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Hotspot generation by lower-hybrid (LH) launchers is found to be governed by a res-

onance in the plasma electric field response to the external drive. The kinetic analysis

in 1D-1V in the parallel direction allows one to compute the amplification effect for

small amplitude of the external drive. The resonant Lorentzian response distorts the

distribution function. An island structure is formed in the suprathermal part at the

phase velocity of the external electrostatic drive. The non-linear features enhance

the plasma response, driving overlap effects between multiple waves at rather low

amplitude. The onset of a plateau in the distribution function, with extent reach-

ing one thermal velocity, is already obtained when the standard overlap condition

is achieved. The sensitivity of the resonance to plasma parameters and large vari-

ation of the amplification magnitude can compensate the fast radial decay of the

small-scale features generated by the LH launchers, which are responsible for the

interaction with the cold electrons. This mechanism can trigger hotspot generation

further in the scrape-off layer than otherwise expected.

KEYWORDS

hot electron plateau, hotspot generation, island overlap, kinetic, lower hybrid, reso-

nance, scrape-off layer

1 HOTSPOTS DURING LOWER-HYBRID OPERATION

Lower-hybrid (LH) launchers installed in the scrape-off layer (SOL) plasma generate near electric fields that can accelerate

SOL electrons.[1–3] This mechanism is understood as the drive for hotspot generation on field lines connected to the launchers.[4]

Experimental evidence supports the latter fact, and theoretical analysis provides a qualitative understanding.[5,6] Recent experi-

mental analysis has underlined the importance of turbulence in the hotspot generation mechanism.[7] Open questions related to

this problem are the optimum between density and distance in accelerating SOL electrons on the one hand and hotspot prop-

erties on the other hand.[8,9] Regarding the latter, transport along the field line will determine the splitting between the ion

and electron channel and, consequently, the coupling to the sheath prior to deposition on a plasma-facing component. The LH

launchers generate waves in the Gigahertz range, typically from 2.5 to 8 GHz in present experiments, the frequency increasing

with the magnitude of the toroidal field of the device. In devices with strongly constrained access to the plasma, either high field

devices such as Alcator C-Mod[10] or medium-sized devices with superconducting coils as WEST Tungsten (W) Environment
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in Steady-state Tokamak,[11,12] heating and current drive must rely on waves as the conventional neutral beam heating is made

difficult. In that framework, the so-called LH system has several assets, especially to sustain plasma current in long pulse oper-

ation. However, the occurrence of hotspots in regions connected to the launchers in the parallel direction can have severe impact

on the integrity of plasma-facing components, as documented quite early on ASDEX[1] and since in several other devices.[2,4,7]

While the LH frequency is well defined, the wave vector is determined by the mechanical structure of the LH wave guides as

well as the radial propagation properties into the plasma. The sharp jump between the electric field in the launchers material,

limited to a skin depth, and that in the wave guide significantly broadens the spectrum compared to the useful wave range for

interaction with hot core electrons.[8]

The paper addresses the kinetic response of the electrons characterized by a resonance, Section 2. The impact on the generation

of a plateau in the distribution function is described in Section 3. Implication and future work is addressed in the Conclusion

and Discussion Section 4.

2 RESONANT RESPONSE OF KINETIC ELECTRONS TO HIGH-FREQUENCY ELECTRIC
FIELDS

The resonance between electrons and waves at the LH frequency, launched at 3.7 GHz in WEST, occurs for velocities v∕Vthe =

4.84 ⋅ 10−1∕(k𝜆D

√
n∕1018 m−3), where Vthe is the electron thermal velocity, and k𝜆D the wave length of the wave normalized

by the Debye length 𝜆D. At low-density n = 1018 m−3 and long wave length k𝜆D = 0.1, the resonant electrons with the LH wave

are therefore suprathermal v/Vthe = 4.8. In such a regime, electrons have small collisionality and must therefore be described

kinetically. The appropriate description of the plasma is therefore kinetic, completed by Maxwell equations to determine the

electromagnetic field. Furthermore, for wave lengths comparable to the Debye scale, one cannot assume the quasineutral limit.

To simplify the problem, we consider a single direction in position and velocity corresponding to the parallel motion of the

electrons and restrict the problem to the electrostatic limit, taking into account an external drive due to the LH launcher. In

the simplest form, we thus address a 1D-1V kinetic model with the standard Vlasov-Poisson system. The Eulerian version,

pseudo-spectral in both velocity and position directions, of the VOICE code is used in the present work. Some aspect of collisions

can be taken into account by a Bhatnagar, Gross and Krook (BGK) restoring force towards the initial distribution function. With

standard normalization, plasma frequency for time, Debye length for length scales, reference density for distribution functions

and thermal velocities for particle velocity, the two species set of equations is then:

𝜕tfe + v𝜕xfe + 𝜕x(𝜙 + 𝜙𝑒𝑥𝑡) 𝜕vfe = −𝜎e(fe − fe,0), (1a)

𝜕tfi +
√

me

mi
(v𝜕xfi − 𝜕x(𝜙 + 𝜙𝑒𝑥𝑡) 𝜕vfi) = −𝜎i(fi − fi,0), (1b)

𝜕2
x𝜙(x, t) = ∫ dv′fe(x, v′, t) − ∫ dv′′fi(x, v′′, t). (1c)

Here, − 𝜕x𝜙ext is the driving external electric field and 𝜙 the self-consistent electric potential induced in the plasma. Note

that the velocity normalization is different for each species so that the mass effect is not taken into account in the distribution

functions but appears as the square root of the mass ratio in the evolution equation of the ion species, consistent with a much

slower evolution rate for ions than for electrons. As a consequence, when addressing short time-scale effects for the electrons,

one can readily work in the frozen ion limit. In the literature, such an externally driven Vlasov equation is also addressed as

the KEEN wave[13,14] (Kinetic Electron Electrostatic Nonlinear wave). However, the emphasis is then put on a second phase of

self-sustained self-organization once the external drive is set back to zero.

The linear response for small amplitude of 𝜙ext has been analysed.[8] It is characterized by a resonant effect that can be seen

in the amplitude of the electric potential generated by the plasma.

k2 𝜙(𝜔, k) = −(Ge(𝜔∕k, 𝜎e∕k, fe,0) + Gi(𝜔∕ki, 𝜎i∕ki, fi,0))(𝜙(𝜔k) + 𝜙𝑒𝑥𝑡(𝜔, k)). (2a)

This response is computed in Fourier space, 𝜙(𝜔, k) and 𝜙𝑒𝑥𝑡(𝜔, k) being the Fourier transform of the external and

self-consistent electric potentials, respectively. The response function Ga(𝜔/ka, 𝜎a/ka, f a) for species a is defined by:

Ga(𝜔∕ka, 𝜎∕ka, fa) = ∫ 𝑑𝑣
1

v − 𝜔∕ka − i 𝜎∕ka
(−𝜕vfa(v)), (2b)
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FIGURE 1 Left Hand side: Amplitude ratio

AG between the potential generated by the

plasma and that of the external drive for k= 0.5

as a function of 𝜔, neglecting the ion

contribution and for 𝜎 = 0. The linear

approximation yields (blue) curve, and VOICE

simulations are indicated by the closed (black)

circles. The VOICE simulation is performed

with |𝜙ext(𝜔, k)| = 10−5. Right Hand Side:

Dependence of the resonant pulsation 𝜔 on the

wave vector k

FIGURE 2 LHS: Variation of the amplitude

ratio AG between the potential generated by the

plasma and that of the external drive and

variation of the width of the resonance 𝛿𝜔 for

increasing phase velocities Vres =𝜔/k,

neglecting the ion contribution and for 𝜎 = 0.

RHS: Product of the resonance width and gain

AG 𝛿𝜔

where ka = k∕
√

ma∕me. For Maxwellian distribution functions, the function Ga is related to the plasma function. Because of

the mass ratio effect, which appears via ka, the ion contribution in 2a is quite small and can be neglected. The amplitude ratio

AG =∣ 𝜙(𝜔, k) ∣ ∕ ∣ 𝜙𝑒𝑥𝑡(𝜔, k) ∣ is shown on the left-hand side (LHS) of Figure 1.

One recovers expected features; at high-frequency 𝜔≫ 1, the electron do not respond to the external field, while in the adia-

batic regime𝜔≪ 1, there is an order 1 response. Near the plasma frequency, one finds the resonant feature, with a Lorentzian-like

shape. As expected for a Lorentzian, the resonance is also characterized by a change of phase by 𝜋 between the low-frequency

regime, where the plasma electrons tend to screen the external electric potential, and the high-frequency regime, where the elec-

tric potential generated by the plasma tends to be in phase with the external drive. The VOICE simulation data (black closed

circles in Figure 1 LHS) is in very good agreement with the analytical formula. Using the latter, one can then investigate the

dependence of the resonant pulsation 𝜔 on the wave vector k, Figure 1 right-hand side (RHS). One finds an asymptotic quadratic

dependence in k of 𝜔 − 1 at small k as expected for Langmuir waves. This regime holds when increasing the wave vector up to

the normalized value of k ≈ 0.4.

Given the resonance value of 𝜔 and k, one readily defines the velocity of the electrons in phase with the wave Vres = 𝜔/k,

where Vres is normalized by the electron thermal velocity. Given the rather small range of variations of 𝜔, the resonant velocity

behaves typically as 1/k. Using the phase velocity as a key parameter, one can then analyse the change in peak half width 𝛿𝜔

and gain magnitude AG as a function of Vres, Figure 2 LHS. One finds that the gain increases faster than exponential but not

quite as fast as an exponential of exponential (fit indicated by the dashed curve, adjusted to match the behaviour at low Vres).

Conversely, the width of the resonance decreases faster than exponentially. These very rapid variations lead to extreme values

of the gain and width, the latter corresponding to the limit of maximum computer resolution. This limitation is observed in

Figure 2 RHS, where the product gain by half width is plotted versus the wave vector k. This product is nearly constant but for

the points at lowest values of k, which depart from the smooth variation as the limit of 𝛿𝜔 in numerical resolution is reached.

The points with too narrow resonance features are removed from the subsequent plots.

3 RESPONSE TO TWO WAVES

Unlike the case of LH, where the generators determine a given frequency and where the finite size effects of the launcher enlarges

the wave vector spectrum, here, we shall analyse the response to waves with the same wave vector but different pulsations.
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FIGURE 3 LHS: Trace of the electric potential

generated by the plasma at position xmid

corresponding to the centre of the box. RHS:

Variation with velocity of the time-averaged

distribution function at the same location

This approach is also quite suitable for the direct use of the chaos onset criteria known as the Chirikov parameter,[15] which is

the standard approach when estimating the onset of large-scale chaos. The various modes are then characterized by their phase

velocity, in practice determined by different pulsations and an island width, proportional to the square root of the amplitude of

the electric potential, with no change in space periodicity. The argument inspired by the transition to chaos is to assume that

when two neighbouring modes interact non-linearly (the condition being known as the overlap criterion), a plateau is created in

the distribution function that corresponds to the depletion of the slow particle region and population of the fast particle region

of the phase space. To handle this situation, the values considered are that of the external field, hence for two phase velocities

of the interacting modes and the associated electric potentials that define the island widths. The very strong response of the

electric potential generated by the collective behaviour of the plasma modifies this picture quite significantly as the width must

now be computed taking into account the plasma response, for which the gain can be so important that it dwarfs the width effect

induced by the driving electric potential.

In order to recover a situation that is reminiscent of that of overlapping modes in phase space, we consider two modes that are

symmetric with respect to the resonance. For this analysis, we set k = 1/3 such that the resonance pulsation is 𝜔0 = 1.2 and phase

velocity is 3.6 and consider two modes with pulsation 𝜔1 = 1.1 and 𝜔2 = 1.3, with phase velocity of 3.3 and 3.9, respectively.

These, being symmetric with respect to 𝜔0, have nearly equal linear amplification factor, very close to 4.2. The island width in

velocity space is then equal to 2
√

AG 𝜙𝑒𝑥𝑡, ≈ 4.1
√
𝜙𝑒𝑥𝑡. From the linear analysis, the Chirikov overlap criterion, when the sum

of the two island widths is equal to the separation between the islands, is thus expected to be reached for 𝜙ext = 0.5325 10−2.

To analyse the VOICE simulation output, let us first consider the case 𝜙ext = 0.04 10−2 and the single mode 𝜔1. The time

trace of the potential response is shown in Figure 3, LHS. The behaviour of the electric potential can be separated into a

high-frequency contribution at 𝜔1 and a low-frequency envelop that also exhibits a time dependence, a growth first and then

what could be damped oscillations. While the linear calculation allows one to determine the plasma response in terms of the

electric potential, it is important to underline that one cannot compute a steady-state solution for the distribution function f e.

Indeed, the particle–wave interaction drives a diverging filamentation process. This effect is smeared out by taking the time

average once the main transient effects are ended, Figure 3 RHS. For the latter, one finds that ⟨f e⟩ hardly departs from the initial

Maxwellian (dashed curve) and that the departure from the Maxwellian is localized at the phase velocity of the mode (vertical

dash-dot curve at V1 = 3.3) and extends within the range determined by the island width (vertical dashed lines). The response

for the distribution function takes the form of a localized flattening at the resonance. When no averaging is performed, one

readily notices that the distribution function exhibits very fine structures localized in this region of phase space as well as a

global oscillation at the driving frequency.

Comparing the cases with a drive at pulsation 𝜔1 = 1.1 and 𝜔2 = 1.3 with the same amplitude 𝜙ext = 0.04 10−2 indicates that

𝛿f e is characterized by the same structure and extent of the perturbed region, in agreement with the same amplification of the

electric potential due to the plasma response 4 𝜙ext = 4 × 0.04 10−2, in agreement with the linear analysis, shifted in velocity

due to the difference in phase velocity but with a ratio in the amplitude of ⟨𝛿f e⟩t of 3.9, while the ratio of the Maxwellian

for the two values V1 = 3.3 and V2 = 3.9 is of the order 8.7. Although one expects the same value for 𝛿f e/f e, one finds that⟨𝛿f e⟩t/⟨f e⟩t varies by a factor of order 2. Increasing the amplitude of the drive to 𝜙ext = 0.16 10−2 and considering the simulation

of either 𝜔1 or 𝜔2 indicates that the symmetry in the shape of ⟨𝛿f e⟩t is lost (Figure 4). An important feature is that a response

develops in the vicinity of V0 = 𝜔0/k, beyond the island separatrix estimated on the basis of the linear analysis. This feature is

far more pronounced for the drive at 𝜔2 than for 𝜔1. A tentative explanation is the relative location of the phase velocity of the

mode, that of the resonance V0 and the bulk of the distribution function. Indeed, the Langmuir waves are essentially governed

by the bulk of the distribution function (and are consequently recovered in the fluid approximation). These are coupled to the

velocity layers neighbouring the phase velocity, which drives the amplification. For velocities larger than the phase velocity, the
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FIGURE 4 Time average of the response of

the distribution function compared to the initial

Maxwellian ⟨𝛿f e⟩t for an external drive with

amplitude 0.16 10−2 for two different

simulations. Bold dash-dot vertical lines

correspond to phase velocity of the modes, the

thin dash-dot vertical lines indicate the phase

velocity at pulsation 𝜔0 and the dashed vertical

lines the extent as expected from the linear

analysis. LHS: For pulsation, 𝜔1 = 1.1. RHS:

For pulsation, 𝜔2 = 1.3

FIGURE 5 LHS: Time average of the

response of the distribution function and initial

Maxwellian for an external drive with

amplitude 56.25 10−4 for three different

simulations bold large dash (black) initial

Maxwellian, thin short dash (blue) single

frequency at 𝜔2, boldshort dash (black) single

frequency at 𝜔1, plain (blue) curve with the two

frequencies 𝜔1 and 𝜔2. Bold dash-dot vertical

lines correspond to phase velocity of the

modes, the thin dash-dot vertical lines indicate

the phase velocity at pulsation 𝜔0 and the

dashed vertical lines the extent as expected

from the linear analysis. RHS same simulation

results and trace convention for ⟨𝛿f e⟩t.

response is small. As a consequence, when the plasma–wave interaction region is ahead of the resonance, the latter is weakly

modified. Conversely, when the plasma–wave interaction region lies beyond the resonance, a response at the resonance V0

can be generated provided the detuning between the excited mode and the resonance is not too large, typically of order 0.1 in

pulsation, but also because the amplification at the resonance is quite large (AG ≈ 16), in the present case four times larger than

at the chosen phase velocity (AG ≈ 4).

Increasing the driving mode amplitude to reach the overlap threshold according to the linear analysis leads to the formation

of a plateau in the distribution function when the two modes 𝜔1 and 𝜔2 are present, Figure 5 LHS. This is a signature of

non-linear effects driving a mixing of the distribution function over a large region of velocity space, here typically from 2.9 to

4.1 Vthe. The plateau is built by depleting the low velocity region, typically from 2.9 to 3.1. These particles are accelerated by

the electric field to higher velocities due to the combined effect of the two modes, thus generating the plateau in the distribution

function. Although the overall distortion of the distribution function is governed by non-linear effects, it appears to be rather

well approximated as the superimposed results of the distortion due to the two modes when considered independently, Figure 5

RHS. As already discussed for the case with lower amplitude drive, these cases with a single mode are already characterized

by non-linear effects that spread the effect of either perturbation in the whole resonance region.

4 DISCUSSION AND CONCLUSION

The interplay of electrons with LH waves in the edge plasma of magnetic confinement devices, addressed in the kinetic frame-

work for the dynamics parallel to the magnetic field, is characterized by a resonance when the amplitude of the external drive is

small. The electric field can be amplified by several orders of magnitude when resonance conditions are reached. This collec-

tive plasma response modifies the standard picture of island overlap that has been used when describing the generation of a fast

electron tail. The non-linearity associated with that response tends to distort the distribution function in the phase space region

towards the velocities associated with the largest linear amplification. This non-linear response leads to large-scale velocity

transport and the appearance of a plateau in the electron distribution function at lower external perturbation than expected.

In the present analysis, to facilitate the simulations, we have considered a fixed wave vector and tuneable frequency. Regarding

LH experiments, one has, in fact, a fixed frequency but a broad and space-dependent spectrum of wave vectors. The scaling
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dependence for the wave vectors are typically k𝜆D ≤ 0.5∕
√

n∕1018 m−3. The small-scale structures of the electric field are

then responsible for the interaction with the SOL plasma. These high multi-polar components decay exponentially in the radial

direction away from the LH launcher. While such a feature should locate the interaction region of the neighbourhood of the LH

launcher, the more-than-exponential sensitivity of the resonance feature can overcome the geometrical screening of the small

scales of the driving electric field. Compared to the reference resonance discussed in this paper with k𝜆D = 1/3 and v𝜙/Vthe = 3.6,

a several orders of magnitude increase in the plasma response can be achieved by increasing the density and slightly lowering the

electron temperature. The occurrence of cold plasma blobs in the far SOL, or divertor operation, can therefore create conditions

for such highly non-linear behaviour.

Finally, it is to be underlined that these effects correspond to a wave–particle interaction in the suprathermal tail of the

electron distribution function. The corresponding density of accelerated electrons is quite small so that the expansion of the

hot electrons only requires a small DC-restoring electric field to drive a return current to quasineutrality. As a consequence,

this effect should govern only a negligible acceleration of the ions. The LH hotspot generation in this regime would then be

governed by collisionless electron heat transport due to the evaporation of the fast electrons. This point is to be further discussed

in following papers.
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