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ABSTRACT

Genome-wide association studies (GWAS) associate
single nucleotide polymorphisms (SNPs) to complex
phenotypes. Most human SNPs fall in non-coding
regions and are likely regulatory SNPs, but linkage
disequilibrium (LD) blocks make it difficult to distin-
guish functional SNPs. Therefore, putative functional
SNPs are usually annotated with molecular mark-
ers of gene regulatory regions and prioritized with
dedicated prediction tools. We integrated associated
SNPs, LD blocks and regulatory features into a su-
pervised model called TAGOOS (TAG SNP bOOSting)
and computed scores genome-wide. The TAGOOS
scores enriched and prioritized unseen associated
SNPs with an odds ratio of 4.3 and 3.5 and an area
under the curve (AUC) of 0.65 and 0.6 for intronic
and intergenic regions, respectively. The TAGOOS
score was correlated with the maximal significance
of associated SNPs and expression quantitative trait
loci (eQTLs) and with the number of biological sam-
ples annotated for key regulatory features. Analysis
of loci and regions associated to cleft lip and human
adult height phenotypes recovered known functional
loci and predicted new functional loci enriched in
transcriptions factors related to the phenotypes.

In conclusion, we trained a supervised model
based on associated SNPs to prioritize putative func-
tional regions. The TAGOOS scores, annotations
and UCSC genome tracks are available here: https:
//tagoos.readthedocs.io.

INTRODUCTION

Complex human phenotypes arise from a contribution of
genetic and environmental factors. Genome-wide associa-
tion studies (GWAS) is a key technique to link genetic loci
to human phenotypes (1). For instance, a single GWAS de-
tected more than 400 loci associated to adult human height
(2). Given the large amount and importance of GWAS, sev-
eral databases have compiled GWAS results (3–5)

The large majority of associated SNPs fall in intronic and
intergenic regions (6). This association is likely mediated
through gene regulatory regions and enhancers, as for in-
stance, non-coding associated loci are enriched in eQTLs
and DNase I hypersensitive sites (DHS) (7,8). Enhancers
of gene expression are non-coding regions at any distance
of regulated genes with particular chromatin configurations
that facilitate transcription factor (TF) binding and gene
expression (9). The chromatin of enhancers is DNase I
hypersensitive, marked by particular histone modifications
such as histone H3 lysine 4 monomethylation (H3K4me1)
and H3K4me2, histone H3 lysine 27 acetylation (H3K27ac)
marks and produces enhancer RNAs. The three dimen-
sional structure of the chromosome then brings closer en-
hancers and transcription start sites, for the TFs to recruit
RNA polymerase and promote gene transcription (10).

The resolution of associated loci is limited by linkage dis-
equilibrium (LD) blocks of correlated SNPs. In addition,
mechanistic understanding of the association requires the
analysis of the loci at the molecular level. To prioritize and
understand functional non-coding associated loci, the sim-
plest option is to annotate the loci with key regulatory fea-
tures such as H3K27ac or ChromHMM chromatin states
(11). Regarding dedicated computational tools, there are
two broad families to prioritize functional loci in LD blocks
associated to complex diseases (Supplementary Tables S1
and S2). The first family of computational tools, which
we call GWAS loci priorization approaches, link GWAS
loci, LD blocks and regulatory annotations. Tools like Fun-
ciSNP or HaploReg retrieve SNPs above an LD cutoff and
annotate them with gene regulatory annotations (12,13)
(Supplementary Table S1). More elaborated methods such
as GWAS3D, GREGOR and GenoWAP calculate proba-
bilities for the set of GWAS loci, which take into account
the enrichment of the GWAS loci annotated with regula-
tory features within the LD blocks (Supplementary Table
S1) (4,14,15). These methods usually do not provide pre-
calculated scores genome-wide and therefore they cannot be
easily compared to each other. The second family of com-
putational tools, which we call regulatory variant prioriza-
tion approaches, use statistical or classification methods to
learn models from regulatory variants with known medical
impact based on signatures of regulatory annotations. An
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important difference is that regulatory variant priorization
approaches do not take into account the LD structure of
reference populations. Regulatory variant priorization ap-
proaches can be divided again in supervised and unsuper-
vised approaches. In supervised methods such as CADD,
GWAVA, DANN, FATHMM-MKL, DIVAN, REMM and
LINSIGHT, a set of known functional variants is used as
input to create a model (Supplementary Table S2) (16–22).
In unsupervised priorization methods such as FunSeq2,
DeepSea, FitCons, GenoCanyon, EIGEN, IW-Scoring and
PINES, the score is calculated in the absence of known
functional variants (Supplementary Table S2) (15,23–28).
Regulatory variant priorization approaches usually provide
pre-computed scores genome-wide and have been tested on
GWAS loci with moderate to low success (AUC ≤0.6) (27).

Here, we train a supervised model called TAGOOS (TAG
SNP bOOsting) based on non-coding associated loci and
regulatory features that takes into account the LD struc-
ture of the reference population. The TAGOOS score is able
to prioritize and enrich unseen non-coding associated loci
at higher levels than most existing variant priorization ap-
proaches. We use the TAGOOS score to analyze two loci as-
sociated to nonsyndromic cleft lip and adult human height.
The TAGOOS score recovers known gene regulatory re-
gions and SNPs within the two loci and make new predic-
tions.

METHODS

Supervised classification using XGBOOST

XGBOOST is a software library for supervised classifica-
tion based on the gradient boosting technique. The gradi-
ent boosting technique uses ensembles of regression trees
constructed with the boosting meta-algorithm. The XG-
BOOST software has several advantages over othe gra-
dient boosting libraries. Regularization has been formal-
ized in the objective function to better control over-fitting.
The XGBOOST library has been optimized for large data
sets. We used the python framework with the binary logis-
tic objective function and parameters colsample bytree 1,
eta 0.3, max delta step 1, max depth 6, min child weight 1,
num boost round 10 and subsample 1 for both intronic and
intergenic models.

Training

Training SNPs that were common (MAF > 1%), belonged
to the European population and to chromosomes 1–22
were selected from the 1000 Genome data set using plink
(v1.90b4.4 64-bit) (29). Intronic and intergenic SNPs were
defined relative to RefSeq gene annotations. For intergenic
SNPs, 1 kb gene upstream regions were excluded to avoid
gene promoters during the training. The following steps
were carried out to create and train the model. Index SNPs
were generated with plink indep option: 5, 1, 100. Link-
age disequilibrium (LD) between training SNPs was com-
puted using plink ld-snp-list limited to windows of 1000 kb,
1 000 000 SNPs and r2 of 0.8. SNPs were defined as asso-
ciated if the SNP showed at least one significant associa-
tion (P < 5 × 10−8). Expression phenotypes present in the

GRASP database were removed before the training step. In-
dex SNPs were labelled as positive if they were in LD with
an associated SNP and negative otherwise (Figure 1A). The
training matrix contained 2 834 469 index SNPs (2.2% pos-
itive) in the intronic regions and 3 454 116 (1.6% positive)
in the intergenic regions. Index SNPs labels were annotated
with the LD r2 value whenever r2 ≥ 0.8 to annotated SNPs
or 0 otherwise (Figure 1A). In Figure 2A, B and Supple-
mentary Tables S5 and S6, the feature gain importance type
corresponds to the average accuracy gain brought by a fea-
ture to the branches it is on (http://xgboost.readthedocs.io,
accessed 14 February 2018). Performance of the training
data set was evaluated using a leave-one-chromosome-out
cross-validation strategy using each of the 22 somatic chro-
mosomes (Supplementary Figure S2).

Genome-wide TAGOOS scores and P-values

The selected features of the intronic (495 features) and inter-
genic (455 features) models were used to annotate intronic
and intergenic genomic regions, respectively (Supplemen-
tary Tables S5 and S6). The genomics regions were binned
based on genomic annotation groups and scored. One mil-
lion intronic or intergenic positions were sampled to calcu-
late the TAGOOS P-value as one minus the empirical cu-
mulative distribution function of the random scores (Sup-
plementary Figure S3).

Analysis of binding of transcriptional regulators and mouse
ontology

SNPs were split according to the TAGOOS significance
and annotated using non-redundant TFs from the ReMap
database (30,31). For each TFs, the percentage of bound
SNPs with either TAGOOS-significant or non-significant
scores was calculated and assessed with a paired Wilcoxon
test for transcriptional regulators (Figures 4C, F, 5C, D
and 6C–F). The TFs were sorted according to the differ-
ence of percentage of bound SNPs with significant and non-
significant scores and plotted (Figures 4C, F, 5C and 6C, D).
In Figures 5D and 6E, F, only the first 10 TFs were plot-
ted. This list of TFs in Figures 4C, F, 5C and 6C, D) sorted
by the binding difference between TAGOOS-significant and
non-significant SNPs was split in two equal groups and sub-
mitted separately or together to the EnrichR web site (32).
The EnrichR combined scores of mouse MGI phenotypes
related to orofacial or body size phenotypes were plotted
(Figures 5E and 6G, H).

Motif analysis

Input sequences were built with a 100 bp sequence around
each SNP with either the RefSeq allele or the most com-
mon alternative allele. Sequences of TAGOOS-significant
or non-significant SNPs with the RefSeq allele were used
to create the background model with Markov parame-
ter 1. A library of non-redundant motifs based on RSAT
matrix-clustering and the HOCOMOCO database was used
(33,34). The matrix-scan tool of the RSAT suite was run
to detect significant motifs (P < 1 × 10−4) (35). The motif
density was plotted in 10 bp bins of the 100 bp sequences
(Figure 4G, H).
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Figure 1. A GWAS SNP prediction model based on gene regulatory annotations. (A) Computation of training and test data sets from LD pruned index
SNPs, associated SNPs from the GRASP database and annotated SNPs with regulatory features. (B) AUC values of intronic and intergenic GWAS
Catalog SNPs calculated with TAGOOS, CADD, DeepSea, FATHMM-MKL, GWAVA and IW-Scoring scores. (C) Odds ratio of GWAS Catalog SNP
enrichment in significant regions (P<0.05) computed with TAGOOS, CADD, DeepSea, FATHMM and IW-Scoring. (D) Odds ratio of GWAS Catalog
SNP enrichment in TAGOOS-significant or cell-specific regulatory (promoter flanking region, weak or strong enhancer) chromatin state regions. (E, F)
Box plots of TAGOOS scores of GWAS Catalog SNPs split by the negative decimal logarithm of the GWAS P-value in intronic and intergenic regions.

Data sets, scores and software

SNPs were downloaded from here: GRASP (3), NCBI db-
SNP (36), 1000 Genomes databases (37), GWAS Catalog
(5), ClinVar (38), a height GWAS (2) and a cleft lip as-
sociation study (11) (Supplementary Table S3). Annota-
tions were downloaded from here: expressed enhancers (39),
eQTLs (40), ReMap (30,31), RoadMap (41) and H3K27ac
from the Young laboratory (42) (Supplementary Table S3).

Training and test pipelines were implemented with
Snakemake (Supplementary Figure S1) (43). SNP RS iden-
tifiers were converted to coordinate bed files using the
UCSC mysql server (44). Coordinate bed files were con-
verted to fasta sequences using the UCSC twoBitToFa
tool (44). Peak bed files were manipulated using bedtools
(v2.26.0) (45). The Integrative Genomics Viewer was used

to browse the genome (46). Heatmaps (pheatmap package),
correlogram (corrplot package), factor analysis and statis-
tical tests were carried out with the R software.

The TAGOOS scores, P-values, negative decimal loga-
rithms of the P-values, annotations and UCSC tracks are
provided here: https://tagoos.readthedocs.io. The developer
documentation and scripts to download the data sets, anno-
tate the SNPs, train the model and score the genome can be
found here: https://github.com/aitgon/tagoos.

RESULTS

Training data set and model performance

First, we computed a set of pruned index SNPs for chro-
mosomes 1–22 that are in approximate linkage equilibrium
with each other (Figure 1A, Supplementary Figure S1). In-
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Figure 2. Analysis of selected features. (A, B) Best ten predictor features in the intronic and intergenic models assessed by the XGBOOST gain feature
importance type. The gain feature importance represents the average accuracy gain brought by a feature to the branches it is on. (C, D) Percentage of
total length, feature number and average peak length between selected and initial features for given data sets in the intronic and intergenic regions. (E, F)
Percentage of selected features for given molecular assays with higher percentage in intronic (E) or intergenic (F).

dex SNPs were labelled as positive or negative depending
on whether index SNPs were in LD (r2 > 0.8) or not with
associated SNPs from the GRASP database (3). Then, we
annotated 1000 genome database SNPs with 4684 molec-
ular features from various public databases related to non-
coding gene regulatory sequences such as eQTLs, H3K27ac
or transcription factors (Figure 1, Table 1, Supplementary
Tables S3 and S4). Index SNPs were annotated with the
linkage disequilibrium (LD) r2 between the index SNP and
the annotated SNP and the annotation (Figure 1A). This
so-called training data set was used to train the XGBOOST
algorithm (47). Preliminary analysis showed that the most
relevant chromatin marks were different in intronic and in-
tergenic regions. Therefore we created two models for in-
tronic and intergenic regions based on the 22 somatic chro-
mosomes.

To find optimal parameters and calculate the perfor-
mance, we carried out a leave-one-chromosome-out cross-
validation procedure where a model was trained based on
a set of chromosomes and the model was tested in a differ-
ent chromosome. The average area under the curve (AUC)
performance for the associated SNPs (P < 5 × 10−8) from
the GRASP database versus random SNPs was ∼0.65 for
both the intronic and intergenic SNPs (Supplementary Fig-
ure S2). This result suggests that the training data set is able
to produce models that enrich unseen associated SNPs.

Then we annotated intronic and intergenic regions
genome-wide with selected features and computed the TA-
GOOS scores (Figure 1A). To evaluate the TAGOOS score
with unseen GWAS SNPs, we downloaded the GWAS Cat-
alog and removed SNPs present in the GRASP database
(5). Prediction of associated SNPs in the GWAS Cata-
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Table 1. Size of the annotation data sets

Peak Number [M] Total Length [Mb] Feature Number Peak Length Average [bp]

Expressed enhancers 0.2 12,407 115 58,505
ENCODE 264.3 122,143 2,864 462
GTEx 16.4 16 44 1
ReMap 13 4,598 550 354
Roadmap 160 67,906 1,025 424
Young H3K27ac 1.1 7,454 86 6,817
TOTAL 455 214,525 4,684 417

log SNPs versus random DBSNP SNPs reached AUC val-
ues of ∼0.65 for the intronic and 0.60 for the intergenic
model (Figure 1B, C). We compared the AUC values of
TAGOOS with other priorization tools of functional SNPs,
namely CADD, DeepSea, FATHMM-MKL, GWAVA and
IW-Scoring (16,17,19,24,27). Generally, TAGOOS showed
better AUCs than the other priorization tools. A notable ex-
ception is IW-Scoring for intergenic regions, which reached
AUC 0.7 in intergenic regions, while TAGOOS showed only
AUC 0.6 (Figure 1B). In the same region, GWAVA and TA-
GOOS performances were roughly equivalent with AUC
0.6 (Figure 1B). These AUC values were generally consis-
tent with a recent survey of functional SNP priorization
tools for priorization of GWAS SNPs that included IW-
Scoring, Eigen/EigenPC, DeepSea, Funseq2, LINSIGHT,
FATHMM-NC, GWAVA, CADD, ReMM and FitCons
tools. In this survey, none of the tools reached AUC val-
ues of 0.6 for priorization of GWAS versus randomly se-
lected noncoding SNPs from the 1000 genomes database
(27). The difference between the IW-Scoring AUC perfor-
mance here (AUC 0.7) (Figure 1B) and the original reported
AUC 0.6 (27) might arise, because in the original publica-
tion of IW-Scoring, no difference between intergenic and in-
tronic SNPs was made and the negative data set came from
the 1000 genome database (27).

Another strategy to enrich functional SNPs within a link-
age disequilibrium (LD) block is to annotate the LD blocks
with gene regulatory annotations (11). A particularly pop-
ular method is to learn so-called chromatin states such as
active enhancers based on annotations related to gene reg-
ulation using Hidden Markov Models (11,48). To compare
TAGOOS with these approaches, we computed TAGOOS
P-values across intronic and intergenic regions (See Meth-
ods) (Supplementary Figure S3). These P-values allow us to
partition the genome in significantly 5% functional versus
95% non-functional regions based on a P < 0.05 threshold.
First, we generated 50 000 regions of 1000 bp and split them
according to the TAGOOS P-value. Then we computed the
probability of finding an unseen associated SNP from the
GWAS Catalog in any SNP within the TAGOOS-significant
or non-significant regions and calculated an odds ratio. We
also carried out the same protocol using as functional re-
gions the union of predicted TSS, promoter flanking re-
gions and weak and strong enhancers chromatin states gen-
erated by a combination of the ChromHMM and Segway
tools in the GM12878, H1hesc, HelaS3, HEGP2, HUVEC
and K562 cell types (48). In the case of intronic regions, we
found an odds ratio of 4.3 (PFisher < 2.2 × 10−16) using the
TAGOOS P-value compared to odds ratios of around 2 for
the chromatin state annotations (Figure 1C). In the case of

intergenic regions, we found an odds ratio of ∼3.5 (PFisher <
2.2 × 10−16) with the TAGOOS P-value compared to values
of ∼1.5 for chromatin state annotations (Figure 1C).

We also evaluated the enrichment of GWAS signals in
functional regions predicted by significant scores for regu-
latory variant prioritization methods that provide P-values,
such as TAGOOS, CADD, DeepSea, FATHMM and IW-
Scoring (Figure 1D). We defined functional regions based
on scores at a significance threshold P < 0.05. We found
that TAGOOS is able to enrich better at selected significance
thresholds than the other tools (Figure 1D).

It has been suggested that ENCODE overrepresented tis-
sues such as blood and immune cell types create a predic-
tion bias for related diseases (49). To evaluate this bias,
we split associated SNPs by GWAS traits that belonged
to five different experimental factor ontology (EFO) cat-
egories (Supplementary Figure S4). We computed AUC
values of trait-dependent associated SNPs against random
SNPs. We found that traits related to immune system dis-
eases and hematological measurements showed higher me-
dian AUC values than other diseases such as nervous sys-
tem diseases (Supplementary Figure S4). This observation
agreed with a systematic bias towards overrepresented cell
types in ENCODE that merits special attention in particu-
lar when using phenotype-dependent priorization methods
such as PINES (28).

We next examined whether there exists a correlation be-
tween the significance of genetic associations and the TA-
GOOS scores. We found a positive correlation in both in-
tronic (�Spearman = 0.19, PSpearman < 2.2 × 10−16) and in-
tergenic regions (�Spearman = 0.15, PSpearman < 2.2 × 10−16)
(Figure 1E, F). We split SNPs according to the negative dec-
imal logarithm of the most significant association P-value
and examined the distribution of the TAGOOS scores in
different groups of SNPs. We observed that the distribu-
tion of TAGOOS scores increases with the negative deci-
mal logarithm of the association P-values (Figure 1E, F).
This suggests that the maximal association significance ob-
served genome-wide across phenotypes is a predictable con-
sequence of the molecular context.

ClinVar is a golden standard for benchmarking pre-
dictors of highly penetrant SNPs. Priorization of ClinVar
SNPs showed low AUC values 0.56 and 0.65 for intronic
and intergenic values suggesting that other tools trained on
this data set are more appropriate to prioritize these type of
SNPs (Supplementary Figure S5).

These results showed that the TAGOOS method achieved
higher priorization and enrichment performances than
other popular bioinformatics tools for GWAS SNPs.
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Analysis of the features of the TAGOOS model

In the TAGOOS model, a feature is composed of the molec-
ular assay (e.g. a DNase-seq, eQTL or H3K27ac), the bio-
logical sample (e.g. a tissue or cell type) and the data set
name (e.g. GTEx or ENCODE). We used 4684 annotations
composed of 718 molecular assays in 1284 biological sam-
ples and 6 data sets (Table 1 and Supplementary Tables S3
and S4). The molecular assays comprised eQTLs, transcrip-
tion factors, histone modifications, DNA accessibility and
expressed enhancers (Supplementary Table S4). For the in-
tronic model, the learning algorithm selected 495 features
composed of 155 molecular assays in 311 biological sam-
ples (Supplementary Table S5). For the intergenic model,
the learning algorithm selected 455 features composed of
125 molecular assays in 289 biological samples (Supplemen-
tary Table S6). Among the 10 most predictive features, there
were eQTLs, open chromatin regions and H3K27ac anno-
tations (Figure 2A, B). These molecular annotations are
found in non-coding functional SNPs and gene regulatory
regions (7,50,51). To further gain insight into the molecular
properties of the model, we examined the percentage of se-
lected feature number, coverage breadth and average peak
length in each data set (Figure 2C, D). We found high per-
centage of selected eQTL features and coverage breadth in
both intronic and intergenic regions (Figure 2C, D).

To look for differences between the intronic and inter-
genic models, we compared the percentage of selected bi-
ological samples for each molecular assay relative to the to-
tal sample number in each model. We found that the per-
centage of biological samples with H3K36me3, H3K79me2
and H4K20me1 was higher for the intronic model (Figure
2E). This agrees with their known enrichment in the gene
bodies and promoters (52,53). By contrast, the intergenic
model had a higher percentage of biological samples re-
lated to DNA accessibility (FAIRE-Seq) and transcription
(POLR2A) (Figure 2F).

To further gain insights into the contribution of different
features to the models, we annotated unseen GWAS catalog
SNPs with the TAGOOS scores and selected features. We
calculated for each SNP the proportion of biological sam-
ples out of the maximal sample number of a given molecular
assay. Then we selected and plotted heatmaps of molecular
assays with a significant correlation (Bonferroni-corrected
PSpearman < 5 × 10−2) between the sample proportion and
the TAGOOS score (Figure 3B, C). We found significant
correlations between the TAGOOS score and the number
of biological samples with typical markers of regulatory re-
gions such as eQTLs, DNAse-seq, H3K4me1 or H3K27ac
(Figure 3A). Typical markers of intronic regions such
H3K36me3, H3K79me2 and H4K20me1 showed higher
correlation in intronic regions (Figure 3A). On the other
hand, the correlation of H3K4me1 and H3K27me3 with
the TAGOOS score was more significant in intergenic re-
gions (Figure 3A). These molecular markers were consis-
tent with known molecular markers of functional intronic
and intergenic regulatory regions. eQTLs were clearly found
in many biological samples for SNPs with high TAGOOS
scores (Figure 3B, C). Other markers such as DNAse-seq
and H3K4me1 were correlated statistically but not visually
(Figure 3A–C).

Next we carried out the same analysis using random
SNPs from the DBSNP databases. We randomly sampled
105 common SNPs from the dbSNP database and anno-
tated them with the TAGOOS scores and annotations. Then
we looked for significant correlations between the biologi-
cal sample proportion of each molecular assay and the TA-
GOOS scores. We also found that markers of regulatory re-
gions such as eQTLs, H3K27ac and H3K4me1 were corre-
lated with the TAGOOS score (Supplementary Figure S6).
Altogether, these results suggested that the number of bio-
logical samples with given annotations such as eQTL in a
SNP correlated with the TAGOOS score of that SNP. This
also implied that the number of biological samples positive
for an annotation such as eQTL at given SNP was also a
predictor of the maximal association significance for that
SNP.

To look for groups of correlated features, we carried out
a factor analysis with four factors. Then we selected and
plotted ∼6–10 features with highest contributions to at least
one of the factors (Supplementary Figure S7). We also plot-
ted pairwise correlations between the same features (Figure
3D, E). We found the markers of active gene regulatory re-
gions such as H3K27ac and H3K4me1 form strong corre-
lated groups in both regions (Supplementary Figure S7 and
Figure 3D, E). CTCF and DNase signals were also strongly
correlated in agreement with previous observations (54,55).
On the other hand, H3K79me2 and H4K20me1 belonged
to a correlated group in the intronic SNPs (Supplementary
Figure S7A and Figure 3D). This agrees with the enrich-
ment of H3K79me2 and H4K20me1 in the gene bodies of
actively transcribed genes (52).

Functional properties of TAGOOS scores

We expected TAGOOS-significant SNPs to show more
functional molecular properties, such as being closer to
transcription start sites (TSS). Therefore we hypothesized
that the TAGOOS score negatively correlates with the dis-
tance to genes and TSSs. To test this hypothesis, we plotted
TAGOOS scores as a function of the distance to the TSS
for a number of random intronic and intergenic SNPs (Fig-
ure 4A, D). We found a negative correlation between the
TAGOOS score and the distance to the TSS for intronic
(�Spearman = −0.3, PSpearman < 2.2 × 10−16) and intergenic
SNPs (�Spearman = −0.3, PSpearman < 2.2 × 10−16) (Figure
4A, D).

We found that there is a relationship between the num-
ber of biological samples with given eQTLs and the TA-
GOOS scores of the eQTLs (Figure 3A–C). Priorization of
eQTLs was shown to involve markers of active regulatory
sequences such as DNase I hypersensitive sites (DHS) and
histone marks similarly to the TAGOOS score (56). There-
fore, we hypothesized that the TAGOOS score correlates
with the maximal eQTL significance. We recall that even
though the TAGOOS model used eQTLs as predictive fea-
tures, the strength of the eQTL associations was not seen
during the training. We found a positive correlation of TA-
GOOS scores and unseen GTEx eQTL significance in both
intronic (�Spearman = 0.52, PSpearman < 2.2 × 10−16) and in-
tergenic regions (�Spearman = 0.4, PSpearman < 2.2 × 10−16).
To visualize this correlation, we split unseen GTEx eQTLs
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Figure 3. Correlation of biological sample number for given molecular assays with the TAGOOS score in unseen GWAS Catalog SNPs. We created a matrix
with the proportion of biological samples out of the maximal sample number for given molecular assays. (A) Negative decimal logarithm of the adjusted
(Bonferroni) PSpearman-value (PSpearman < 0.05) of the Spearman correlation between biological sample proportion and the TAGOOS score ordered by
the maximal significance. (B, C) Heatmap of the biological sample proportion matrix with the SNPs in the rows ordered by the TAGOOS score (Green
column). In the columns, the six more correlated assays from subfigure (A) were selected for intronic and intergenic regions. (D, E) Pairwise correlation
between molecular asays based on the biological sample proportions.

in three groups according to the most significant Q-value
and plotted them against the TAGOOS score (Figure 4B,
E). We found that more significant eQTLs showed higher
TAGOOS score median (Figure 4B, E). Altogether, these
results showed that there was a positive correlation between
the TAGOOS score and the eQTL significance.

Transcription factors (TFs) are very important compo-
nents of the gene regulatory machinery in non-coding func-
tional regions (9,57). Therefore, we hypothesized that SNPs
with high TAGOOS are more often bound by TFs. To test
this hypothesis, we took unseen GWAS Catalog SNPs and

split them in two groups according to the TAGOOS score
significance. Then we annotated both groups of SNPs with
transcription factor binding sites (TFBSs) from the ReMap
database (30,31) and plotted the percentage of SNPs anno-
tated for each TF (Figure 4E, F). We found that higher per-
centage of TAGOOS-significant SNPs are annotated with
TFs in intronic and intergenic regions (PWilcoxpaired = 2.2 ×
10−16) (Figure 4C, F).

More TFBSs in TAGOOS-significant SNPs could be due
to enriched DNA motifs for TFBSs. To test this hypothesis,
we took the GWAS Catalog SNPs and a library of 127 non-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article-abstract/doi/10.1093/nar/gkz320/5482505 by guest on 04 M

ay 2019



8 Nucleic Acids Research, 2019

Figure 4. Functional properties of the TAGOOS scores. (A, D) Scatter plots and Spearman correlation coefficient and P-value of the distance to the nearest
transcription start sites (TSS) and the TAGOOS scores for unseen GWAS Catalog SNPs in intronic (A) and intergenic (D) regions. (B, E) Violin plots of
TAGOOS scores of unseen GTEX eQTLs split by the negative decimal logarithm of the maximal Q-value association in intronic (b) and intergenic (e)
regions. (C, F) Percentage of intronic (C) and intergenic (F) unseen GWAS Catalog SNPs with significant and non-significant TAGOOS scores annotated
with each transcriptional regulator from the ReMap database ordered by the decreasing difference between the blue (TAGOOS Signif) and red (TAGOOS
non-significant) lines (PWilcoxpaired = 2.2 × 10−16). (G, H) Motif density in 10 nt bins in a 100 nt window around intronic (G) and intergenic (H) unseen
GWAS Catalog SNPs split according to the TAGOOS significance and the reference or most common alternative allele.

redundant position frequency matrices based on the Hoco-
moco TF database (33,34). Then we scanned sequences of
100 bp around the SNPs with either the reference or most
frequent alternative alleles and plotted the motif densities in
10 bp bins. We found local higher densities of motifs in the
middle of the sequences for the reference and lower density
for the alternative alleles (Figure 4G, H). We also found that
the TAGOOS-significant SNPs had higher motif density in
agreement with our hypothesis (Figure 4G, H). This anal-
ysis showed that SNPs with higher TAGOOS scores were
richer in DNA motifs of TFBSs.

Altogether these results showed that the TAGOOS-
significant SNPs showed functional properties of regulatory
regions and SNPs.

Case study 1: the cleft lip locus rs227727

In this case study, we analyzed the LD block around
the SNP rs227727 (hg19, chr17:54 752 926–54 778 620),
which was shown to be associated to nonsyndromic cleft

lip and functional as a regulatory region (11). In an ini-
tial study, rs227731 was associated to nonsyndromic cleft
lip in the European population (58). Subsequent sequenc-
ing of the 17q22 region found highest association signif-
icance at rs227727, which was in complete linkage dise-
quilibrium with rs227731 (11). Annotation of this region
with ChromHMM and other regulation related annotations
pointed at two regions called the NOGGIN +87 kb and
+105 kb elements with putative enhancer activity within
the rs227727 LD block (11). The NOGGIN +87 kb (hg19,
chr17:54 755 547–54 757 398) and +105 kb regulatory ele-
ments (hg19, chr17: 54 776 294–54 777 215) were found to
show an additive gene regulatory activity, which depended
on the rs227727 allele (11).

We annotated the LD block around the rs227727 region
with the negative decimal logarithm of the TAGOOS P-
value and common SNPs from the DBSNP database (Fig-
ure 5A, B; Supplementary Figure S8; Supplementary Ta-
ble S7). The rs227727 showed one of the most significant
TAGOOS values in the region (Figure 5B). Furthermore,
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Figure 5. Analysis of the rs227727 linkage disequilibrium (LD) block (hg19, chr17:54,752,926-54,778,620). (A, B) Negative decimal logarithm of the TA-
GOOS P-value for the +87 kb NOGGIN (chr17:54,754,994-54,757,864) and +105 kb NOGGIN regions (hg19,chr17:54,776,180-54,777,328) with common
SNPs (Red points) and the previously validated SNP rs227727 (Blue triangle). The horizontal dashed line stands for the significance threshold. (C) Per-
centage of SNPs in the rs227727 LD block with significant and non-significant TAGOOS scores annotated with each transcriptional regulator from the
ReMap database ordered by the decreasing difference between the blue (TAGOOS Signif) and red (TAGOOS Non-signif) lines (PWilcoxpaired = 2.2 × 10−16).
(D) Zoom into the first ten transcription factors of subfigure (C). (E) Mouse craniofacial phenotype annotation enrichment of TFs with highest (Signif
TAGOOS) or lowest (Non-signif TAGOOS) binding difference between TAGOOS-significant and non-significant SNPs.

the two +87 kb and +105 kb NOGGIN regulatory elements
showed uninterrumpted significant TAGOOS scores consis-
tent with their known regulatory activities (Figure 5A, B;
Supplementary Figure S8; Table S7). Based on these results,
we conclude that the TAGOOS score was able to recover
known regulatory regions and functional SNPs.

Then we looked for predicted functional regions and
SNPs. A zoom of the TAGOOS score in these two regions
showed that the predicted functional region extends be-
yond the tested constructs (Supplementary Figure S8; Ta-
ble S7). In addition to the two +87 kb and +105 kb NOG-
GIN elements, our analysis uncovered two new long re-
gions of 1031 bp and 894 bp (chr17:54 753 743–54 754
774 and chr17:54 758 876–54 759 770 in hg19) with unin-
terrupted significant TAGOOS scores around the +87 kb
element (P < 0.05) (Supplementary Figure S8; Table S7).
We also found that seven SNP loci showed more signifi-
cant TAGOOS scores than rs227727 including four loci in
the +87 kb NOGGIN element (rs138753947, rs192133406,
rs73992081, rs141875137), two loci in the +105 NOGGIN
element (rs116625135, rs538735669) and a seventh SNP be-
tween both elements (rs139384573) (Figure 5A, B; Supple-
mentary Table S7).

Then we evaluated whether we could use the TAGOOS
score to enrich TF binding events in the rs227727 LD block.
We annotated TAGOOS-significant and non-significant
SNPs in the rs227727 LD block with the ReMap catalog of
transcriptional regulators (30,31). We found a higher per-
centage of TAGOOS-significant SNPs annotated with TFs
(PWilcoxpaired < 2.2 × 10−16) (Figure 5C). Among these TFs,
GATA3 mutations are known to correlate with craniofacial
defects in human, mouse and zebrafish (59–61) (Figure 5D).

Therefore, we examined whether TFs with a largest
binding difference between TAGOOS-significant SNPs and
non-signficant SNPs were enriched for craniofacial phe-
notypes (Methods). We found TFs with largest binding
differences between TAGOOS-significant SNPs and non-
signficant SNPs to be enriched in mouse craniofacial bone
morphology (Figure 5E). By contrast, TFs with lowest
binding difference were not enriched in any mouse cranio-
facial phenotype (Figure 5E).

Alltogether these results demostrated that the TAGOOS
score was able to recover known functional SNPs and ge-
nomic regions. In addition, the TAGOOS score presents
new predictions of common SNPs and gene regulatory re-
gions that could contribute to the phenotype in addition to
the known rs227727 SNP.
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Figure 6. Height GWAS analysis with the TAGOOS scores. (A, B) Box plot and AUC performance of unseen height GWAS SNPs in intronic (A) and
intergenic (B) regions. (C, D) Percentage of unseen intronic (C) and intergenic (D) height SNPs with significant and non-significant TAGOOS scores
annotated with each transcriptional regulator from the ReMap database ordered by the decreasing difference between the blue (TAGOOS Signif) and
red (TAGOOS Non-signif) lines (PWilcoxpaired = 2.2 × 10−16). (E, F) Zoom into the first ten transcription factors of subfigures (C, D). (G, H) Mouse
body size phenotype annotation analysis of ReMap TFs with with highest (Signif TAGOOS) or lowest (Non-signif TAGOOS) binding difference between
intronic (G) and intergenic (H) TAGOOS-significant and non-significance SNPs. (I) Screenshot of the IGV genome browser showing the TAGOOS score
and ReMap TF coverage around the height associated SNP rs10140101. The trackers show the LTBP2 intron, the rs10140101 SNP, surrounding SNPs as
reference, and non-redundant ReMap TF coverage.
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Case study 2: Human adult height GWAS

In this case study, we analysed 697 loci associated to adult
human height with the TAGOOS score (2). We evaluated
whether the TAGOOS score can prioritize unseen height
SNPs compared to random SNPs. We observed AUC per-
formance values 0.73 and 0.72 for intronic and intergenic
SNPs, respectively (Figure 6A, B).

Then we evaluated whether we could use the TA-
GOOS score to enrich TF binding events in height-
associated loci. We found that TFs bind preferentially to
TAGOOS-significant SNPs in intronic and intergenic re-
gions (PWilcoxpaired < 2.2 × 10−16) (Figure 6C, D). We sorted
TFs according to the difference of percentage of bound
SNPs with TAGOOS-significant or non-significant scores.
Among TFs bound preferentially to TAGOOS-significant
SNPs, MYC, MED1, RUNX1 in intronic and AR and
GATA2 in intergenic regions, are annotated as related to
body size in the Mouse Genome Informatics (MGI) and
EnrichR databases (32,62) (Figure 6E, F). Therefore we hy-
pothesized that we could focus on TFs that bind more often
to TAGOOS-significant SNPs to look for relevant functions
using the EnrichR server (Methods). The list of sorted TFs
in Figure 6C, D were ordered and split in two equal groups
and submitted to the EnrichR online tool (Figure 6G, H)
(Methods). The EnrichR online tool showed higher enrich-
ment of genes related to the mouse body size phenotypes for
TFs with highest difference of binding between TAGOOS-
significant and non-significant SNPs (Figure 6G, H).

To further ilustrate the use of TAGOOS, we focused
on the LTBP2 locus. We annotated the LTBP2 locus
with the negative decimal logarithm of the P-value of
the intronic TAGOOS, common SNPs and P-values from
the height GWAS associations (Supplementary Table S8).
Among the two height-associated SNPs in this locus
(rs862034, rs10140101), only rs10140101 showed a signifi-
cant TAGOOS score (Supplementary Table S8). However,
four other common SNPs (rs862037, rs862036, rs862035,
rs3784030) at a distance of <400 bp to rs862034 showed
significant TAGOOS scores (Supplementary Table S8) and
are functional candidate SNPs for the height association of
rs862034. The other height-associated SNP rs10140101 be-
longed to a large region of uninterrupted significant TA-
GOOS scores with a length of 665 bp (hg19, chr14:75 038
463–75 039 127) that could act as a gene regulatory re-
gion for LTBP2 (Supplementary Table S8). In this region
chr14:75 038 463–75 039 127, there were 12 other com-
mon SNPs that could contribute to the effect of rs10140101
(Supplementary Table S8). In the LTBP2 locus, there were
three other regions larger than 400 bp with uninterrupted
significant TAGOOS scores, chr14:74 981 188–74 981 684,
chr14:74 992 079–74 992 846 and chr14:75 075 601–75 076
114 (hg19) that could contribute to the height association.
These three regions contained 17 common SNPs that could
also contribute to the height phenotype (Supplementary Ta-
ble S8).

To further ilustrate the use of TAGOOS, we focused
on the rs10140101 SNP located in a LTBP2 intron. This
SNP showed a significant TAGOOS P-value of 0.001 and
71 annotations where 62% of them belonged to DNAse,
H3K27ac and H3K4me1 molecular assays. Interestingly

this location was not annotated with eQTLs or SNPs as-
sociated to complex diseases. This means that interesting
SNPs could be predicted by the TAGOOS SNP in the ab-
sence of known eQTLs or association data. As shown in
the IGV browser, the rs10140101 was surrounded by a peak
of bound TFs (Figure 6I). More precisely, the SNP was
bound to 101 ReMap TFs with 35 of these factors re-
lated to decreased mouse body size phenotype. The UCSC
browser also showed that the C allele was highly conserved
with other mammals (Supplementary Figure S9). In addi-
tion, the integrative IW-score predicts significant molecu-
lar effects for this SNP (27). The LTBP2 gene (OMIM ID
602091) was involved in the Weill-Marchesani syndrome,
glaucoma and microspherophakia diseases (OMIM IDs
614819, 613086 and 251750), which also show abnormal
stature phenotypes (63).

Our analysis of the LTBP2 locus predicts four gene reg-
ulatory regions with regions larger than 400 bp that con-
tain 31 putation functional common SNPs. The height-
associated SNP rs10140101 and the surrounding region
were particularly interesting for further analysis.

DISCUSSION

Here we develop a supervised learning approach that pre-
dicts functional scores genome-wide based on SNPs asso-
ciated to complex phenotypes and regulatory annotations
that predict functional loci. Compared to previous tools, the
TAGOOS method lies between so-called GWAS prioriza-
tion and regulatory variants priorization tools (Supplemen-
tary Tables S1 and S2). The TAGOOS method takes GWAS
signals, LD blocks and gene regulatory features and outputs
functional scores genome-wide for regulatory variants. Pre-
vious prioritization strategies for GWAS signals that take
into account LD blocks such as GWAS3D, GREGOR or
GenoWAP were not evaluated genome-wide (4,14,15). On
the other hand, most predictors of regulatory variants such
as GWAVA are trained with highly penetrant SNPs such
as those from the ClinVar databases (17,38). Moreover,
the performance of these tools to predict SNPs associated
to complex phenotypes was moderate (27). The TAGOOS
method is different from previous predictors, because the
model is trained with common variants associated to com-
plex diseases and with correlated SNPs in linkage disequi-
librium in the reference population. The resulting model has
been used to generate genome-wide gene regulation scores
with better priorization and enrichment performances than
most other methods (27). We have shown that the TAGOOS
score was able to recover known functional gene regulatory
regions (+87 kb and +105 kb NOGGIN elements) and SNPs
(rs227727). In addition we have also demonstrated that the
TAGOOS score was able to predict new gene regulatory re-
gions and functional SNPs, which could contribute to the
cleft lip and height phenotypes.

There are three main sources of annotation data to
predict gene regulation potential: (i) open chromatin and
chromatin modifications such as DHSs and H3K27ac, (ii)
eQTLs and (iii) transcription factor binding and motifs
(7,8,30,31,56). Unlike previous approaches, we use all three
types of regulatory annotations. Therefore even though
eQTLs are strong predictive features of the TAGOOS model
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(Figure 3A–C), the TAGOOS score can still prioritize SNPs
without eQTL annotation such as the SNP rs10140101
based on chromatin and transcription factor annotations.
We also did not select particular cell types. The advantage
was that the TAGOOS score was able to prioritize associ-
ated SNPs from different disease types (Supplementary Fig-
ure S4). Nevertheless, the performance seems to be better in
diseases and traits with an overrepresentation of tissues in
the public databases such as blood and immune cell types
(Supplementary Figure S4).

Including DNA methylation in our model could be inter-
esting, because it is an important property of inactive re-
gions (64). Transcription is another important property of
enhancers and RNA-seq data is available in the ENCODE
project, so that it could be included in our model (39). We do
not provide scores for the X and Y chromosomes because
some data sets do not provide information for these chro-
mosomes. It is however possible to generate scores despite
the missing data by using relative performance and signifi-
cance measures for these chromosomes.

Two models for intronic and intergenic regions were cre-
ated, because in principle, the molecular signatures of func-
tional regions in these two regions were only partially over-
lapping. Our results support this choice, because for in-
stance, gene body typical modifications such as H3K36me3
were more often found among the features in the intronic
model.

In the present model, we found that eQTLs, DNA acces-
sibility and H3K27ac are very predictive of GWAS SNPs,
which agrees with known properties of gene regulatory re-
gions (7,8,56). We were surprised not to find many TFs as
features, because TFs are usually enriched in gene regula-
tory regions (10). However, subsequent analysis found that
TAGOOS-significant SNPs are more frequently bound by
TFs (Figure 4C, F, 5C, D and 6C–F). The reason might
be that particular TFs are implicated in specific pheno-
types and that no TF is generally involved in all phenotypes.
By contrast, the number of biological samples annotated
with an eQTL or H3K27ac in a given SNP correlated with
the TAGOOS score and thus indirectly with the maximal
GWAS significance of that SNP (Figures 1E, F and 3A–
C). This means that the TAGOOS scores potentially pre-
dict functional regions, whereas a more precise phenotype-
specific regulation is exerted through phenotype-specific
molecules such as transcription factors.

In conclusion, the TAGOOS score is a new score to pre-
dict functional intronic and intergenic regions. The TA-
GOOS score has been trained on associated loci to complex
phenotypes and achieves better priorization performances
than most other methods.
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46. Robinson,J.T., Thorvaldsdóttir,H., Winckler,W., Guttman,M.,
Lander,E.S., Getz,G. and Mesirov,J.P. (2011) Integrative genomics
viewer. Nat. Biotechnol., 29, 24–26.

47. Chen,T. and He,T. (2014) Higgs Boson discovery with boosted trees.
In: Proceedings of the 2014 International Conference on High-Energy
Physics and Machine Learning. 42, pp. 69–80.

48. Hoffman,M.M., Ernst,J., Wilder,S.P., Kundaje,A., Harris,R.S.,
Libbrecht,M., Giardine,B., Ellenbogen,P.M., Bilmes,J.A., Birney,E.
et al. (2013) Integrative annotation of chromatin elements from
ENCODE data. Nucleic Acids Res., 41, 827–841.

49. Beer,M.A. (2017) Predicting enhancer activity and variant impact
using gkm-SVM. Hum. Mutat., 38, 1251–1258.

50. Schuster-B”ockler,B. and Lehner,B. (2012) Chromatin organization
is a major influence on regional mutation rates in human cancer cells.
Nature, 488, 504–507.

51. Heinz,S., Romanoski,C.E., Benner,C. and Glass,C.K. (2015) The
selection and function of cell type-specific enhancers. Nat. Rev. Mol.
Cell Biol., 16, 144–154.

52. Wang,Z., Zang,C., Rosenfeld,J.A., Schones,D.E., Barski,A.,
Cuddapah,S., Cui,K., Roh,T.-Y., Peng,W., Zhang,M.Q. et al. (2008)
Combinatorial patterns of histone acetylations and methylations in
the human genome. Nat. Genet., 40, 897–903.

53. Song,Q. and Smith,A.D. (2011) Identifying dispersed epigenomic
domains from ChIP-Seq data. Bioinformatics, 27, 870–871.

54. Xi,H., Shulha,H.P., Lin,J.M., Vales,T.R., Fu,Y., Bodine,D.M.,
McKay,R.D.G., Chenoweth,J.G., Tesar,P.J., Furey,T.S. et al. (2007)
Identification and characterization of cell type-specific and
ubiquitous chromatin regulatory structures in the human genome.
PLoS Genet., 3, e136.

55. Gaulton,K.J., Nammo,T., Pasquali,L., Simon,J.M., Giresi,P.G.,
Fogarty,M.P., Panhuis,T.M., Mieczkowski,P., Secchi,A., Bosco,D.
et al. (2010) A map of open chromatin in human pancreatic islets.
Nat. Genet., 42, 255–259.

56. Zeng,H., Edwards,M.D., Guo,Y. and Gifford,D.K. (2017) Accurate
eQTL prioritization with an ensemble-based framework. Hum.
Mutat., 38, 1259–1265.

57. Bass,J. I.F., Sahni,N., Shrestha,S., Garcia-Gonzalez,A., Mori,A.,
Bhat,N., Yi,S., Hill,D.E., Vidal,M. and Walhout,A.J. (2015) Human
gene-centered transcription factor networks for enhancers and
disease variants. Cell, 161, 661–673.

58. Mangold,E., Ludwig,K.U., Birnbaum,S., Baluardo,C., Ferrian,M.,
Herms,S., Reutter,H., de Assis,N.A., Al Chawa,T., Mattheisen,M.
et al. (2010) Genome-wide association study identifies two
susceptibility loci for nonsyndromic cleft lip with or without cleft
palate. Nat. Genet., 42, 24–26.

59. Lim,K.C., Lakshmanan,G., Crawford,S.E., Gu,Y., Grosveld,F. and
Engel,J.D. (2000) Gata3 loss leads to embryonic lethality due to

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article-abstract/doi/10.1093/nar/gkz320/5482505 by guest on 04 M

ay 2019



14 Nucleic Acids Research, 2019

noradrenaline deficiency of the sympathetic nervous system. Nat.
Genet., 25, 209–212.

60. Bernardini,L., Sinibaldi,L., Capalbo,A., Bottillo,I., Mancuso,B.,
Torres,B., Novelli,A., Digilio,M.C. and Dallapiccola,B. (2009) HDR
(Deafness, Renal dysplasia) syndrome associated to GATA3 gene
duplication. Clin. Genet., 76, 117–119.

61. Sheehan-Rooney,K., Swartz,M.E., Zhao,F., Liu,D. and
Eberhart,J.K. (2013) Ahsa1 and Hsp90 activity confers more severe
craniofacial phenotypes in a zebrafish model of hypoparathyroidism,
sensorineural deafness and renal dysplasia (HDR). Dis. Models
Mech., 6, 1285–1291.

62. Smith,C.L., Blake,J.A., Kadin,J.A., Richardson,J.E., Bult,C.J. and
Group,M.G.D. (2018) Mouse Genome Database (MGD)-2018:
knowledgebase for the laboratory mouse. Nucleic Acids Res., 46,
D836–D842.

63. Hamosh,A., Scott,A.F., Amberger,J.S., Bocchini,C.A. and
McKusick,V.A. (2005) Online Mendelian Inheritance in Man
(OMIM), a knowledgebase of human genes and genetic disorders.
Nucleic Acids Res., 33, D514–D517.

64. Suzuki,M.M. and Bird,A. (2008) DNA methylation landscapes:
provocative insights from epigenomics. Nat. Rev. Genet., 9, 465. D

ow
nloaded from

 https://academ
ic.oup.com

/nar/advance-article-abstract/doi/10.1093/nar/gkz320/5482505 by guest on 04 M
ay 2019


