate in unsteady simulations for large
temperature/density variations at high Rayleigh number.
5. Conclusions

In this paper a regularized hybrid thermal lattice Boltzmann
model for natural convection with large temperature difference,
variable density and high Rayleigh number has been developed.
First, numerical comparisons have shown good computational effi-
ciency and robustness of hybrid thermal LBM. The HT model with
second order explicit Rung-Kutta scheme has presented faster con-
vergence speed than a simple DDF model in simulation of natural
convection under the Boussinesq approximation. Validation of
hybrid thermal lattice model has been performed for non-
Boussinesq natural convection with large temperature difference
and high Rayleigh number. Good agreement with previously pub-
lished results obtained via other numerical methods is observed
on both steady and unsteady natural convection. For unsteady nat-
ural convection, the mean temperature, oscillation period and
amplitude of fluctuations have been well captured in small tem-
perature difference condition and oscillations with chaotic feature
have been well observed in large temperature difference case.
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