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Reliability of Large-Eddy Simulations:
Benchmarking and Uncertainty
Quantification

M.V. Salvetti, M. Meldi, L. Bruno and P. Sagaut

1 Assessment of Quality and Reliability of Large-Eddy
Simulations

Nowadays, large-eddy simulation (LES) is increasingly applied to complex flow
configurations of interest in technological or environmental applications. In this
context, the assessment of the quality and reliability of LES results has become a
topic of increasing interest. ForLES this task is particularly difficult, because different
sources of uncertainty may have comparable effects and may interact in a nonlinear
way leading to counterintuitive results. A typical example is the interaction between
discretization errors and subgrid scale (SGS)modeling. The related unexpected result
behaviors observed in the literature are the following: (i) for given scheme and
SGS model, accuracy deteriorating with grid refinement, (ii) for given grid and SGS
modeling, lower-order schemes giving better results than higher-order ones or, (iii)
for given grid and numerical scheme, no model simulations giving better results than
LES with SGS modeling (see e.g. [1, 2]). The strategies proposed in the literature
to manage numerical errors are rather controversial. A first way of thinking is that
numerical errors should be made negligible and all the burden should be on the SGS
model. This can be achieved either by using high-order not-dissipative schemes, as
recommended e.g. in [3, 4], or by applying explicit filtering of width significantly
larger than the grid size [5, 6]. However, due to the huge computational resources
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required, both these strategies are unpractical for complex flows of practical interest.
A completely different approach is to get rid of physically based SGS models and to
use the dissipation provided by numerical schemes both for numerical stabilization
and SGS modeling (see, e.g., [7, 8]). Although this latter strategy may be attractive
from a practical viewpoint, since it eliminates the need of implementing a SGS
model, the quality of the results strongly depend on the characteristics of the used
numerical methods, which should have again a high-order of accuracy and provide a
dissipation concentrated on the smallest resolved scales. Numerical schemes usually
available in commercial and open-source codes may conversely lead to inaccurate
results due to a too strong numerical damping (see, e.g., [9]). As a consequence,
the most widely adopted practice is to use an explicit SGS model and to accept a
not-perfect numerics. In this context, the importance of different errors and their
interactions should be assessed.

Benchmarks and comparisons with reference data, either from experiments or
direct numerical simulations, have classically been used in the last decades for
appraising the accuracy of LES results and the suitability of numerical methods
or SGS models. However, uncertainties can also derive from a lack of knowledge of
the considered problem set-up, as for instance some features of the incoming flow
which are difficult to be perfectly controlled and/or characterized in experiments.
Another critical issue is indeed the sensitivity of LES results to the different simula-
tion parameters. Systematic sensitivity studies are difficult to be carried out because
of the large cost of each single LES simulation.

Methodologies aimed at obtaining insights in the error behavior and interaction
and in the sensitivity to the parameters of theLES results have been recently proposed.
One is the error-landscape approach (see, e.g., [10]) inwhich a full response surface of
the LES error behavior is built from a systematic variation of influencing parameters,
as, e.g., model constants and grid resolution. This approach provides a framework to
characterize the combined effects of modeling and discretization, but at the cost of a
large number of simulations, which may become unaffordable for complex cases or
when a large number of parameters is involved. Another approach, which is being
increasingly used in recent years in computational fluid dynamics, is Uncertainty
Quantification (UQ), in which the uncertain or unknown parameters are modeled
as input random variables with a given probability distribution. These uncertainties
can be propagated through the computational model to statistically quantify their
effect on the results. Since this propagation process implies large computational
costs, especially for LES, a computationally inexpensive surrogate model is usually
adopted to build continuous response surfaces in the parameter space starting from
a few deterministic simulations. Different techniques exist to build these surrogate
models, such as, for instance, generalized Polynomial Chaos, Stochastic Collocation
or Kriging. A few specific applications of stochastic UQ approaches to LES can be
found in the recent literature [11–16].

The paper is further organized as follows. In Sect. 2 a few examples of benchmarks
involving LES simulations are presented, to highlight the kind of useful indications
but also the limits of this approach. In Sect. 3 an example of stochastic UQ for LES,
based on generalized Polynomial chaos (gPC), is given.
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2 Benchmarking: A Few Examples

Benchmarks are commonly used to assess the accuracy and reliability of CFD results.
Usually, there is a reference experiment or DNS and different numerical results are
collected and compared against the reference data. Several benchmarks are docu-
mented in the literature also involving LES.

As an example, among theoldest ones is the benchmarkon theflowarounda square
cylinder at Re = 22,000 (see the review in [17] and the ERCOFTACWiki database,
http://uriah.dedi.melbourne.co.uk/). RANS and LES results were compared against
reference experimental data in terms of aerodynamic loads and of mean and fluc-
tuating velocity fields. It was concluded in [17] that all in all LES seems to give
better predictions than RANS and it better captures the complex features of the flow.
However, none of the LES results were found to be uniformly good and entirely sat-
isfactory and there were large differences between the individual calculations which
were not completely explained. Several possible reasons for the lack of agreement
of LES results with the experiments were indicated, such as insufficient grid reso-
lution near the side walls of the cylinder and/or in the spanwise direction, neglect
of turbulence in the incoming stream, numerical diffusion and insufficient domain
extent.

Benchmark results are evenmore difficult to be analyzed for benchmarks in which
a-priori there are no reference experiments or simulations, as in the case of the BARC
benchmark, dealing with the flow around a rectangular cylinder with chord-to-depth
ratio equal to 5 and infinite spanwise length, recently reviewed in [18]. This con-
figuration is of practical interest for civil and industrial structures; in spite of the
simple geometry, the related flow dynamics and topology is complex, being turbu-
lent with separation from the upstream corners and reattachment on the cylinder
side and vortex shedding from the rear corners. Besides comparing experimental and
numerical results, one of the goals of BARC is to assess the consistency of wind
tunnel measurements carried out in different facilities and of computational results
obtained through different approaches. About 20 wind tunnel tests and 50 numerical
simulations were reviewed in [18]. LES simulations amount to more than 50% of
the collected numerical contributions to BARC; therefore, this context gives also a
good opportunity for the assessment and the validation of results obtained through
LES codes. The LES contributions to BARC were specifically reviewed in [19]. For
some quantities an overall very good agreement was found between the different
numerical results and experimental data. An example is the mean drag coefficient,
〈CD〉, i.e. the non-dimensionalized drag acting on the cylinder averaged in time and
in the spanwise direction. Only one measurement of this quantity is available within
BARC, giving 〈CD〉 = 1.03; previous experiments also indicate that the mean drag
coefficient is very close to one. The predictions of the numerical contributions to
BARC are summarized in Table1. It can be seen that the ensemble average of the
values given by LES simulations and that of the predictions of URANS and hybrid
approaches are practically the same and very close to the experimental value. How-
ever, rather unexpectedly, it appears that the dispersion of the LES predictions is
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Table 1 Mean drag coefficient: BARC numerical results

LES Hybrid and URANS Selected LES

Ensemble average 1.07 1.07 0.99

Range 0.96–1.39 0.96–1.29 0.96–1.04

larger than that of URANS and hybrid URANS/LES simulations. Nonetheless, it
turns out that the largest values of 〈CD〉 were obtained in a 2D LES and in 3D LES
having a too small computational domain; if these simulations are discarded, the dis-
persion range of LES predictions becomes smaller than that of URANS and hybrid
simulations (see the last column of Table1). Therefore, it appears that wrong choices
of the computational domain dimensions in LES can lead to very bad predictions,
worse than those of URANS, independently of the other numerical and modeling
ingredients. This gives an example of best practice indications that can be obtained
from benchmarks. On the other hand, for other quantities, such as the pressure dis-
tribution over the cylinder lateral surface or the amplitude of time oscillations of lift,
the dispersion of both experimental and numerical results is so large that it would be
unacceptable for engineering or design applications. As an example, Fig. 1 summa-
rizes the ensemble statistics of standard deviation in time of the pressure coefficient
on the lateral cylinder side; the range of values obtained in experiments and in LES
and detached-eddy (DES) simulations is reported for different locations over the
cylinder lateral side, together with the median, the 25-th and the 75-th percentile
values computed among all the contributions. LES and DES give a distribution qual-
itatively similar to the experiments but their dispersion is larger than in experiments.
Different possible reasons of the observed large dispersion were analyzed in [18],
but not conclusive remarks could be drawn. It is certain that some flow features of
the BARC are extremely sensitive to small uncertainties, which may be present both
in wind-tunnel tests and in computations. Sources of uncertainties are different in
experiments and in simulations, further complicating their comparison. Recent sto-
chastic UQ and sensitivity studies for URANS and LES of the BARC flow can be
found in [20, 21] (not shown here for the sake of brevity).

3 Uncertainty Quantification Through Generalized
Polynomial Chaos

The polynomial chaos approach is a spectral decomposition of random processes in
terms of an orthogonal basis. The uncertain parameters are assumed to be random
variables, ξ(ω) and the output quantities, E(ω), also considered as random fields, are
approximated through their Galerkin projection over a polynomial orthogonal basis:
E(ω) = ∑∞

k=0 akξ(ω). In gPC, the response surface of the output quantities in the
parameter space is obtained by truncating the sum to a finite (small) number, N . The
polynomial family is chosen by the user, on the basis of the (assumed) stochastic
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Fig. 1 Ensemble statistics of the time standard deviation of the pressure coefficient distribution
over the cylinder side; a experiments, b LES and DES contributions. Taken from [18]

properties of the input parameters. This choice affects the speed of convergence
of the truncated series. Each coefficient of the truncated series can be computed as

follows: ak = 〈E, φk〉
〈φk, φk〉 , where 〈·, ·〉 is a suitable scalar product. The number of points

used to discretize the random variable space, which corresponds to the number of
deterministic simulations to be carried out, is chosen in order to obtain converged
integrals when computing the polynomial coefficients. Each deterministic simulation
corresponds to a quadrature point in the parameter space.

As an example of error quantification in LES through gPC, we consider a spa-
tially evolving mixing layer at a Reynolds number, based on the difference between
the two stream velocities and on the vorticity thickness at the inlet, equal to 700.A
highly-resolved LES (HRLES) was carried out by using the dynamic Smagorinsky
SGS model; the results were validated against DNS and LES data in the literature
and are used as a reference for the UQ of errors in LES carried out on grids having
a resolution four time coarser than the HRLES one in the streamwise direction and
twice coarser in the other directions and using the standard Smagorinsky SGSmodel.
Further details on the test case and on the simulation set up can be found in [14].
The sensitivity of coarse LES results to the following parameters is investigated:
the stretching ratio of the grid cells in the streamwise and lateral directions and the
Smagorinsky model coefficient. Although these parameters can obviously be fixed
to precise deterministic values, the lack of knowledge of their appropriate values
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can be considered as an epistemic uncertainty. They are then considered as uncertain
parameters and the previously described gPC approach is used for UQ. Their prob-
ability density function (PDF) is assumed here to be uniform over the considered
variation range (see [14]) and, hence, Legendre polynomials are considered in the
gPC expansion, which is truncated to N = 3; 64 coarse LES were then carried out
to build the response surface in the parameter space. Uncertainty propagation on the
errors for three quantities of practical interest, viz. the mean streamwise velocity,
the momentum thickness and the shear stress, is investigated. The error was com-
puted as the L2 norm of the difference between the values of the above quantities in
HRLES and those in coarse LES, for different streamwise sections, averaging over
the y and z directions. A typical feature of the considered spatially evolving flow is
the progressive transition from a laminar regime, highly dependent on the inlet con-
ditions, to a fully-turbulent one. The computational domain can therefore be divided
in two zones, by assuming that the fully-turbulent region starts at the location where
the signature of the inlet perturbations on the flow is no more apparent, roughly at
x = 12Λ, Λ being the adopted reference length, multiple of the inlet vorticity thick-
ness. As an example of the kind of information which can be obtained from such an
analysis, Fig. 2a shows the behavior of the mean stochastic error for the considered
quantities of interest, at different distances from the domain inlet. It is clear that
error on the mean streamwise velocity (circles) is much lower than that on the other
two variables, never exceeding 1.5%. The mean errors on the momentum thickness
and on the shear stress significantly vary with the distance from the domain inlet. In
the inlet-dependent zone, the stochastic error decreases moving downstream. This
indicates that the most critical part of this region is connected with the initial stages
of transition. The opposite behavior of the error is observed in the turbulent region;
this is probably due to a progressively coarsening of the streamwise resolution when
moving downstream (the grid nodes are clustered near the inlet) and to the pres-

Fig. 2 a Mean stochastic error for different output quantities. b Partial variances for the error on
momentum thickness. Taken from [14]
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Fig. 3 PDF of the error on the momentum thickness in the inlet-dependent zone (left panel) and
in the fully-turbulent one (right panel). Open circles mean stochastic value of the error; triangles
error obtained in deterministic simulations carried out with average values of the input parameters.
Taken from [14]

ence of progressively smaller turbulent flow scales. Partial variances, which quantify
the sensitivity of the errors to the single parameters and to their interactions, can
also be computed and analyzed. An example is given in Fig. 2b showing the partial
variances for the error on the momentum thickness. It can be seen that the value of
the Smagorinsky constant has the largest impact on the error; however, a peculiar
behavior is observed near the border between the inlet-dependent and fully-turbulent
zones with strong coupling between the effects of the Smagorinsky constant and of
the grid stretching in the lateral direction. Further information on the error behavior
can be obtained from the error PDFs, as shown for instance in Fig. 3 again for the
momentum thickness. In the inlet-dependent region, a huge number of parameter
combinations give error values close to the most probable one (the peak in the PDF),
but the error may be significantly larger for some combinations of the parameters.
Conversely, in the fully-turbulent region, the error distribution is less clustered than
in the inlet-dependent zone, and, hence, the stochastic mean error value (open cir-
cles) can be significantly different from the most probable one. In both zones, both
the stochastic mean and most probable error values are in turn different from the
errors obtained in deterministic LES carried out with a set of average parameter val-
ues in the considered range. For a more detailed analysis we refer to [14], where an
optimization of the parameters based on the built error response surface can also be
found.

Summarizing, assessment of the accuracy and reliability of LES results, espe-
cially for complex applications, is still today a challenge. Benchmarks can highlight
clear trends, but the reasons of observed dispersion can not always be explained, due
to different uncertainty sources present both in experiments and simulations. Uncer-
tainty quantification techniques can be useful to give hints on the error dynamics and
on the reliability of LES results. However, also UQ techniques become not viable
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for large numbers of uncertain parameters (the so-called ‘curse of dimensionality’).
A huge research effort is indeed currently made by the UQ scientific community to
develop more efficient techniques to overcome this problem.
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