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Augmented Prediction of Turbulent Flows via Sequential
Estimators

Sensitivity of State Estimation to Density of Time Sampling for
Available Observation

Marcello Meldi1,2

Abstract
A sensitivity analysis of new methodological approaches for state estimation (Meldi and
Poux J. Comput. Phys. 347, 207–234, 2017) is proposed in this manuscript. The perfor-
mance of the estimator is tested via the analysis of a number of aspects that play a major
role in the augmented prediction process, such as the density in time sampling of available
observation, the placement of sensors and the interaction with boundary conditions. The
work is developed for the turbulent spatially evolving mixing layer test case, using high pre-
cision DNS samples as observation and Smagorinsky LES as underlying model. A number
of estimators combining LES with DNS data integrated via sensors are performed, varying
the frequency of time sampling of observation fT = 1/�T , where�T is the period between
successive assimilation phases. It is concluded that if �T ≤≈ 0.5tA, where tA is the char-
acteristic average advection time, the prediction via estimator shows minimal differences
i.e. the process of state estimation has reached convergence. This relation can be inter-
preted as a threshold for converged state estimation. However, the results show as well that
a linear converge towards pure model performance is not obtained for every physical quan-
tity with progressive decrease of fT , while eventually pure model results are obtained for
fT → 0. In addition, the effect of upstream boundary conditions over the state estimation
are investigated and strategies for optimized positions of sensors are derived.
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1 Introduction

Among the numerous research aspects which can be investigated in the analysis of com-
plex flow configurations of industrial interest, the accurate prediction of turbulent flows is
one of the ultimate open challenges. Analyses performed via classical tools, such as exper-
iments and numerical simulation are strongly affected by fundamental drawbacks which
can not be completely excluded and limit the level of confidence in the results obtained.
This aspect is fundamental for transport engineering applications and environmental stud-
ies, where advances in the performance of the order of 1% represent a huge improvement
in optimization of usage of resources [1]. Experimental Fluid Mechanics (EFD) provides a
local description of flow dynamics via measurements which are sampled by sensors. While
numerous, sophisticated techniques have been developed in the last decades, a complete
reconstruction of the flow behavior in the whole physical domain from local measurements
is problematic because of the non-linear, strongly inertial behavior of turbulence. While
reduced-order models, such as POD [2], have been extensively used for this purpose, they
usually provide an incomplete reconstruction of turbulent flows for the aforementioned
reasons.

On the other hand, Computational Fluid Dynamics (CFD) can provide flow character-
istics on large physical domains, owing to the numerical resolution of set of differential
equations. However, the resolution of these numerical systems is affected as well by errors
/ epistemic uncertainties. In this case, the boundary conditions / turbulence modeling [3, 4]
cannot exactly reproduce the fine perturbations and inhomogeneity of the real flow, which
are unknown a priori but they are ultimately responsible for the emergence of turbulent
regimes. The main technological limit that needs to be faced is that traditional tools used
for the investigation of turbulent flows are affected by a bias, which stems from uncertain-
ties of a completely different nature when considering experiments / numerical simulation.
Because of this reason, major difficulties arise to obtain robust information even when
performing direct comparison of experiments and numerical results.

New methodological approaches coming from Estimation Theory (ET) [5] and Data
Assimilation (DA) [6] are nowadays used to obtain an optimal state estimation of turbulent
flows via integration of different sources of information. One of the key aspects of these
research strategies is accounting for the level of uncertainty / stochasticity intimately asso-
ciated with these sources of information. These techniques, which are usually referred to
as estimators, are used to perform a strong coupling between experimental / numerical data
and they have the potential to exclude the bias which can not be identified in the two meth-
ods alone. The interest of the scientific community on these methods is confirmed by an
increasingly number of studies in the literature in recent years [7–9]. Along with success-
ful advances achieved in this field, new horizons of investigation for robust applications of
these techniques must be explored to obtain general guidelines of usage.

It the present work, the convergence and application properties of state estimation
obtained via a recent sequential tool proposed by Meldi and Poux [10] is investigated.
This method integrates available observation, local in space and time, in a classical CFD
solver. The sensitivity of the state estimation to a number of different aspects is investigated:
density of the time sampling of observation, positioning of the sensors where observa-
tion is provided and interaction of the state estimation process with boundary conditions.
The study is carried out via analysis of the turbulent spatially evolving mixing layer flow
configuration.

The paper is organized as follows. In Section 2, the test case of investigation is pre-
sented. In Section 3 the relevance of the objectives of the present analysis towards improved
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sequential state estimation are discussed. In Section 4, the sensitivity analysis for the
instantaneous flow fields and their statistical properties is developed. In Section 5, the set-
up of the test case for the LES is modified, in order provide a more realistic example of
sequential state estimation using different sources of information. Finally, in Section 6 the
conclusive remarks are drawn. Appendix A is dedicated to a comprehensive description
of the sequential estimator, in order to focus the discussion in the manuscript towards the
scientific objectives.

2 Test Case of Investigation: Turbulent Spatially EvolvingMixing Layer

The turbulent spatially evolving mixing layer [11–15] is a classical test case of investigation
in fluid mechanics studies. In fact, shear effects which govern the flow evolution in nume-
rous industrial and environmental applications are here isolated and can be unambiguously
studied. In the spatially evolving test case, the shear effect is produced by the interaction
of two homogeneous co-flows, which are characterized by different asymptotic veloci-
ties U1 and U2. This interaction results in the emergence of a wake, which can evolve to
fully turbulent behavior if the Reynolds number is large enough. In this analysis, a value
of Reδ = δ(U1 − U2)/2ν = 100 is chosen. δ is the the value of the vorticity thick-
ness imposed at the inlet and it is a measure of the transition between the two asymptotic
regimes characterized by the velocities U1 and U2, respectively. The streamwise direc-
tion x indicates the asymptotic trajectory of the flow. The velocity gradient is observed in
the normal direction y. Finally, z is the spanwise direction. The characteristic parameter
α = (U1 − U2)/(U1 + U2) which measures the loss of symmetry of the configuration and
represents the ratio of shear effects vs mean advection is set to α = 0.27. The flow is inves-
tigated in a physical domain of size [x × y × z] ∈ [0, 24 × −9, 6 × −3, 3]. The physical
domain is normalized over the characteristic primary instability length � = 15.4δ. Such
a large domain, in particular in the normal direction y, has been chosen in order to reduce
the effect of boundary conditions over the flow evolution. More precisely, the boundary
condition imposed are:

– a velocity hyperbolic tangent profile U = 0.5(U1 + U2) + 0.5(U1 − U2) tanh(2y/δ)

for the inlet. This base velocity profile is complexified with the addition of spanwise
spatial modes and white noise time perturbation to accelerate the transition towards
a turbulent regime [10]. These perturbations, which exhibit a maximum magnitude of
≈ 2% of the laminar streamwise velocity for y = 0 and are applied to every component
of the velocity field, decrease following a Gaussian law with increasing distance from
the center-line.

– an advective velocity condition at the outlet, in order to reduce as much as possible
reflective waves in the physical domain

– a traction-free condition on both normal planes (x − z)
– a periodic boundary condition on both spanwise planes (x − y)

Using this set-up, the flow exhibits a progressive transition to turbulence for x ≈ 10�
after an initial laminar evolution which is governed by the inlet boundary condition. A visual
representation of the test case investigated and the instantaneous behavior of the inlet for
t = 0 are shown for DNS data in Fig. 1.

A database of simulations has been generated to perform the sensitivity analysis. For
every simulation, the numerical discretization of the Navier-Stokes equations is based on
centered second order schemes for the spatial derivatives. A second order backward scheme
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Fig. 1 Representation of the spatially evolving mixing layer via DNS data. a Isocontours of the instantaneous
Q criterion (colored with the velocity field) are represented along with the physical domain of investigation.
The red color is associated with the asymptotic flow at higher velocity U1, the blue color with the asymptotic
flow at lower velocity U2. b Zoom of an instantaneous velocity magnitude profile around the center-line
for x = 0, where the included spatial modes and the white noise time perturbation at the inlet are clearly
observable

has been used for the discretization of the time derivative. The database consists of a single
Direct Numerical Simulation (DNS) and 13 Large Eddy Simulations (LES). The size of the
mesh resolution has been chosen with respect to an estimation of the Kolmogorov scale η

based on the bulk flow quantities. The resolution of the DNS has been chosen following
classical recommendations. In particular, the mesh distribution is uniform in the x and z

directions. For the normal direction y, a uniform spacing has been imposed in the central
range [−�, �], while the elements are coarsened following a geometric progression as they
approach the boundaries in the normal direction. The structure of the mesh for the LES
is qualitatively the same, but mesh elements are 4 times larger in the x and y directions
and 2 times larger in the y direction (range [−�, �]). A summary of the mesh features
is reported in Table 1. Finally, a constant time step has been chosen as �t = 0.01tA =
0.01 × 2�/(U1 + U2). tA is the average advection characteristic time in the wake. This
choice implies that the condition CFL < 0.35 is respected at every time step for the DNS,
and even CFL < 0.09 for the less refined LES simulations. For LES, the turbulence closure
is performed via the classical Smagorinsky model [16].

Numerical simulations are started from a developed DNS solution, which is interpolated
on the grid used for LES. The total simulation time is equal to 200 characteristic times tA
(equivalent to 20000 time steps) and averages are performed for t ≥ 50tA. This delay has

Table 1 Numerical details of the meshes used for the simulations. The value of �y provided represents the
resolution in the range y ∈ [−1, 1] in � units. η is the bulk flow Kolmogorov scale

Simulation �x �y �z nx ny nz Nr. elem.

DNS 5.86η 2.93η 3.5η 384 163 160 107

LES 23.44η 5.86η 14η 96 89 40 3.4 · 105
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been chosen i) to allow the LES simulation to properly evolve on the coarse grid and ii) to
provide a suitable synchronization time for the DA estimator.

Changes to the general set-up have been performed for some LES simulation of the
database, in order to analyze specific aspects of state estimation. These changes will be
described when needed in the following sections.

3 Numerical Strategy & Objectives of Investigation

The numerical elements used for the analysis are now described. It is reminded that the
Kalman estimators obtain a state estimation of a random process accounting for two sources
of information: a model, which provides a continuous approximated prediction of the quan-
tity of investigation and some observation, which is usually local in space and time and
provided for a number of sensors in the physical domain. In this work, the resulting Kalman
estimator is defined by the integration of:

– Model: Smagorinsky LES
– Observation: data sampled from the DNS in the form of instantaneous velocitiesUx ,Uy

and Uz. The observation is not provided in the whole physical domain, but it is limited
to a cloud of sensors which are sampled in two different regions of the physical domain
which will be described at the end of the present section. In order to allow comparisons
with previous analyses on the same test case [10], a total number of 1000 sensors has
been chosen.

The uncertainty in the DNS data and the LES results has been evaluated using Eq. 13. In
DNS νSGS = 0 and the mesh elements are more refined (lower �l values), which implies
that Eq. 13 provides a lower uncertainty when compared with LES. Thus, Eq. 13 correctly
sets the stage for consistent DA application, because DNS results are assumed to be much
more precise than LES prediction and thus the confidence in the observation is much higher
than the confidence in the model.

This test case has been chosen because of a number of favorable characteristics. A first
fundamental aspect regards its physical features. In fact, a progressive transition from a lam-
inar unsteady state towards turbulence is observed for x > 10� moving downstream from
the inlet. While the DNS accurately captures this transition, the interaction between inlet
boundary condition, lower mesh resolution and Smagorinsky sub-grid scale model intro-
duces an unwanted eddy viscosity νSGS effect upstream in LES, which affects the global
prediction of the statistical physical quantities [17, 18]. For this reason, the Kalman observer
is employed to improve the characteristics of the LES simulation via integration of DNS
data. The present analysis aims for providing advancement to four open questions about
robustness properties of sequential Data Assimilation using the reduced-order Kalman filter
estimator proposed by the research group [10]. Therefore, the sensitivity of the estimator to
four different aspects will be investigated:

1. Density in time of the observation provided. The sequential model here employed
uses the state estimation produced for basic improvement of the model. In fact, the solu-
tion provided by the estimator is used in the following time step of the model as source
for time advancement. However, if the period �T between consecutive observations is
large with respect to the simulation time step of the model or the characteristic evolu-
tion time of the flow, the beneficial effect of the state estimation is simply excluded in
the same way an initial condition is forgotten after a transient. The sensitivity of the
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estimator to density in time sampling of the observation is investigated performing 8
different simulations. For each of them, a different value of the constant frequency of
DNS data acquisition fT = 1/�T , �T = nT 10�t is imposed. The values chosen
for fT correspond to the values of nT = 1, 2, 5, 10, 20, 50, 100, 200. This means
that in the first case DNS data will be integrated in the numerical model every 10 time
steps, while in the latter case it will be every 2000 time steps. The DNS time signal is
not filtered in the present work. It is considered to be raw data so that the performance
of the estimator with respect to the signal frequency is analyzed in the worst possible
scenario. Each application will be referred to as DA-LES-nT . For each of these runs,
the 1000 samples are placed in a box of size x × y × z = [6, 12] × [−1, 1] × [−3, 3]
in � units. 480 sensors have been placed using an homogeneous distribution, while the
rest has been placed randomly. A representation of mesh elements including sensors is
shown in Fig. 2.

2. Interaction with boundary conditions. The boundary conditions themselves, as
rightly pointed out by a reviewer, act as a sort of Data Assimilation procedure because
they enforce a prescribed behavior on the surface of the domain at each time step. This is
particularly true for the inlet boundary condition, which governs the threshold of transi-
tion towards a turbulent regime. However, a closer look at the inlet boundary condition
for DNS and LES highlights two fundamental differences. First, the under-resolution
for LES in the normal and spanwise direction results in a very different discretized
velocity profile which is imposed. Second, the white noise time perturbation imposed
changes for every simulation, and this aspect arguably has an impact when numerical
observation is integrated within the model. In conclusion, the inlet boundary condition
assimilates slightly different information on every numerical simulation, and these dif-
ferences are amplified when comparing DNS and LES. Thus, the interaction between
field DA via Kalman estimator and boundary conditions deserves investigation. This is
a second reason for which this test case has been chosen, because here these effects are

Fig. 2 Sensor placement for the application of the Kalman estimator
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mostly isolated from other dynamic aspects that could not be excluded in other flow
configurations.

3. Placement of sensors. While previous studies [10] highlighted that sequential Data
Assimilation of turbulent regimes are mostly affected by a high density of observation
in time when compared with space density, it is also true that sequential estimators
appear to be more effective in propagating information downstream than upstream [1].
In addition, with reference to the previous item, one could argue if a high proximity
between the inlet and the sensors could result in numerical instability. In order to inves-
tigate this feature, an additional Kalman estimator run has been performed for the most
critical case nT = 1 changing the location of the sensors. This case will be referred
to as DA-LES-1-BC. The size of the region and the sensor distribution strategy is the
same previously employed, but the box is now placed upstream for x ∈ [0.5, 6.5] in �

units. So, the closest sensors to the inlet are two elements away from the boundary if
we consider that the LES resolution in the streamwise direction is �x = �/4.

4. DA combining information from slightly different test cases. One of the most
appealing characteristics of Data Assimilation is the reconstruction of a state estimation
from data obtained from different sources, which can be produced by different set-ups.
While this aspect usually summons the idea of CFD-experiments integration, it remains
valid for CFD-CFD estimation. For example, one could expect that boundary condi-
tions studied for DNS cannot be systematically employed for LES. So, the sequential
estimator will be tested integrating DNS data in a very simplified LES model, where
in particular the velocity field at the inlet is reduced to a classical hyperbolic tangent
profile in the streamwise direction. The capability of the sequential DA tool to generate
a physical turbulent flow, even when the governing inlet information is missing, will
be investigated. To this aim, a classical LES and two Kalman estimators based on the
simplified LES model will be performed.

4 Results & Discussion

The results obtained via the Kalman estimator runs are compared with a classical LES and
the DNS used to produce the samples. The analysis is focused on the velocity field features,
both instantaneous and averaged. It is here reminded that the sequential Data Assimilation
integrates the instantaneous velocity fields.

4.1 State estimation of the statistical properties of the flow

The attention is first focused on the prediction of the statistics of the velocity field U and
in particular on its time-averaged behavior U . The velocity profiles for Ux , which have
been averaged as well in the spanwise direction z, are shown against the normalized axis
y/�. Results are shown for the three different streamwise stations x = 5, 10, 18 in �

units and they are shown in Figs. 3, 4 and 5, respectively. The style of the plot has been
chosen to improve the clarity of the representation. So, DNS data are represented via a
blue line with diamonds markers, the classical LES using a red line with square markers.
The Kalman estimator results have been grouped with respect to colors. Simulations for
fT = 1, 2, 5, 10 i.e. high frequency assimilation are represented in black, while results for
fT = 20, 50, 100, 200 (low density for observation in time) are shown in gray.

Profiles in Fig. 3 have been sampled upstream with respect to the Data Assimilation
region, which is included in x ∈ [6, 12]. The analysis of the global velocity profile in
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Fig. 3 Velocity profiles for the database of simulations, sampled for x = 5�. The streamwise velocity Ux is
averaged in time and in the spanwise direction. a The complete velocity profile and zooms at b the top, c the
center and d the bottom of the profile with respect to the normal direction y are shown, respectively

Fig. 3a and the three zooms in Fig. 3b–d show a marked difference in the behavior of the
streamwise velocity. In general, the DNS prediction is clearly different from the rest of
the simulations of the database, which mostly superpose. The minimal difference between
classical LES and Kalman estimator is a signature of the governing effect of DA performed
by the boundaries, which are much more intense than upstream transfer of information via
Kalman filter. One could argue that the much higher number of elements of the boundary
and their spatial compactness, as well as the fact that they are applied at each time step,
provides a stronger effect on the flow when compared with the field effect produced by the
estimator. Also, the complex velocity profile imposed at the inlet leads to the emergence of
coherent structures (see Fig. 1a) which, because of their strong organization, are not easily
disrupted by the assimilation process. Further analysis of the profiles reveals interesting
features. First, the bump behavior observed for the DNS in Fig. 3c is not visible in any
of the other simulations. The LES and the Kalman estimator provide a much more regular
profile, which clearly exhibits turbulent features which should be observed significantly
downstream. In addition, the return towards the unperturbed asymptotic conditions U1 and
U2 is slower for the reduced-order simulations (see Fig. 3b and d), which implies a faster
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Fig. 4 Velocity profiles for the database of simulations, sampled for x = 10�. The streamwise velocity Ux

is averaged in time and in the spanwise direction. a The complete velocity profile and zooms at b the top,
c the center and d the bottom of the profile with respect to the normal direction y are shown, respectively

growth of the wake. These two features are associated with the unwanted effects of the sub-
grid model viscosity νSGS which is triggered by the important velocity gradients imposed
at the inlet.

The analysis of the results in Fig. 4 provides quite a different picture. In this case, data are
sampled for x = 10� in the middle of the observation region, where DNS observation is
integrated. Generally speaking, the classical LES results are the most distant from the DNS
prediction and the transition towards the two asymptotic states is slow i.e. the predicted wake
is thicker. Data assimilated solution with high density in observation (black line) exhibit a
relatively good agreement with DNS data, in particular for the upper surface of the wake
shown in Fig. 4b. Extensive analysis of the results pointed out the effect in the prediction
of the Kalman estimator is gradual improving downstream from x = 6�, where barely any
effect is visible. In addition, it appears that the black lines almost exactly superpose, with
only the simulation DA-LES-10 showing some difference. For this case, the period between
successive assimilations is �T = 10 · 10 · �t = tA. Thus, one could argue if the fre-
quency of assimilation of fT = 2 t−1

A is a good estimation for a threshold of convergence
of the estimator. tA = 2�/(U1 + U2) is the characteristic advection time and it represents
the time in which a coherent structure is pushed downstream of a characteristic length �,
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Fig. 5 Velocity profiles for the database of simulations, sampled for x = 18�. The streamwise velocity Ux

is averaged in time and in the spanwise direction. a The complete velocity profile and zooms at b the top,
c the center and d the bottom of the profile with respect to the normal direction y are shown, respectively

which is associated with primary Kelvin-Helmholtz instabilities. This threshold value can
also be associated with the characteristic shear time fT ≈ 8 t−1

S , tS = 2�/(U1 − U2). For
frequencies of acquisition lower than this threshold, the state estimation appears to converge
towards the classical LES prediction, which can be deduced by the observation of the gray
lines. However, preliminary tests showed how this evolution can exhibit non-linear features
which are sensitive to the placement of the sensors, in particular for acquisition frequencies
slightly larger than the threshold identified. Thus, one should perform sequential state esti-
mation using acquisition frequency which at least match the physical evolution of the flow,
whenever possible. Lower acquisition frequencies could result in a worst prediction when
compared with classical reduced-order numerical simulation. This information is valuable,
because it provides a first link between the numerical process of state estimation and the
physical behavior of the flow.

Results for the streamwise section x = 18� are shown in Fig. 5. Here, data are sam-
pled well outside the assimilation region, but sufficiently upstream with respect to the
outlet boundary condition. Here the trend is very similar to observations for Fig. 4, which
shows how the Kalman estimator is more efficient in propagating the information in the
advective direction or at least far from the inlet. However, if one has a look at Fig. 5d
the high frequency estimators actually under-predict the thickness of the wake close to the
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low momentum asymptotic flow. This counter intuitive result (one would expect the perfor-
mance of the estimator to get closer to LES moving downstream from the sensors) will be
further discussed in Section 4.2 with the analysis of the instantaneous flow fields.

At last, the statistical organization of coherent structures is investigated. To do so, the
time averaged velocity Uy is plotted over y − z planes for the three streamwise stations
of investigation x = 5, 10, 18�. Results for x = 5� are shown in Fig. 6. Consistently
with previous observations for Ux , none of the reduced order simulations really matches
the DNS results before the observation region. In addition, one can see that classical LES
and DA-LES-200 produce almost identical results i.e. the assimilation process is negligible.
However, significant differences are observed for the streamwise station x = 10�. Here,
results for the estimator DA-LES-1 in Fig. 7c are qualitatively similar to DNS in Fig. 7a and,
despite the significantly lower resolution, the structural organization is clearly recogniz-
able. On the other hand, classical LES and estimator DA-LES-200 fail to capture structural
features of the flow. A quantitative measure of the error has been obtained calculating L2
norms:

∫
x=10

||Uy
DA1 − Uy

DNS ||
||Uy

DNS + 10−16||
dydz = 3.4 × 10−3

∫
x=10

||Uy
LES − Uy

DNS ||
||Uy

DNS + 10−16||
dydz = 4.8 × 10−3

Fig. 6 Velocity profiles for the database of simulations, sampled for x = 5�. The normal velocity Uy is
averaged in time. Results for a DNS, b classical LES, c DA-LES-1 estimator d DA-LES-200 estimator are
shown, respectively
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Fig. 7 Velocity profiles for the database of simulations, sampled for x = 10�. The normal velocity Uy is
averaged in time. Results for a DNS, b classical LES, c DA-LES-1 estimator d DA-LES-200 estimator are
shown, respectively

These results reinforce the idea that Data Assimilation is not just locally beneficial in
space and time, but it is also efficient in capturing more global features of the flow. Results
outside the assimilation region for x = 18� are shown in Fig. 8. Again, the results for
the estimator DA-LES-1 qualitatively match the DNS prediction, confirming that the Data
Assimilation strategy is efficient in the whole physical domain, whenever it is not damped
by other features of the simulation such as the boundary conditions. The quantification of
the error via L2 norm provides the following result:

∫
x=18

||Uy
DA1 − Uy

DNS ||
||Uy

DNS + 10−16||
dydz = 7.4 × 10−3

∫
x=18

||Uy
LES − Uy

DNS ||
||Uy

DNS + 10−16||
dydz = 1.61 × 10−2

4.2 Analysis of the instantaneous flow field

Discussion about the statistical properties of the flow field in Section 4.1 is now further
extended in the light of the analysis of the physical properties of the instantaneous flow field.
In particular, instantaneous isocontours of the velocity magnitude on a x − y plane sampled
for z = 3� are reported in Fig. 9. One should keep in mind that, because of the spanwise
inlet perturbations introduced, only qualitative elements of discussion should be deduced by
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Fig. 8 Velocity profiles for the database of simulations, sampled for x = 18�. The normal velocity Uy is
averaged in time. Results for a DNS, b classical LES, c DA-LES-1 estimator d DA-LES-200 estimator are
shown, respectively

a 2D visualization of an instantaneous fully 3D field. Here, data for the final time step for
t = 200 tA are shown. The reference DNS contours are provided in Fig. 9a. The classical
LES solution in Fig. 9b appears to be significantly different. In fact, much larger orga-
nized structures tend to emerge very close to the inlet boundary and they are responsible for
the general larger width of the mixing region which was discussed in Section 4.1. Results
for the estimator DA-LES-1 are now investigated (Fig. 9c). In the inlet region, a physical
organization of the flow similar to the classical LES case is observed. However, proceed-
ing inside the assimilation region, the flow clearly exhibits a strong structural modification,
which is conserved moving downstream. This prediction is more similar to the DNS instan-
taneous isocontours, clearly at a reduced resolution. It is also important to observe that the
physical configuration is continuous, and it is not possible to guess where the sensors are
placed. This result is mainly due to the effective propagation of information by Kalman fil-
ter and Poisson equation. The under prediction of the wave thickness downstream which
was previously observed may be related to the different structural organization produced by
the estimator. This aspect will be further investigated with the isocontours of the sub-grid
scale viscosity νSGS . Results for the estimator DA-LES-200 are shown in Fig. 9d. In this
case, a strong resemblance to classical LES is observed, which justifies the almost identi-
cal statistical results obtained. In this case, the assimilation process is performed every 20
characteristic advection times. One could think that, in this case, the assimilation process
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Fig. 9 Instantaneous velocity profiles for the database of simulations, sampled on an x −y plane. Zooms are
performed to improve the visualization and in particular x ∈ [0, 18] �. Results for a DNS, b classical LES,
c DA-LES-1 estimator, d DA-LES-200 estimator and e DA-LES-1-BC estimator are shown, respectively

is nothing more than a spurious perturbation for the flow, which is transported downstream
in the same way the initial conditions are at the beginning of the simulation. One common
feature between the LES and the two estimators previously considered is the behavior in
the inlet region. The inlet is dominant right until the beginning of the assimilation region.
This result is due to the complex information prescribed, as well as because of the num-
ber of sensors which is much larger and dense in space for the boundary condition. So, the
results for the estimator DA-LES-1-BC in Fig. 9e are now investigated. For this configura-
tion data assimilation is performed every 10 time steps, but the cloud of sensors is included
in x ∈ [0.5, 6.5] i.e. much closer to the inlet. In this case no discontinuity or instability is
observed, but one can see that the upstream organization of the flow does not exhibit the big
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Fig. 10 Instantaneous νSGS profiles for the database of simulations, sampled on an x − y plane. Zooms
are performed to improve the visualization and in particular x ∈ [0, 18] �. Results for a classical LES,
b DA-LES-1 estimator, c DA-LES-200 estimator and d DA-LES-1-BC estimator are shown, respectively

structures characterizing the other reduced-order simulations. The structures do not really
form downstream either, which appears to result in an under-prediction of the thickness of
the wake.

These physical observations are now further investigated via the analysis of the sub-grid
scale viscosity νSGS , which is shown is Fig. 10. For the classical LES and the estimator
DA-LES-200 (Fig. 10a and c) the maximum of νSGS , which is approximately 10ν, super-
poses with the coherent structures observed in the velocity field representation. For the high
frequency estimators DA-LES-1 and DA-LES-1-BC in Fig. 10b and d this organization is
absent and the velocity gradients are smoothed. The Smagorinsky model imposes a linear
relation between the magnitude of the velocity gradients and the sub-grid scale viscosity.
This aspect results in a slight under prediction of νSGS which has been derived by obser-
vation of several instantaneous solutions. Observation of Fig. 10 indicates that the under
prediction of νSGS appears to be more intense close to the low momentum asymptotic flow.
This behavior is arguably responsible for the under-prediction of the thickness close this
region, where coherent structures dynamics are more important with respect to the pure
advection of the flow and the sub-grid scale diffusion should be enhanced.
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Fig. 11 Velocity profiles Ux sampled for x = 5�. The sensitivity to the position of sensors is investigated.
a The complete velocity profile and b–d zooms are shown, respectively

The analysis is concluded by a second observation of the averaged velocity profiles. In
this case, the analysis is limited to the simulations DNS, LES, DA-LES-1 and DA-LES-
1-BC and for x = 5, 10 � (the conclusions for the last downstream section are similar
to the case x = 10�). Results for x = 5� are shown in Fig. 11. In this case, DNS data
is here assimilated for the estimator DA-LES-1-BC. The results for the average velocity
profiles are consistent with the discussion previously developed for the instantaneous flow
fields, and the upstream sensor positioning is beneficial to improve the flow prediction. The
under prediction of the upper limit of the wake observed for the estimator DA-LES-1-BC
may be related with the representation of the bump, which is not very well captured prob-
ably because of resolution effects. Results for x = 10� are now investigated in Fig. 12.
As expected, the estimator DA-LES-1-BC exhibits under prediction of the thickness of the
wave because of the poor interaction between the state estimation and the sub-grid scale
model. However, the prediction of the estimator DA-LES-1-BC appears to be more precise
when compared with the classical LES, even if DNS data is not integrated in this streamwise
section. In summary, the analysis of Figs. 11 and 12 suggests that strategies for sensor posi-
tioning should target upstream locations with respect to turbulence transition, when state
estimation is obtained via reduced-order modeling. This is particularly true if optimization
/ tuning of the model coefficients can be performed.
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Fig. 12 Velocity profiles Ux sampled for x = 10�. The sensitivity to the position of sensors is investigated.
a The complete velocity profile and b–d zooms are shown, respectively

5 Data Assimilation Combining Information from Slightly Different
Test Cases

In this section the numerical test case for LES and DA estimator is slightly modified, in
order provide a more realistic example of sequential state estimation using different sources
of information. The changes to the set-up are:

1. The size of the grid and the mesh resolution is unchanged, but the physical domain is
now included in [x × y × z] ∈ [0.8, 24.8× −9, 6× −3, 3] in � units. This implies that
the physical domain has been shifted of 4/5 length units in the streamwise direction, so
that the mesh elements are not aligned anymore.

2. The inlet condition is dramatically simplified, just keeping the classical hyperbolic tan-
gent profile for the velocity Ux . So, Ux is a function of y only. The other velocity
components Uy and Uz are set to zero.

3. The flow in the physical domain is initialized using the same velocity profile imposed
at the inlet.

A reference LES simulation (LES-D-4T) is run using a time step �t ′ = 4�t , so that
the resulting CFL ≈ 0.3 is closer to the value observed for DNS. In addition, two DA
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estimators are run, namely DA-LES-2-D and DA-LES-2-D-4T. Both estimators integrate
DNS data with a constant assimilation period of 20�t using the cloud of sensors initially
employed in the range x ∈ [6, 12]. The only difference between the two estimators is that
for DA-LES-2-D the time step is equal to �t (and so observation is assimilated every 20
time steps) while DA-LES-2-D-4T performs a time advancement with a time step equal to
�t ′, assimilating each 5 time steps.

Qualitative results at the end of the simulations for t = 200 tA are shown in Fig. 13 for
the isocontours of the Q criterion. A first important observation is that the classical LES
results reported in Fig. 13b do not match the structural organization of the flow obtained
with DNS. One can barely see the emergence of three dimensional effects. This result is
clearly produced by the lack of information that is provided at the inlet for this case. On the
other hand, both the estimators provide a representation which is consistent with the DNS
visualization. Core differences between Fig. 13c and d cannot be highlighted via this quali-
tative representation. In addition, one can see that the structural coherent organization of the
flow is propagated well upstream the sensor region. One possible reason for this observation
is that the simpler inlet boundary condition prescribed is not able to extend its governing
effect far from the very proximity of the boundary. Thus, one can deduce that the inter-
action between boundaries and sequential state estimation is affected (if not governed) by

Fig. 13 Instantaneous isocontours of the Q criterion for t = 200tA. Results for a DNS, b classical LES
(LES-D-4T), c estimator DA-LES-2-D and d estimator DA-LES-2-D-4T are shown, respectively. The DNS
velocity profile is shown in transparency in each visualization
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Fig. 14 Velocity profiles Ux sampled for x = 10�. High precision DNS data are assimilated in a slightly
different numerical test case. a The complete velocity profile and b–d zooms are shown, respectively

the physical features that are prescribed. Data integration in the physical domain combined
with classical boundary conditions used in CFD could provide the same level of accuracy
in flow physical representation of advanced realistic boundaries, which is one of the open
challenging aspects in the future of HPC for industrial applications.

At last, the averaged streamwise velocity profiles are shown in Fig. 14 for x = 10�.
These results confirm the lack of accuracy of the results for LES-D-4T, which does not
predict the progressive transition of the flow towards turbulence. The comparison of the
estimators highlights some differences, which most probably raise from the different values
of the time step affecting the determination of the model uncertainty matrix Q (see Eq. 13).

6 Conclusions & Perspectives

In the present work, the sensitivity of the performance of a reduced order Kalman filter esti-
mator to the time density of available observation has been studied. Its capabilities have been
validated with the analysis of the turbulent spatially evolving mixing layer test case. The
observer produces a smooth, physical flow condition via integration of different sources of
information. Even if the observation region is limited in space (only 1000 sensors out of 340
000 mesh elements), the propagation of information via Poisson equation is efficient and
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the flow prediction is definitely more accurate. In addition, the increase in computational
resources with respect to the model is very limited (of the order of 15%).

The main result deduced by the present analysis is that if the time between successive
data integration is sufficiently small with respect to the characteristic advection time, the
estimator produces a converged augmented configuration. However, it appears that once a
threshold value is passed (approximately a period of 0.5tA in this case) the performance of
the estimator may not smoothly return towards the pure model performance (in this case
the classical LES). This aspect is connected with the interaction between the estimated
flow field and the sub-grid scale model, which can lead to counter-intuitive results. In the
case of this analysis, the velocity gradients obtained via state estimation close to the lower
momentum asymptotic flow are not sufficient to produce a sufficiently large sub-grid scale
viscosity νSGS , which results in an under-prediction of the size of the wake. This is exactly
the opposite behavior of the classical LES, which exhibits a systematic over prediction of
the wave thickness. These observations stress how, while the state estimation via Kalman
filtering is globally beneficial, further improvement could be achieved integrating some
optimization techniques to tune the free parameters of the simulation, such as coefficients
in the boundary conditions or in the sub-grid scale model.

In addition, the interaction between boundary conditions and the Kalman filter has been
investigated. While no numerical instability has been observed, the inlet boundary may
prove to be dominant upstream of the sensor region. A possible explanation is that the
boundary is composed by a larger number of elements, compact in space which may impose
a complex information at each time step. The application of sensors close to the boundary
(or at least upstream with respect to transition to turbulence) has proven to be a first strat-
egy of improvement for sequential state estimation. On the other hand, the simplification
of the inlet boundary condition allowed to propagate further upstream the state estima-
tion. Thus, the quality of the information provided at the inlet influences the interaction
between the estimator and the boundary itself and so the state estimation. This aspect sug-
gests that aiming for realistic and complex boundary conditions may not be the best strategy
to obtain high-fidelity results, if sequential integration of data in the physical domain can
be performed.
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Appendix A: Reduced Order Kalman Estimator

The essential features of the reduced order model based on Kalman filtering are here
described. The estimator exploits structural similarities between the discrete Kalman filter
[19] schemes and numerical algorithms for the resolution of incompressible turbulent flows.

The Kalman Filter is a sequential estimator which provides an optimal state estimation
Û of a random process U when a physical model and available observation Z are provided.
Considering time advancement from the instant n − 1 to n, we have:

Un = �n Un−1 + Bn cn + Wn (1)

Zn = Hn Un + Vn (2)
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Equation 1 is referred to as model and Eq. 2 as observation. The term Bn cn in Eq. 1 rep-
resents the effect of a controller over the prediction of the random process via model. The
termsWn = N (0, Qn) andVn = N (0, Rn) represent zero-mean uncertainties which affect
the model and the observation, respectively. They are quantified via the covariance matrices
Q and R. The higher the covariance, the lower the confidence in the associated information.
While the matrices could potentially exhibit any structure, they are usually assumed to be
diagonal in fluid mechanics applications [1, 10]. In addition, a state estimation error covari-
ance matrix P = E((U − Û) × (U − Û)T ) provides a measure of the confidence in the
state estimation. The sequential estimator performs a time advancement through two steps:

1. A prediction step, where the model is used to advance in time the physical state.
Observation for the time step n is not included yet:

Ûn|n−1 = �nÛn−1 + Bn cn (3)

Pn|n−1 = �n Pn−1|n−1 �T
n + Qn (4)

2. An update step, where available observation is integrated in the model prediction to
obtain the augmented state:

Ûn|n = Ûn|n−1 + Kn

(
Zn − Hn Ûn|n−1

)
(5)

Pn|n = (I − Kn Hn) Pn|n−1 (6)

The central element controlling the prediction is the Kalman gain Kn. Mathematical
manipulation shows that, ifWn and Vn are random Gaussian variables, the minimization of
P can be obtained using the optimal gain

Kn = Pn|n−1 HT S−1
n , Sn = Hn Pn|n−1 HT

n + Rn (7)

So, the Kalman gain K performs a weighted combination of model prediction and obser-
vation, accounting for the level of confidence in the different sources. While this strategy is
extremely efficient, Eq. 7 shows that matrices inversions must be performed in order to cal-
culate P . Considering the degrees of freedom needed to perform numerical simulations of
turbulent flows, a full resolution for P is prohibitive. CFD solvers are usually optimized for
the resolution of Navier–Stokes equations over meshes of million of elements. In addition,
algorithmic strategies are usually employed in order to reduce the computational resources
required. One popular scheme for the analysis of incompressible flows is the PISO algo-
rithm [20, 21], which is based on implicit time discretization plus a local linearization in
time of the non-linear term. This scheme is based on a two step resolution:

1. A predictor step, where the momentum equation is resolved to obtain a first estimation
of the velocity field U:

U = 	(U)

aP

− ∇p

aP

(8)

where p is the normalized pressure and 	 indicates the resulting matrix form of
the numerical discretization, which includes the source velocity information from
the previous time step. aP is a numerical coefficient resulting from the finite vol-
ume discretization of the derivative of the velocity fields and it includes at least a
time-discretization component and a spatial diffusion component.

2. A corrector step, where a Poisson pressure equation is solved:

∇ ·
(∇p

aP

)
f

=
∑
f

S ×
(

	(U)

aP

)
f

(9)
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the subscript f indicates a calculation on the center of the face of the mesh element.
A resolution loop for equations 8 - 9 is iteratively performed until convergence for
the pressure gradient term is achieved and the velocity field complies with both the
momentum equation and the zero-divergence condition.

One striking observation is that, in this case, Eq. 8 is a true model equation for the veloc-
ity field of the flow and Eq. 9 acts as a controller equation for ∇p (which is connected with
the term Bn cn of Eq. 3) which ensures a zero-divergence condition for U. In addition, the
predictor-corrector resolution of the PISO scheme is reminiscent of the prediction-update
structure of the Kalman filter. The similarity between the two algorithms has been exploited
in order provide a joint formulation [10]:

1. First step, the momentum Eq. 8 and the time advancement for P in Eq. 4 are performed.
This is equivalent to the prediction step of the Kalman filter. One must keep in mind
that this operation, and in particular the time advancement of the matrix P , is performed
for each time step of the model. This implies that the matrix P is constantly updated
between successive assimilation procedures, accounting for the evolution of the matrix
�n.

2. Second step, an iterative procedure is employed to determine the state estimation Û.
If observation is available for the present time step, this is equivalent to Eq. 5 of the
update step of the Kalman filter. Defining F = K (z − H U) one obtains:

Û = U + K (z − H U) = 	(U)

aP

− ∇p

aP

+ F (10)

∇ ·
(∇p

aP

)
f

=
∑
f

S ×
(

	(U)

aP

+ F

)
f

(11)

U = 	(U)

aP

− ∇p

aP

(12)

If observation is not available at the present time step, the loop is performed in any
case, but F = 0 (i.e. a classical PISO algorithm is obtained).

3. Third step, the update of the error covariance matrix P is performed as in Eq. 6. Con-
versely to the first two steps, this last operation is performed only if observation has
been integrated.

The most notable property of this algorithm is that the resulting augmented prediction nat-
urally exhibits a zero-divergence condition for the velocity field. In addition, the pure PISO
model prediction is obtained in case of absence of observation (F = 0). A simple optimiza-
tion procedure is performed using Û as the source velocity field for the time step following
the Data Assimilation.

This method exploits a linear strategy for state estimation which relies on the state matrix
�n produced by the PISO algorithm. However, a similar local time linearization strategy is
used in the extended Kalman filter [22], which is a non-linear version of the Kalman filter.
The only difference is that while in the extended Kalman filter the non-linear model must
be explicitly linearized when observation is available, this operation is already performed
via the PISO algorithm in the present estimator.

As previously discussed, the implementation of the full strategy is computationally pro-
hibitive because of the manipulation of the matrix P . However, the following strategies are
employed to obtain a significant reduction in the computational resources demanded:
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– The local linearization in time of the PISO algorithm naturally decouples the model
prediction of the three velocity components, which are connected only via Poisson
equation. As a result, if we consider a mesh ofN elements, three matrices of sizeN×N

instead of a matrix 3N × 3N can be employed to describe Q, R and in particular P .
– If the model is a CFD tool, the matrixQn is assumed to be diagonal. This is a reasonable

approximation if one considers the discretization / modeling error to be the main source
of uncertainty in the CFD solver. Meldi and Poux [10] provided an empirical formula
which allows to account for the local level of confidence in numerical simulation:

Qn = C
(
1 + νSGS

ν

)
�tot �los (13)

whereC is a constant related with the discretization error, ν is the molecular viscosity of
the flow and νSGS is the subgrid viscosity.�t and�l represent characteristics measures
of the discretization step in time and space, respectively, and ot and os represent the
order of precision of the discretization procedure. The matrix Rn is usually assumed to
be diagonal as well, unless some information about the correlation of uncertainties in
different sensors is provided.

– The state matrix of the model�, which can be obtained via manipulation of the operator
	 in Eq. 8, is diagonally dominant. This means that diagonal elements are close to the
unity in value and off diagonal elements are very small. In these conditions, it is possible
to observe that the values of P corresponding to the zeros of the matrix � + �T are
negligible too. So, one possible strategy is to conserve the correlation of a variable only
to the variables playing a role in its state advancement, which means the neighbor mesh
elements. In particular, Meldi and Poux [10] have shown how an efficient reduced order
Kalman filter can be obtained working with a larger number of small size matrices,
which are the size of the computational stencil of the mesh elements. This operation
dramatically reduces the computational resources required.

While this filter is sub-optimal, the lack of performance is mitigated by the Poisson equa-
tion, which naturally diffuses the information in the physical domain. This strategy results
in a very cost-efficient model, which is able to effectively integrate external observation in
CFD runs.
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