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This paper investigates the effect of a finite Reynolds number (FRN) on the flatness
factor (F) of the velocity derivative in decaying homogeneous isotropic turbulence by
applying the eddy damped quasi-normal Markovian (EDQNM) method to calculate all
terms in an analytic expression for F (Djenidi et al., Phys. Fluids, vol. 29 (5), 2017b,
051702). These terms and hence F become constant when the Taylor microscale
Reynolds number, Reλ exceeds approximately 104. For smaller values of Reλ, F, like
the skewness −S, increases with Reλ; this behaviour is in quantitative agreement
with experimental and direct numerical simulation data. These results indicate that
one must first ensure that Reλ is large enough for the FRN effect to be negligibly
small before the hypotheses of Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941a,
pp. 301–305; Dokl. Akad. Nauk SSSR, vol. 32, 1941b, pp. 16–18; J. Fluid Mech.,
vol. 13, 1962, pp. 82–85) can be assessed unambiguously. An obvious implication is
that results from experiments and direct numerical simulations for which Reλ is well
below 104 may not be immune from the FRN effect. Another implication is that a
power-law increase of F with respect to Reλ, as suggested by the Kolmogorov 1962
theory, is not tenable when Reλ is large enough.

Key words: isotropic turbulence, turbulence modelling, turbulent flows

1. Introduction
At the 1961 international colloquium in Marseille and following Oboukhov (1962),

Kolmogorov revised his 1941 theory or K41 (Kolmogorov 1941a), to address an issue
first raised by Landau (see for example Landau & Lifshitz 1987) shortly after K41
was published, namely the variation in the mean turbulent kinetic energy dissipation
rate ε induced by the large-scale motion. This revision, usually referred to as K62
(Kolmogorov 1962), is known as the ‘refined’ similarity hypothesis. For over almost
60 years and with a few exceptions (e.g. Kraichnan 1974; Qian 2000; Lundgren
2002; McComb 2014), the current dominant view is that the properties of small
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scale turbulence comply with K62. However, this view is currently being challenged
(e.g. Antonia et al. 2015; Tang et al. 2015a,b; Antonia et al. 2017) on the basis that
before the effect of intermittency can be adequately assessed, i.e. before one can
unambiguously decide between K41 and K62 (a sine qua non requirement of both
K41 and K62 is that the Reynolds number is very large) one must first ensure that
the finite Reynolds number (FRN) effect is no longer active.

A study by Antonia & Burattini (2006) (see also Zhou et al. 2000) showed that
(δu)3 (the third-order moment of the longitudinal velocity increment δu= (u(r)−u(0)),
where r is the separation between two points separated in x, the longitudinal direction;
the overbar denotes time and/or spatial averaging) approaches −4εr/5 in the inertial
range as the Taylor microscale Reynolds number, Reλ, reaches large values in both
decaying and forced homogeneous and isotropic turbulence (HIT). More recently,
Tchoufag, Sagaut & Cambon (2012) confirmed this trend by carrying out an eddy
damped quasi-normal Markovian (EDQNM) calculation of the Lin equation. It should
be stressed that (δu)3=−4εr/5 is the so-called four-fifths law, derived by Kolmogorov
(1941b) from the Navier–Stokes equation and thus is rigorous and exact when Reλ
is very large. Accordingly, these two studies reveal a clear Reynolds number effect
(coined ‘the finite Reynolds number or FRN effect’; see Qian 1997, 1999; Danaila
et al. 1999; Lindborg 1999; Antonia & Burattini 2006) otherwise ignored or, most
likely, mistaken for the effect of the intermittency of ε on the small-scale motion.
Further, recent studies (Antonia et al. 2015; Tang et al. 2015a,b) extended the
assessment of the FRN effect on the skewness factor, S, of the longitudinal velocity
derivative (∂u/∂x) in several turbulent flows. These latter studies indicate that S
approaches the same constant, approximately −0.55, in all flows investigated when
Reλ increases. Approximately the same value (−0.53) was obtained in the EDQNM
simulation of HIT by Meldi & Sagaut (2013a) and much earlier by Qian (1994).
This result, i.e. the approach toward an asymptotic constant value for S with an
increasing Reλ, is consistent with K41, which predicts that S is a universal constant;
under the framework of K62, −S ∼ Reαλ , where α is a small positive real number
(0 6 α 6 1).

It is worth stressing that despite their conflicting predictions, K41 and K62 assume
that the Reynolds number is very large and local isotropy is satisfied (following
a long energy cascade process). These two requirements must be met before one
can test these theories. The second requirement would exclude certain flows or flow
regions, for example, and as noted by Kolmogorov, those in the vicinity of boundaries.
In this context, it is somewhat surprising that data obtained in the atmospheric shear
layer (ASL) (see Sreenivasan & Antonia 1997) where Reλ can be large were used
to test K41 and K62. Lack of information on the ASL layer thickness δ makes it
very difficult to estimate y/δ (y is the height above the ground or ocean surface).
Accordingly, one cannot rule out that the ASL data as reported in Sreenivasan &
Antonia (1997) and often measured at only a few metres above the surface are
contaminated by the near-surface effects (Djenidi et al. 2017a; Meldi & Sagaut
2017). ASL data are not immune from the FRN effect (as noted in Sreenivasan
& Antonia 1997) as well as the influence of the strong shear. In addition, another
open question is whether the threshold value for Reλ for which FRN effects can be
safely neglected is the same for every flow statistical quantity. Numerical results by
Meldi & Sagaut (2013a) seem to indicate that this value increases with higher-order
statistics. Tang et al. (2017) who investigated the effect of the FRN effect in the
scaling range exponent ζn ((δu)n ∼ rζn) showed that the magnitude of ζn increases,
strictly the maximum value of ((δu)nr−ζn), as Reλ increases and the rate of increase
depends on the order n.
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In the present study, we investigate, via EDQNM calculations, the FRN effect in
freely decaying HIT. Particular emphasis is on the behaviour of the flatness factor,
F, of ∂u/∂x over a very large range for Reλ. A similar EDQNM analysis on the
velocity derivative skewness factor, S, was reported in Meldi & Sagaut (2013a).
Since, conversely to S, F cannot be directly computed from the EDQNM calculations,
the FRN effect on F is investigated by assessing the FRN effect on a new analytic
expression for F, rigorously derived from the Navier–Stokes equations (Djenidi et al.
2017b) for HIT. The novelty of the present contribution lies in the ability to assess
the FRN effect when Reλ varies from 200 to 5 × 105. This is possible due to the
minimal computational resources required by the EDQNM simulations. This range
of Reλ, which exceeds three decades, allows for an unambiguous identification of the
FRN effect on both S and F, with the expectation that FRN effects identified via
EDQNM are at least comparable if not identical to the behaviour described by the
Navier–Stokes equations. Such an extended range of Reλ cannot be reached, either
experimentally or with conventional direct numerical simulation (DNS).

2. Flatness factor of ∂u/∂x

2.1. A rigorous analytic expression
The flatness factor of ∂u/∂x is defined as

F=
(∂u/∂x)4

(∂u/∂x)2
2 . (2.1)

However, starting with the equation for (δu)3 (as first written by Hill (2001)), applying
self-similarity (or scale invariance) and taking the limit r→ 0, Djenidi et al. (2017b)
derived the following analytic equation for F:

F+
10
3
γ1 −

20
3
γ2

Reλ
'−α

S
Reλ

, (2.2)

where γ1 = (λ
4/u′4)(∂u/∂x)2(∂2p/∂x2), γ2 = (λ

5/u′3)ε̃HIT(∂3u/∂x3) with ε̃HIT = (7/6)
(∂u/∂x)2 − (2/3)(∂u/∂y)2 (p is the kinematic pressure fluctuation) and α is a
numerical (dimensionless) constant. In this expression λ and u′ were used as scaling
variables. If the Kolmogorov scales are used, equation (2.2) can be replaced by

F+ 750[γ1,K − 4γ2,K] '−
100
3

S
Reλ

, (2.3)

where the subscript K represents Kolmogorov normalisation. The second and third
terms on the left-hand side of (2.2) or (2.3) represent the actions of pressure and
viscosity, respectively. Noting that S/Reλ→ 0, irrespectively of whether S is constant
or varies like Reαλ (0 6 α 6 1), equation (2.2) can be written as

F'−
10
3
γ1 +

20
3
γ2

Reλ
(2.4)

for large Reλ. In Djenidi et al. (2017b), the second term on the right-hand side of
(2.4) was assumed to be negligible when Reλ becomes very large. Since there is no
a priori justification for this, it has been retained.
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It is important to stress that (2.2), a rigorous model-free expression for F, is derived
from the Navier–Stokes equations under the assumption of self-similarity. Note though
that the presence of the pressure term makes it difficult, if not impossible, to test this
expression experimentally. One must resort to direct numerical simulations (DNS).
To date, the highest Reλ reached by DNS in forced HIT (Ishihara et al. 2007) is
approximately 1150. The maximum Reλ for DNS of freely decaying HIT is smaller,
because of lingering effects of initial conditions and confinement effects (Meldi &
Sagaut 2017), thus limiting the range of investigation of Reλ. On the other hand,
Reλ of order 105 can be achieved with EDQNM simulations of decaying HIT (Meldi
& Sagaut 2013a). However, this model calculates the time evolution of the energy
spectrum E in Fourier transform space, so that the terms of (2.4) cannot be directly
obtained. Therefore, we use an analysis based on dimensional arguments on the
statistical quantities available via EDQNM, which allows us to qualitatively assess
their Re-dependence. This dimensional analysis is consistent with the assumption of
self-similarity used to derive (2.2).

2.2. Dimensional arguments
While the definitions of the coefficients γ1 and γ2 are clear in physical space,
their formulation in a spectral frame of reference is elusive. The second-order link
between statistics in the physical and spectral spaces is obtained by comparing
the Kármán–Howarth equation with the Lin equation. For third-order statistics,
the link is provided using the time evolution equation for the energy dissipation
rate ε in the spectral domain (Meldi & Sagaut 2013a) and the vorticity equation
in physical space. Restricting the analysis to purely isotropic turbulence, both
equations exhibit a destruction term which is determined by a spectral integration
including a correct dimensional combination of the wavenumber k and the energy
spectrum E(k, t). In particular, the expressions are ε ∝ (∂u/∂x)(∂u/∂x) ∝

∫
k2E dk

and G(ε2/K)∝ (∂2u/∂x2)(∂2u/∂x2)∝
∫

k4E dk for the energy dissipation rate and the
palinstrophy, respectively. A corresponding relation between physical and spectral
spaces is missing for fourth-order statistics. However, the dimensions of the terms
in the equation for (δu)3 used to derived expression (2.2) are expressed in terms of
the metre m and second s. Further, these terms can be represented spectrally. For
example, let us consider the pressure term and follow Djenidi et al. (2017b) who,
after applying the Cauchy–Schwarz theorem, obtained the following expression:∣∣∣∣∣

(
∂u
∂x

)2
∂2p
∂x2

∣∣∣∣∣6
(
∂u
∂x

)41/2(
∂2p
∂x2

)21/2

, (2.5)

which finally leads to (Djenidi et al. 2017b)

|γ1| =
λ4

u′4

∣∣∣∣∣
(
∂u
∂x

)2 (
∂2p
∂x2

)∣∣∣∣∣6 F1/2

(∫
∞

0
k∗4E∗p(k

∗) dk∗
)1/2

, (2.6)

where the symbol ∗ represents normalisation using λ and u′ as scaling variables.
Considering that p can be easily expressed in terms of u, one can expect that γ1 may
be expressed in terms of k and E(k), as will be shown below. Since both terms on
the right-hand side of (2.4) must have the same dimensions, then γ2 can, like γ1, also
be expressed in the spectral domain via dimensional arguments in terms of k and
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and (
7
6

(
∂u
∂x

)2

−
2
3

(
∂u
∂y

)2
)
∂3u
∂x3
∼

(
∂u
∂x

)2
∂3u
∂x3

. (2.7)

We can now use dimensional arguments to derive γ1 and γ2. First, we write γ1 ∝

(∂u/∂x)2(∂2p/∂x2)≈ (∂u/∂x)4 = ξ1, where we used the relation between p and u. We
write γ1∝ ξ1, and note that (∂u/∂x)4= (∂u/∂x)2(∂u/∂x)2 exhibits similarities with the
spectral transforms of ε and G. This term has dimensions of [m0 s−4

]. Starting from
the assumption that this term depends only on k and E, dimensional arguments lead
to: (

∂u
∂x

)4

→ ξ1 = aξ1

∫
+∞

0
k5E2 dk. (2.8)

It should be stressed that we have investigated a number of different combinations
of k and E complying with [m0 s−4

], including the dimensional quantities λ−1
∫
∞

0 k4E2 dk
and

∫
∞

0 k4Ep(k) dk. The high Reynolds number behaviour of all these quantities, which
is the subject of the present investigation, is identical.

A similar approach is employed to derive a spectral expression for the coefficient γ2.
The starting point is the quantity (∂u/∂x)2(∂3u/∂x3), whose dimension is [m−2 s−3

].
Again, dimensional arguments based on k and E yields:(

∂u
∂x

)2
∂3u
∂x3
→ ξ2 = aξ2

∫
+∞

0
k11/2E3/2 dk. (2.9)

Finally, a third term is investigated. While it is not directly connected with the terms
in (2.4), it is introduced to allow us to define a new invariant. This term can be
obtained from the homogeneity condition:

∂

∂x

(
∂u
∂x

)2 (
∂2u
∂x2

)
= 0, (2.10)

which implies that (∂u/∂x)2(∂3u/∂x3) ∝ (∂2u/∂x2)2(∂u/∂x). Taking into account the
exact relation (∂u/∂x)3 = (∂u/∂x)2(∂u/∂x) →

∫
+∞

0 k2T dk and since the square of
(∂u/∂x)2 is linked to the square of the second derivative (∂2u/∂x2)2 via a k2 term
in spectral space (Pope 2000), the following relation is obtained:(

∂2u
∂x2

)2
∂u
∂x
→ ξ3 = aξ3

∫
+∞

0
k4T dk. (2.11)

Thus, we can introduce a new coefficient γ3∝ ξ3, whose behaviour will be investigated
in § 4.4. The expressions for ξ1 and ξ2 allow us to ascertain the Reynolds number
behaviour of the flatness expression coefficients γ1, γ2. As will be seen later, the
coefficient γ3 allows us to define and investigate a new invariant. It can be defined
similarly to γ2 because of dimensional analogy between ξ2 and ξ3. Thus, finally, the
results of the dimensional argument analysis are:

γ1 =−
λ4(

2
3K
)2 ξ1, γ2 =

λ5(
2
3K
)3/2 ξ2, γ3 =

λ5(
2
3K
)3/2 ξ3, (2.12a−c)

E(k). For the sake of simplicity we assume that, under isotropy, (∂u/∂y)2= 2(∂u/∂x)2
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where K is the turbulent kinetic energy. Interestingly, Tang et al. (2018) recently
showed that the term γ2/Reλ in (2.4) becomes negligible as Reλ increases. Thus, for
large Reλ, equation (2.4) leads to F ≈ γ1, and the following approximation can be
obtained (Djenidi et al. 2017b):

F 6
∫
∞

0
k∗4E∗p(k

∗) dk∗. (2.13)

Since the right-hand side of this expression can be explicitly calculated using the
EDQNM model (Meldi & Sagaut 2013b), we will also assess its Reλ-behaviour.

3. The EDQNM model
The eddy damped quasi-normal Markovian (EDQNM) model (Orszag 1970; Lesieur

1997; Sagaut & Cambon 2018) is introduced in the present section. The model
numerically resolves a discretisation in the spectral space (wavenumber k) of the Lin
equation, which describes the time evolution of the energy spectrum E(k, t):

∂E(k, t)
∂t

+ 2νk2E(k, t)= T(k, t), (3.1)

where ν is the molecular viscosity of the fluid and T(k, t) is the nonlinear energy
transfer. The EDQNM closure acts on the evolution equation of T via two important
approximations:

(i) the fourth-order cumulants, which represent the deviation of the velocity
derivative pdf from a Gaussian distribution, are approximated using an eddy
damping term (eddy damping hypothesis);

(ii) time integration is simplified via a Markovianisation procedure.

A closed expression for the nonlinear energy transfer T(k, t) is obtained via shell
integration of radius k:

TEDQNM =

∫
p+q=k

ΘkpqgE(q, t)[E(p, t)pk2
− E(k, t)p3

]
dp dq

pq
, (3.2)

where Θkpq is a characteristic time resulting from the Markovian approximation and g
is a geometric function.

The two underlying hypotheses used to obtain the closed expression (3.2) for
the nonlinear energy transfer T are well verified and their effect is expected to be
very small, if not negligible, when compared with FRN effects which are presently
investigated. Indeed, the Markovianisation hypothesis is an accurate approximation
when a clear separation is observed between the turbulent characteristic time scale
and the turnover time scale of the physical quantities investigated. The present
analysis clearly satisfies this condition since the physical quantities investigated are
intimately associated with the dissipative scales, which, considering the large values
of Reλ used, are well separated from the large scales. Further, the eddy damping
hypothesis provides an accurate representation of fourth-order cumulants. This can be
verified by comparing the present predicted velocity derivative skewness S with the
experimental data (see figure 1). The data reported in figure 1 have been collected
from the relatively recent reappraisal of S in various turbulent flows (Antonia et al.
2015), which includes a comprehensive overview of results reported in the literature;
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FIGURE 1. (Colour online) Velocity derivative skewness S variation with Reλ. The
EDQNM prediction is compared with data in the literature (Antonia et al. 2015). The
present curves for σ = 2 and 4 are practically indistinguishable. For the Ishihara data, the
colours represent different mesh resolutions; yellow: 5123, blue: 10243, red: 20483, green:
40963.

only a sample, for which Reλ > 200, is shown in the figure (Qian 1994; Mydlarski
& Warhaft 1996; Zhou, Antonia & Chua 2005; Lefeuvre, Djenidi & Antonia 2015).
Accounting for the scatter in the experimental data due to measurement uncertainties,
Antonia et al. (2015) showed that as Reλ increases, −S first increases before becoming
Reλ-independent with a value around 0.53; they showed that while the approach rate
toward this value differs from flow to flow, the value is approximately well reached
for all flows when Reλ ' 200− 300. The present prediction of the Reλ behaviour of
−S is in agreement with the observation of Antonia et al. (2015) and the prediction
of Qian (1994). The figure also shows all values of −S from the DNS data of
Ishihara et al. (2007) computed with different mesh resolutions and two wavenumber
truncations (kmaxη = 1 and 2). It is difficult to draw a definitive conclusion as to the
actual behaviour of −S obtained from these DNS data as Reλ increases, due to the
variability of the results associated with the choice of the wavenumber truncation.
One may argue that the data indicate a slight increases with Reλ, which Antonia
et al. (2015) associated with the fact that the Kolmogorov normalised spectra do
not conform with Kolmogorov scaling in the dissipative range. Further, it should be
remarked that Ishihara et al. (2007) concluded that it is possible that as Reλ→∞, S
approaches a constant independent of Reλ, but the approach may be slow; this remark
is certainly consistent with the trend shown by all the other data. The reader may
consult Antonia et al. (2015) for a full account on the behaviour of −S with Reλ.
The message conveyed by figure 1 is that the EDQNM hypotheses have a negligible
impact on the turbulence statistics, at least a much weaker impact than that of the
FRN effects.

The model has features which are useful when analysing the coefficients in (2.12):

(i) It allows for the analysis of freely decaying isotropic turbulence at very high Reλ,
approximately three orders of magnitude larger than can be realistically achieved
using DNS. In addition, continuous screening over several decades for Reλ can
be performed excluding confinement effects, which play a major role in the
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time evolution of turbulence statistics (Meldi & Sagaut 2017). Previous analyses
reported in the literature by Meldi & Sagaut (2013a) indicate that the EDQNM
provides a correct representation of asymptotic high-Reλ and low-Reλ regimes.
The comparison of these results with a large survey of experiments (Djenidi,
Kamruzzaman & Antonia 2015) also shows that the EDQNM transition between
the two regimes is consistent with physical flow observation. For these reasons,
the representation of FRN effects via EDQNM should be at least qualitatively
comparable with the exact quantification obtainable via Navier–Stokes equations.

(ii) It does not include an intermittency model. First, there is no definitive
intermittency model that can be used with confidence. Second, it is yet to
be shown that one is actually required; no such model is required to derive (2.2).
In addition, both the Lin equation and the Navier–Stokes equations are free
of any intermittency model; intermittency is accounted for naturally in these
equations. Accordingly, excluding an intermittency model from the EDQNM
simulation is consistent with the derivation of (2.2) and thus allows us to focus
on the finite Reynolds number (FRN) effects on free decaying HIT up to very
high Reynolds numbers. We recall here that, as indicated by Grossmann & Lohse
(1994), an understanding of intermittency has to come from the Navier–Stokes
equations. Finally, and quite importantly, figure 1, which shows that the present
EDQNM simulation results of −S are consistent with experimental, theoretical
and DNS data, justifies the non-inclusion of an intermittency model in the
EDQNM simulations.

A similar analysis of the velocity derivative flatness factor was carried out by Qian
(1986) using a turbulence model based on a variational approach (Qian 1982) (using
this approach Qian (1994) studied the dependence of S with Reλ). In this model an
approximate solution of the stationary Liouville equation is derived by a perturbation
method based on a Langevin–Fokker–Planck model. In this framework, the nonlinear
interactions are simplified via a dynamic damping coefficient, η, and a random force
described by a uniform probability distribution function. The parameter η is used as a
control variable which is optimised to minimise the error of the perturbation solution.
The model based on the variational approach used by Qian (1982) is different to
the EDQNM model and is limited to stationary turbulence; the solution is obtained
as a perturbation of a stationary problem while the EDQNM closure can be used
to investigate freely decaying HIT as well as forced HIT regimes (Meldi 2016).
Nevertheless, the expressions for the nonlinear energy transfer T obtained via the two
models are similar. One example which illustrates how the EDQNM prediction of
T appropriately captures the FRN effects in HIT is given in the work of Tchoufag
et al. (2012). They investigated the variation of (δu)3 with Reλ. Their results are
in very good agreement with those of Antonia & Burattini (2006), inferred from
the Kármán–Howarth equation and a model for the second-order velocity structure
function. This agreement increases our confidence in the ability of EQDNM to
estimate the FRN effects correctly.

4. Results
4.1. Test case

The test case is now described. EDQNM calculations are initialised via an energy
spectrum functional form inspired by proposals by Pope (2000) and Meyers &
Meneveau (2008):

E(k)=Ckε
2/3k−5/3fL(kL)fη(kη), (4.1)
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FIGURE 2. Normalised energy spectra E∗ = E/max(E) characterising the initial state and
final state of the observation window of the analysis. The spectra are shown for the two
types of turbulence, namely (a) Saffman turbulence and (b) Batchelor turbulence.

with

fL(kL)=
(

kL
[(kL)1.5 + cL]

1/1.5

)5/3+σ

, fη(kη)= exp(−β([(kη)4+ c4
η]

1/4
− cη)), (4.2a,b)

where the free coefficients have been set to cη = 0.4, β = 5.3; cL has been chosen
in order to obtain L(0)= 1. Two calculations have been performed for values of the
parameter σ = 2, 4. This parameter controls the shape of the energy spectrum at
large scales, and the values chosen correspond to the well-known cases of Saffman
turbulence (σ = 2; Saffman 1967) and Batchelor turbulence (σ = 4, Batchelor 1948).
The initial Reynolds number has been set to Reλ = 5 × 105. During early stages of
decay, the energy spectrum exhibits an anomalous evolution, which is associated with
the approximated functional form prescribed for t = 0. This is the reason why an
increase of the Reynolds number is observed up to Reλ= 8× 105 for t≈ t0, where t0=

K(0)/ε(0) is the initial turnover time. After this first phase, the statistics progressively
lose memory of the initial condition and a classical power-law decay is observed
(Comte-Bellot & Corrsin 1966; Meldi & Sagaut 2012). For the present analysis, data
are sampled in the range 5× 105 >Reλ> 200. Initial and final spectra in the range of
analysis are shown in figure 2, while the decay of turbulent kinetic energy K and the
associated power-law exponent nK are shown in figure 3. The results clearly show a
power-law decay of K, and the apparent faster energy decay of Saffman turbulence
is simply related to a much slower decay of the Reynolds number Reλ in this case.
In fact, the determination via polynomial fitting of the power-law exponents nK which
govern the relation K(t)∝ (t/t0)

nK indicates that classical results obtained using Comte-
Bellot/Corrsin formulae (Comte-Bellot & Corrsin 1966) are obtained within a 5 %
tolerance. The analytic formulae predict a value of nK =−2(σ − a+ 1)/(σ − a+ 3)
where the coefficient a represents a correction term due to non-local interaction and
is equal to a= 0 for Saffman turbulence and a≈ 0.52 for Batchelor turbulence (Meldi
& Sagaut 2012). The present analysis encompasses more than three decades of Reλ,
in which a significant evolution of the statistical quantities is observed. In particular,
the integral length scale L exhibits an increase of 14 decades for Saffman turbulence
and of 6 decades for Batchelor turbulence over the range investigated. In order to
exclude confinement effects, the adaptive version of the EDQNM model proposed by
Meldi & Sagaut (2014) has been used. In this case, a fixed large-scale resolution
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FIGURE 3. (a) Evolution of the turbulent kinetic energy K for the two cases investigated
over the observation window. (b) Power-law exponents nK characterising the power-law
decay of K.

of kL(t)/k1(t) = 5 × 104 has been imposed. Here kL(t) = L−1(t) is the wavenumber
associated with the integral length scale, while k1(t) is the smallest resolved mode.
Equivalently, a small-scale resolution of η(t)kMAX(t) > 10 has been imposed, where
kMAX(t) is the largest resolved mode. This implies that a resolution equivalent to at
least 0.1η is obtained. The mesh elements are distributed following a geometrical
progression of ratio r = 1.12, which grants 20 mesh elements over each decade of
the spectral mesh.

In summary, the use of the adaptive EDQNM model allows for the analysis of very
high Reynolds number configurations over several decades of evolution time, naturally
excluding confinement effects. Thus, the EDQNM result can provide new elements
for the analysis of experiments and DNS data; this is based on the expectation that
the quantification of FRN effects in EDQNM should be similar if not identical to the
behaviour derived from the Navier–Stokes equations.

4.2. Finite Reynolds number effects on γi coefficients
The analysis of the coefficients derived via EDQNM calculations is now performed.
The Reλ-variation of these coefficients is shown in figure 4. The coefficient
γ1P =

∫
∞

0 k∗4E∗p(k
∗) dk∗, reported in figure 4(a), is investigated first. It is normalised

over its value for Reλ = 5× 105. This coefficient may represent an upper limit for F
(see (2.13) and Tang et al. 2018) and thus its Reλ-behaviour is worthwhile assessing.
It first increases with Reλ before becoming practically constant for Reλ & 104, which
suggests that F must be bounded if (2.13) is valid. In this case, the behaviour F∝Reαλ ,
α > 0, which can be adequate for low to moderate Reλ, is not tenable at very large
Reλ. This result (i.e. γ1P becomes Reλ-independent only when Reλ reaches a value of
the order 104) is consistent with increasing evidence in the literature showing that
the higher the statistical moment, the higher the threshold of the Reynolds number
beyond which the FRN effects become negligible. Next, the parameter γ1 is shown in
figure 4(b). Note that the value of aξ1 is fixed so that 10/3|γ1| = 1 for Reλ = 5× 105.
Similarly to γ1P, γ1 becomes constant when Reλ & 104 while exhibiting an inversed
trend to that of γ1P for lower Reλ. It decreases by approximately 2–3 % over the
range of Reλ considered, which is larger than the 0.5 % variation observed for γ1P
over the same Reλ range. The rates of variation of γ1 and γ1P with Reλ are sensitive
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FIGURE 4. Evolution of the coefficients determined via EDQNM calculations. The
coefficients (a) γ1P, (b) γ1, (c) γ2/Reλ and (d) γ3/Reλ are shown for Saffman turbulence
(σ = 2) and Batchelor turbulence (σ = 4).

to the behaviour of the large scales, which is magnified at lower Reynolds numbers
because of the progressive reduction in the scale separation with a decreasing Reλ.
Similar conclusions can be drawn for the normalised parameters γ ∗2 /Reλ and γ ∗3 /Reλ,
which are shown in figures 4(c) and 4(d), respectively. In this case, the values of the
parameters aξ2 and aξ3 have been selected so that (20/3)|γ ∗2 |/Reλ= (20/3)|γ ∗3 |/Reλ= 1
for Reλ = 5 × 105. However, it appears that the two parameters are more sensitive
than γ1 to the FRN effects. Indeed, γ2/Reλ and γ3/Reλ varies by approximately 6 %
and 4 %, respectively. Interestingly, the EDQNM prediction for γ2/Reλ at low Reλ
(i.e. it decreases as Reλ increases) is consistent with that observed in experimental
data for the various flow configurations reported in Tang et al. (2018). The latter
authors observe that γ2/Reλ approaches, relatively quickly, a very small (at least
negligible when compared to γ1) constant value as Reλ increases.

An important observation that stems from the above results is that FRN effects
play a non-negligible role at low and moderate Reynolds numbers, but becomes
negligible at high Reynolds numbers, much higher than the limit presently achievable
in experimental facilities or with direct numerical simulation (DNS). One could then
argue that the behaviour of both S and F commonly associated with the intermittency
effect simply reflects the FRN effects.

4.3. Estimation of the velocity derivative flatness factor F
The results of § 4.2 indicated that the parameters γi, which are correlated with
features of the energy spectrum calculated via EDQNM, exhibit an asymptotic finite
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sensitivity of F to Reλ. The analysis is performed using two different strategies:

(i) we compute the analytic formulae for F proposed by Qian (1986) using the
EDQNM energy spectra;

(ii) the pre-multiplying coefficients aξi in (2.8) and (2.9) are optimised in order to
provide an EDQNM estimate of F=−(10/3)γ1 + (20/3)(γ2/Reλ).

Strategy (i)
Qian (1986) obtained an expression for the velocity derivative flatness factor from a
perturbation of the Liouville equation, which can be written as

F= F(0)
+ F(1)

+ F(2)
+ · · · = 3+ F(2)

+ · · · (4.3)

After a complex manipulation, a closed expression for F(2) is obtained as a nine-
dimensional integral in the wavevector space [p, r, s]:

F(2)
= 5400

(ν
ε

)2
∫∫∫

dp dr dsG(k, p, r, s, t)q(p)q(r)q(s)

× ((η(t)+ η(r)+ η(s))× (η(k)+ η(p)+ η(r)+ η(s)))−1, (4.4)

where G is a geometric factor and t = r + s, k = t − p. Qian (1986) provided the
following expressions for q(k) and η(k) in order to estimate the integral in (4.4):

η(k)= 0.268ε1/3k2/3(1+ 3.73(kη)4/3), (4.5)

q(k)=
E(k)

4πk2e(k)
, (4.6)

e(k)= 1−
νk2

η(k)
. (4.7)

Equation (4.6) indicates that the shape of the energy spectrum E(k) must be
provided in order to determine the integral in (4.4). Qian (1986) used a functional
form which combines the Kolmogorov spectrum with a small-scale correction. The
large-scale behaviour is neglected. In the present analysis, equation (4.6) is determined
using EDQNM spectra, which exhibit a very high resolution in the whole spectral
domain of active scales. The investigation has been performed with thirty six different
EDQNM spectra in the range 200 6 Reλ 6 5× 105, using the database for σ = 4. For
each configuration, the integral in (4.4) has been calculated using Monte Carlo
integration with 107 samples. The final integral was calculated by averaging the
results of approximately 200 realisations of the integration in (4.6). The results
are shown in figure 5 together with the analytic result of Qian (1986) and some
experimental and DNS data available in the literature. The DNS data (Ishihara et al.
2007) include all values of F for the various mesh resolutions and two wavenumber
truncations (see earlier comments in § 3 about these data).

Strategy (ii)
The result in figure 5, namely that F approaches a plateau value, is used to perform
an optimisation of the free coefficients in (2.8) and (2.9). It should be recalled that
these free coefficients are derived from dimensional arguments. The values for aξ1

and aξ2 are optimised to obtain a fit (denoted EDQNM estimate in the figure) for
F = −(10/3)γ1 + (20/3)(γ2/Reλ) to match best the data of Qian (1986) for very

limit for Reλ > 104. In the present section, we use these results to analyse the
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FIGURE 5. (Colour online) Velocity derivative flatness F behaviour in the range of
investigation of Reλ. Data in the literature are shown along with an estimate reconstructed
starting from EDQNM results. The two optimisation procedures target an asymptotic value
of F= 15 and F= 12 for Reλ→∞, respectively. Coloured symbols identify the different
mesh resolutions of the DNS of Ishihara et al. (2007); yellow: 5123, blue: 10243, red:
20483, green: 40963.

high Reλ and experimental/numerical data in the literature (Kuo & Corrsin 1971;
Sreenivasan & Antonia 1997; Ishihara et al. 2007) for moderate Reλ. Two plateau
values have been considered. F∞ = 15 which corresponds the asymptotic value found
by Qian, and F∞ = 12, which according to a recent study by Tang et al. (2018) is a
better asymptotic value for infinitely large Reynolds number. The final result, shown
in figure 5, is consistent with the experimental and DNS data, giving confidence in
the dimensional argument approach we used to assess the FRN effect on the terms
of the expansion for F and validating the results of figure 4.

It is clear that the trend shown by the EDQNM data is consistent with the
theoretical, experimental and DNS data: F first increases as Reλ increases before
approaching a plateau F∞ when Reλ becomes sufficiently large (e.g. Reλ > 104). The
important message of this figure is that while the actual value of the plateau is yet to
be accurately determined, the present results are nevertheless of great interest because
they reveal how F evolves as Reλ increases. Further, even though the EDQNM
simulation does not yield information about the actual asymptotic value for F when
Reλ →∞, it shows that the behaviour exhibited by the DNS and experiment data
when Reλ < 1000 is arguably affected, if not controlled, by FRN effects. Note that
the constancy of F at very large Reλ is fully consistent with the constancy of S at
similar Reλ.

4.4. Turbulent invariants
The analysis in § 4.2 shows how the coefficients γ1, γ2 and γ3 exhibit a similar
qualitative variation over the Reλ range investigated. We already mentioned that
homogeneity imposes γ2 ∼ γ3. To investigate this, we report in figure 6 the ratio
γ2/γ3 (imposing aξ2 = aξ3). Further, the velocity derivative skewness S is also shown
in the figure for comparison.
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The results are reported for Saffman turbulence and Batchelor turbulence.

As expected, the ratio γ2/γ3 approaches a constant. Quite remarkably, the ratio
γ2/γ3 exhibits a mirror-like behaviour to |S|. While this latter quantity increases with
increasing Reλ before reaching a constant, γ2/γ3 decreases before becoming constant.
Both quantities appear to reach a constant at the same rate as Reλ increases. Further,
γ2/γ3 = 0.538 for high Reynolds numbers, which is very close to the asymptotic
value |S∞| = 0.532. The evolution of γ2/γ3 and |S| suggest that an invariant can be
defined as

Iγ =
γ2

γ3

|S|
S2
∞

(4.8)

and its variation with Reλ is reported in figure 7. Iγ ≈ 1.02 for very high Reynolds
numbers and is practically independent of Reλ. Its variation is compared with that of:

(i) the velocity derivative skewness S;
(ii) the energy dissipation rate coefficient Cε = (3/2)3/2(εL/K3/2) (Valente &

Vassilicos 2012; Djenidi et al. 2017c);
(iii) the length scale invariant IL = KLσ+1, known as the Birkhoff–Saffman integral

IS = KL3 for Saffman turbulence and the Loytsianski integral IB = KL5 for
Batchelor turbulence. In the latter case, the integral including the correction for
non-local interaction IB1 =KL4.48 is considered as well (Meldi & Sagaut 2012).

All of these quantities are supposed to be invariants for high Reynolds number free
decaying HIT. Let us first analyse the case of Saffman turbulence, which is reported
in figure 7(a). A zoom is provided in figure 7(c). The invariants are normalised by
their asymptotic value at Reλ= 5× 105. The coefficient exhibiting the largest variation
over the investigation range is Cε , showing a decrease of approximately 30–35 %. This
variation is associated with a lack of complete turbulence equilibrium due to the time
evolution of the inertial range (Bos, Shao & Bertoglio 2007). The Birkhoff–Saffman
integral exhibits a much lower sensitivity to FRN effects. In particular, the evolution
observed at very high Reynolds numbers is associated with minimal effects of initial
conditions (see nK in figure 3b). However, the parameter showing the most negligible
variation is the invariant Iγ . Figure 7(c) shows that this parameter increases by just

. 
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FIGURE 7. Evolution of turbulence invariants over the range of Reλ investigated. Results
for (a,c) Saffman turbulence and (b,d) Batchelor turbulence are shown, respectively. All
quantities are normalised by their respective value at the highest Reλ.

0.2 % over more than three decades of Reλ. Similar considerations can be extended
to the case of Batchelor turbulence, reported in figure 7(b,d). As already shown by
Meldi & Sagaut (2012) the classical Loytsianski integral is not an invariant, while
the corrected integral IB1 exhibits a similar evolution as Cε . For Batchelor turbulence,
the variation of Cε is approximately 50 %, which is much larger than that for Saffman
turbulence. This is associated with a stronger relaxation of the turbulence equilibrium
condition. On the other hand, the Batchelor turbulence invariant Iγ follows the same
variation as that for Saffman turbulence, suggesting this could be a true (higher-order)
universal invariant, which is also the case for S.

5. Conclusions
Numerical simulations based on a EDQNM model were carried out in freely

decaying isotropic turbulence over more than three decades of the Taylor microscale
Reynolds number, Reλ (200 6 Reλ 6 5 × 105) in order to ascertain the effect of the
Reynolds number on the skewness S and flatness factor F of the longitudinal velocity
derivative. The choice of EDQNM is primarily based on the fact that it permits an
investigation of the Reynolds number effect on statistical moments over a large range
of Reλ. Since the moments of ∂u/∂x provide a measure of small-scale intermittency,
the effect of the Reynolds number on the latter is investigated in a natural fashion,
starting from the Navier–Stokes equations. Further, the present approach also avoids
confinement effects that may for example exist in box turbulence simulations. While
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the analytic expression (2.4) (Djenidi et al. 2017b) through dimensional arguments
where it is assumed that F can be estimated dimensionally from only k and E(k) in
similar fashion to the behaviour that can be determined via exact transport equations
for the mean energy dissipation rate ε and the palinstrophy G. Both Batchelor
turbulence and Saffman turbulence are considered. The following results are found:

(i) S reaches a constant value of approximately −0.53;
(ii) the first and second terms of the F-expression (2.4) become constant, indicating

that F too becomes constant. This result is also qualitatively consistent with that
obtained by Qian (1986);

(iii) the constants mentioned above are reached for Reλ > 104;
(iv) the EDQNM prediction (after optimising the free coefficients introduced by the

dimensional arguments) of the behaviour of F at moderate Reλ is consistent with
the trend observed in the data reported in the literature, see Tang et al. (2018).
The prediction also shows that F approaches a constant when Reλ→∞;

(v) the EDQNM calculation of the term
∫
∞

0 k∗4E∗p(k
∗) dk∗, which Tang et al. (2018)

identify as the upper limit for F, indicates that, as Reλ increases, this term first
increases before becoming constant when Reλ > 104.

Further, a new invariant Iγ is defined and compared with other classical invariants
reported in the literature, such as the dissipation energy coefficient Cε , the Birkhoff–
Saffman integral and the Loytsianski integral. Over more than a three decade variation
in Reλ, Iγ varies by approximately 0.2 % and is independent of the large-scale features
(irrespective of whether Saffman or Batchelor turbulence is used). This implies that,
potentially, Iγ is a true invariant, against which both experimental and numerical
simulation results can be tested.

While the present analysis is carried out within the framework of EDQNM, the
results raise some doubts regarding the anomalous behaviour usually associated with
the effect of intermittency. Further, the results suggest that these effects, which are
not accounted for by the EDQNM model, cannot be fully responsible for the trends
observed in figure 5. Indeed, the FRN effect captured by the EDQNM results appears
to be at least comparable with that derived from the Navier–Stokes equations, as
reflected in the DNS and experimental data at moderate Reynolds numbers. One can
argue that the absence of a model for intermittency (generally identified as the source
of the Reynolds number dependence of S and F) in the EDQNM model supports the
view that the behaviour of S and F observed so far for Reλ 6 103 reflects a genuine
FRN effect. It is important to stress that the present results do not imply a lack of
intermittency. The results simply indicate that this phenomenon does not appear to
control the behaviour of S and F for Reλ 6 103, which is the range of investigation
achievable with experiments and DNS at the present time.

In conclusion, one must at least first ensure that Reλ is large enough for the FRN
effect to be negligibly small before any anomalous behaviour due to intermittency can
be assessed unambiguously.
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