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Abstract 1 

An organic diet may reduce dietary exposure to pesticides but findings based on observational data are 2 

scant. We aimed to compare urinary pesticide concentrations between “organic” and “conventional” 3 

consumers from the NutriNet-Santé study. Organic food consumption was determined using a self-4 

reported food frequency questionnaire. Individuals with a proportion of organic food in the whole diet 5 

(in g/d) below 10% were defined as low organic food consumers and those whose proportion was 6 

above 50% as high organic food consumers. A propensity score matching procedure was then used to 7 

obtain two similar subsets of 150 participants, differing mostly by the organic valence of their diet. 8 

Urinary pesticide and metabolite concentrations (organophosphorus, pyrethroid and azole compounds) 9 

were determined by UPLC-MS/MS, standardized with respect to creatinine. The molar sums of total 10 

diethylphosphates, dimethylphosphates and dialkylphosphates were also computed. Differences in 11 

distributions across groups were tested using Wilcoxon signed-rank test for matched data. Mean age 12 

was 58.5y and 70% of participants were women. Significantly lower urinary levels of 13 

diethylthiophosphate, dimethylthiophosphate, dialkylphosphates and free 3-phenoxybenzoic acid were 14 

observed among organic consumers compared to conventional consumers. Our findings confirm that 15 

exposure to certain organophosphate and pyrethroïd pesticides in adults may be lowered by switching 16 

from conventional to organic foods. This is particularly of high interest among conventional fruit and 17 

vegetables consumers, as their exposure may be the highest.  18 

Keywords: dietary exposure; epidemiology; pesticides 19 
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Introduction   20 

Pesticides are widely used to protect crops against harmful organisms and diseases but are also utilized 21 

as biocides for non-agricultural purposes. Despite these beneficial aspects, there has been an 22 

increasing concern during the last decade that these compounds represent a risk to the general 23 

population through residues in food commodities. The toxicological outcomes that have been 24 

associated with pesticide exposure include neurological, respiratory, dermatological, digestive, 25 

carcinogenic, reproductive and developmental effects, as recently reviewed by several authors 1–3. Five 26 

pesticides (malathion, glyphosate, parathion, diazinon and tetrachlorvinphos) were classified as 27 

probably carcinogenic to humans by the International Agency for Research on Cancer 4.  In addition, a 28 

high number of agrochemicals have been documented to affect the endocrine system 5,6, causing 29 

reproductive and developmental adverse effects, but also resulting in metabolic disorders 7,8. 30 

Knowledge on the consequences of exposure levels observed in the general population remains scarce 31 

and difficult to interpret 9. France is one of the largest users in tons of agricultural pesticides in the 32 

European Union 10. Routes of exposure to pesticides are multiple (oral, dermal and respiratory) but 33 

diet is the main source of pesticide exposure in the general population 11. It is therefore essential to 34 

estimate how and to what extent, different dietary consumption patterns – from more or less 35 

contaminated food sources (e.g. organically vs. conventionally grown products) may affect exposure.  36 

Organic production and labelling of organic products are held under legal framework of the Council 37 

Regulation (EC) No 834/2007, which limits the use of pesticides to a small number (i.e. 35) of natural 38 

substances while 488 active substances are approved by (EC) No 1107/2009 as pesticides in 39 

conventional agriculture in the European Union 12. This exclusion of synthetic pesticides results in a 40 

significantly lower frequency of (or no) contamination in organic foods when compared to 41 

conventional foods, as consistently described in food residue analyses 13–16. Some experimental 42 

studies, using mostly cross-over design, have been carried out among children 17–19 and adults 20,21, and 43 

all report that the adoption of a diet mainly based on organic foods leads to a significant reduction in 44 

pesticide levels in urine (including organophophate pesticides and herbicide 2,4-D 17–21). Furthermore, 45 

the considerable recent growth of organic food market 22 is largely due to consumers’ concerns for 46 

food safety. Indeed, organic products are perceived healthier by consumers than conventional ones 47 
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mainly because of their absence of pesticide residues 23–27. Yet the extent to which day-life high 48 

organic food consumption is related to reduced urinary pesticide concentrations, more specifically in 49 

European adults, is not well documented.  50 

In this context, the objective of the current study was to test for differences in pesticide exposure, 51 

reflected by urinary biomarkers, among adults with low and high self-reported organic food 52 

consumption. 53 

 54 

Methods  55 

Study population  56 

The NutriNet-Santé study is an ongoing web-based observational prospective study launched in 57 

France in May 2009 on a large sample of adult volunteers. Its general aim is to investigate the 58 

relationships between dietary patterns, nutrition and health issues 28. Participants over age of 18y are 59 

recruited among the general population by means of vast multimedia campaigns. All questionnaires 60 

are completed online using a dedicated website. 61 

The NutriNet-Santé study is conducted according to the Declaration of Helsinki guidelines and was 62 

approved by the Institutional Review Board of the French Institute for Health and Medical Research 63 

(IRB Inserm n°0000388FWA00005831) and the "Commission Nationale de l’Informatique et des 64 

Libertés" (CNIL n°908450/n°909216). Clinicaltrials.gov number: NCT03335644. 65 

On a voluntary basis, participants were also invited to attend health centers for biological sampling 66 

and clinical examination (2011-2013). During the visit, volunteers underwent blood and urine 67 

sampling as well as a clinical examination including anthropometric measurements. Overall, samples 68 

of serum, plasma, buffy-coats and urine were set up for about 20,000 participants of the cohort 29. 69 

Electronic and paper written informed consents were obtained from all subjects attending the visit. All 70 

procedures were approved by the Consultation Committee for the Protection of Participants in 71 

Biomedical Research” (C09-42 on May 5th 2010) and the CNIL (n°1460707). 72 

 73 

Sociodemographic, anthropometric and biological data  74 
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To be included in the cohort, participants have to fill in a set of questionnaires providing information 75 

on sociodemographic (age, sex, educational level, employment status, place of residence) and lifestyle 76 

(smoking status, physical activity) characteristics and health data (menopausal status for women, 77 

medical history and medication). Every year thereafter, as part of their follow-up, they are also invited 78 

to complete this same set of questionnaires to update their information. 79 

During the clinical visits, systolic and diastolic blood pressure, weight and height were measured using 80 

standardized procedures 30. Fasting blood glucose, total serum cholesterol, HDL-cholesterol and serum 81 

triglycerides were routinely measured as previously described 29. 82 

 83 

Assessment of total and organic food consumption 84 

Total and organic food consumptions were assessed using an organic semi-quantitative food frequency 85 

questionnaire (Org-FFQ). In June 2014, NutriNet-Santé participants were invited to complete the Org-86 

FFQ through the dedicated secured website. The development of the Org-FFQ has been fully 87 

described elsewhere 31. Briefly, the Org-FFQ consisted of 264 food and beverage items. It was based 88 

on a validated FFQ 32, completed by specific questions about organic food consumption frequency. 89 

Briefly, for each of the 264 items subjects were asked to report their frequency of consumption and the 90 

quantity consumed over the past year. Additionally, a five-point Likert-type scale ranging from never 91 

to always was used to estimate the frequency of organic food consumption of each food item. Organic 92 

food intake was obtained for each item by applying a weight of 0, 0.25, 0.5, 0.75 and 1 to the five 93 

respective categories of frequency (never, rarely, half of the time, often and always). Using the Org-94 

FFQ, the proportion of organic food in the whole diet (g/d) was then calculated by dividing the total 95 

organic food consumption out of the total food consumption excluding water. Participants were also 96 

invited to fill in a questionnaire pertaining to motivations and attitudes towards organic foods. 97 

 98 

Selection of the subsample and matching procedure  99 

Of the 33,384 subjects who had completed the Org-FFQ, we selected those with available data 100 

regarding total and organic food consumption, with no missing covariates and who had attended the 101 

clinical visits (N=5,746). Among them, we selected subjects who had fasted at least 6 hours before the 102 
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visit and subjects who were no subject to potential metabolic disorders, i.e. subjects with no history of 103 

type I diabetes, Crohn’s disease, all types of cancer, neurological diseases, cardiovascular diseases, 104 

digestive system diseases (including cirrhosis, hepatitis, celiac disease and colitis) lupus, 105 

spondylolisthesis and sclerosis (N=4,598) (Figure 1). Then low and high organic food consumers 106 

were identified as those with a proportion of organic food in the whole diet (g/d) below 10% or above 107 

50%, respectively (N=2,351). Finally, in order to account for profile differences between low and high 108 

organic food consumers, we applied a propensity score matching procedure without replacement. This 109 

matching approach, based on a single composite score, enabled to achieve comparability between the 110 

two groups in terms of their observed characteristics 33. We thus obtained two propensity score-111 

matched groups of 150 subjects, differing by the organic valence of their diet. Selection and matching 112 

procedures are extensively described in the Supplemental Material. 113 

 114 

Urine collection, creatinine and pesticide analysis 115 

At the clinical visit, urine sample collection was performed using vessels allowing the close-circuit 116 

urine transfer from the vessel to the Vacutainer® tube. The Vacutainer® tubes containing the spot 117 

urine sample were kept at + 4°C before and during transportation to the central laboratory. After 118 

splitting in aliquots, urine samples were stored at - 80°C for further analyses. To account for urine 119 

dilution, creatinine concentration (µg/L) was used to adjust analyte concentrations. Urinary creatinine 120 

concentration was determined by 1H NMR according to a method adapted from Bouatra et al. 34. All 121 

pesticide assays were performed in the same laboratory. The final list of analyzed pesticides and 122 

metabolites has been defined as a compromise between scientific objectives, financial cost and the 123 

available measurement methods. The extraction method for Group 1 (dimethylphosphate (DMP), 124 

dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), 125 

diethylthiophosphate (DETP), diethyldithiophosphate (DEDTP)) was 96-well µElution Solid Phase 126 

Extraction-off line, Oasis Wax well Plate, 30 µm, 2 mg, Waters (Milford, Massachusetts, USA) for 127 

purification and concentration purposes. The sample volume used was 200 µl, diluted by 200 µl of 128 

water 4% formic acid. The compounds were eluted using a 5% ammonium hydroxide solution in 129 

acetonitrile. The extraction for other analytes - Group 2 (chlorpyrifos and metabolites, malathion, 130 
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dichlorvos, phoxim, diazinon, thiabendazole-5-OH (TBZ-OH), tebuconazole, 2-(diethylamino)-6-131 

methylpyrimidin-4-ol/one (DEAMP) (pyrimiphos methyl metabolite), pyrethroid metabolites (3-132 

phenoxybenzoic acid (3-PBA), 4-fluoro-3-phenoxybenzoic acid (4-FPBA)) and 3,5,6-133 

trichloropyridinol (TCP)) was performed with Solid Phase Extraction-off line, Oasis HLB well Plate, 134 

30 µm, 2 mg, Waters (Milford, Massachusetts, USA). The sample volume used was 250 µl, diluted by 135 

250 µl of water 4% ammonium hydroxide. The elution was done using a methanol-acetonitrile 136 

solution acidified with formic acid (0.05%).  137 

A second analysis was performed for the deconjugated compounds before the same protocol of 138 

extraction: an enzymatic hydrolysis was performed, on 250 µl sample, for total (free and conjugated) 139 

TBZ-OH, tebuconazole, DEAMP, pyrethroid metabolites (3-PBA et 4-FPBA) and TCP, using β-140 

Glucuronidase / Arylsulfatase (Helix pomatia) from Roche (Mannheim, Germany), after stabilization 141 

with sodium acetate buffer solution, pH 4.5-5.5, as described by the supplier (Sigma-Aldrich, Seelze, 142 

Germany), during 16 hours. at 37°C.  143 

Analyses of pesticides and metabolites (for correspondence between metabolites and parent 144 

compounds, see Supplemental Table 1) were performed using UPLC H-Class system coupled with a 145 

tandem mass spectrometry Xevo TQ-S (UPLC-MSMS) (Waters, Milford, USA). 146 

For the pesticides from Group 1, a volume of 15 µl was injected in a column BEH amide 1.7 µm 2.1 x 147 

100 mm (Waters, Milford, USA) in an oven at 35°C. The eluents used were water 50 mM ammonium 148 

acetate / acetonitrile with a gradient from 90% to 20% acetonitrile, with a flow rate of 0,4 ml/min. The 149 

analysis was performed in ES-mode. For the pesticides from Group 2, a volume of 10 µl was injected 150 

in a column BEH C18 1.7 µm 2.1 x 100 mm (Waters, Milford, USA). The eluents used were 151 

water/acetonitrile + 0.05 % formic acid with a gradient from. 85.5% to 2% water, in an oven at 40°C 152 

temperature with a flow rate of 0.4 ml/min The analysis was performed in ES + and ES- mode. 153 

 154 

Quality control/quality assurance  155 

All standards used were certified standards provided by Sigma-Aldrich (Seelze, Germany), A2S (St 156 

Jean d’Illac, France) and Dr Ehrenstorfer (Augsburg, Germany).  157 
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A set of five calibrations in the range 0.01 to 10 µg/L for samples of human urine free of the target 158 

biomarkers was analyzed each day for 5 days for inter-assay precision and accuracy. For intra-assay 159 

precision and accuracy, three levels of concentrations (near limit of quantification, average and high 160 

level) were analyzed in different human urine free of the target biomarkers ten times. A weighted 161 

linear regression model (1/x) was used for the construction of calibration curve. Throughout the study 162 

a quality control was analyzed every ten samples and a blank every twenty samples. Dichlorvos-D6, 163 

chlorpyrifos-methyl-D6, chlorpyrifos-D10, malathion-D6, diazinon-D10, DETP-D10 and DMTP-D6 164 

served as internal standards. 165 

The limit of detections (LODs) ranged from 0.003 to 0.6 µg/L. The limit of quantification (LOQs) 166 

ranged from 0.01 to 2 µg/L with a coefficient of variation ranging from 10 to 25%. LODs were 3 fold 167 

higher the intensity of the background noise and LOQs were, overall, 3 fold higher than LODs. 168 

  169 

Statistical analysis 170 

For comparative purposes and as previously done in other publications 18,21, we calculated the 171 

following molar sums (µmol/g), based on concentration of individual organophosphorus metabolites 172 

(µg/g creatinine) and molecular weights (g/mol):  173 

!"!#$ !!" = !"#
125 + !"#$

141 + !"!#$
157  

!"!#$ !"# = !"#
153  +  !"#$169 + !"!#$

186   

!"!#$ !"#$ = !"!#$ !"# +  !"!#$ !"# 

with DMP, dimethylphosphate ; DMTP, dimethylthiophosphate ; DMDTP, dimethyldithiophosphate ; 174 

DEP, diethylphosphate ; DETP, diethylthiophosphate ; DEDTP, diethyldithiophosphate ; DAPs, 175 

dialkylphosphates ; MPs, dimethylphosphates ; EPs, diethylphosphates. 176 

Samples containing concentrations below the LOD (limit of detection) were assumed to have 177 

concentrations equal to ½ LOD. Samples containing concentrations below the LOQ (limit of 178 

quantification) were assumed to have a concentration equal to the midpoint between the LOD and the 179 

LOQ 35. 180 
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We performed a balance diagnostic of the matching procedure to obtain standardized differences for 181 

variables included in the propensity score model as recommended 33, using the SAS macro %pmdiag 182 

33. Characteristics of the participants are presented by group of consumers and were compared using 183 

Wilcoxon signed-rank test for matched samples for continuous variables and McNemar test (binary 184 

variables) or conditional logistic regression for categorical variables (>2-class variables). We 185 

computed the modified Programme National Nutrition Santé Guideline Score (mPNNS-GS), an a 186 

priori nutritional index reflecting the adherence to the French food-based nutritional guidelines 36. A 187 

higher score (max=13.5) reflects a higher nutritional quality of the diet 37. Distribution indicators, 188 

frequency of detection and of quantification are provided.  189 

Additionally, in a sensitivity analysis, in order to increase the discriminating power of our analyses, 190 

we only considered subjects with proportion of organic food in the diet below 5% for the conventional 191 

group and their matching organic pairs (n=218). All analyses were performed using 9.4 version of the 192 

SAS software (SAS Institute Inc., Cary, NC, USA).  193 

 194 

Results 195 

The balance diagnostic of the matching procedure is presented in Supplemental Table 2. The vast 196 

majority of the variables including health, sociodemographic and diet displayed similar distributions 197 

across organic and conventional groups, except for consumption of mixed dishes (p-value<0.05). 198 

Participants’ characteristics are shown in Table 1. The average proportions of organic food in the diet 199 

were 3% (±3) and 67% (±13) in the conventional and organic groups, respectively. Diet quality, 200 

assessed using the mPNNS-GS, was relatively high. Mean age participants was 58y, about 30% of the 201 

participants were men and more than 60% were highly educated.  202 

Levels of exposure to pesticides through urinary parent moieties and metabolites are presented in 203 

Tables 2 and 3. Parent pesticides were detectable in a limited number of samples in the two groups 204 

(max=9% for malathion in the conventional group). Mean and median molecule concentrations were 205 

mostly below the LOD (Table 2). In contrast, for some metabolites such as total DEAMP, total TBZ-206 

OH, total tebuconazole, most EPs and MPs (except DEDTP and DMDTP) and free 3-PBA, the 207 

frequency of quantification was high in both groups (>15), and generally lower in the organic group 208 
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(Table 3). The mean concentrations of DETP, DMTP and free 3-PBA were significantly higher in the 209 

conventional group compared to the organic one while for the rest of metabolites, no significant 210 

difference between groups was detected (Table 3).  211 

The molar sums of EPs, MPs and DAPs are presented in Figure 2 and Table 4. While no significant 212 

difference in urinary concentrations across groups was observed for total MPs (p-value=0.47) and total 213 

EPs (p-value=0.09), the total DAPs concentration was lower in the organic group compared to the  214 

conventional group, with means of 0.29 and 0.41 µg/g creatinine respectively (p-value=0.03). Some 215 

consumers had high exposure levels in both groups as shown by rather different orders of magnitude 216 

of means and medians. 217 

When the population sample was restricted to pairs using a different criteria, namely <5% of organic 218 

food in the diet for conventional consumers (instead of 10% as previously stated) (n=218), mean 219 

difference for total EPs was accentuated and reached statistical significance (Table 5), indicating a 220 

possible dose-response relationship. 221 

 222 

Discussion 223 

In this observational study, when comparing urine pesticide metabolites in consumers with 224 

discriminant consumption of organic food, significantly higher urinary levels of DETP, DMTP, total 225 

DAPs (organophosphorus metabolites) and free 3-PBA (a pyrethroid metabolite) were found among 226 

conventional consumers compared to organic consumers, while, overall, low detection rates were 227 

found for parent compounds in both groups. In a sensitivity analysis, with conventional consumers 228 

with a maximum of 5% of organic food in their diet, differences between groups were more salient, in 229 

particular for EPs. This suggests that organophosphorus and pyrethroid pesticide exposure in adults 230 

may be noticeably lowered by introducing organic foods in the diet.  231 

During the last decade, several studies comparing the levels of urine pesticides between “organic” and 232 

“conventional” consumers have been conducted in children 17–19,38 and in adults 20,21. Beyond 233 

disparities in age range and dietary patterns of the populations as well as the periods when they have 234 

been conducted, these studies largely differed in their methodology. Most of them were indeed 235 

interventional cross-over studies 17,19,21,38, two were observational 18,20. An exposure to a wide range of 236 
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metabolites was assessed including organophosphorus pesticide metabolites but also, less frequently, 237 

pyrethroids and some herbicides. Studies conducted among children reported reduction in total DAPs 238 

17,18 or metabolites of malathion and chlorpyrifos 19,38 after switching to an organic controlled diet or 239 

when comparing organic and conventional participants. A drastic and immediate reduction was 240 

reported in cross-over studies. For instance, among 40 Mexican-American 3-6 years children, total 241 

DAPs reduction was 40% after 7 days of organic diet 17. Similarly, in a study conducted among 242 

preschool children, mean DMP urinary concentration was 9 times lower among 18 children following 243 

an organic diet compared to 21 children eating a conventional one 18. Overall, these studies argue for a 244 

central role of the mode of production of food in organophosphorus pesticide exposure among 245 

children. These results were observed even in the study with an observational design reflecting actual 246 

levels of organic food consumption 18. 247 

In the present study conducted in French adults, significant reductions in median urinary 248 

concentrations - ranging from 17% to 55% - were observed for DETP, DMTP and free 3-PBA in 249 

organic consumers compared to conventional consumers while no significant results were found for 250 

the other pesticides investigated.  251 

To the best of our knowledge, only one experimental crossover study has been carried out among 252 

adults to test for modification in urinary pesticide metabolites following a period of organic diet 21. In 253 

that crossover study conducted among 13 adults in Australia, participants alternated two 7-day periods 254 

during which diets were either composed of at least 80% of conventional foods or organic foods. All 255 

DAPs were less frequently detected during the organic period than during the conventional one. After 256 

applying the same calculation as in our study for left-censored data, a reduction of 89% of total DAPs 257 

was observed. Indeed, during the organic phase, total DAPs mean concentration was 0.032 ± 0.038 258 

µmol/g creatinine while total DAPs mean concentration among “organic consumers” was 0.29 ± 0.42 259 

in our study. During the conventional diet period, total DAPs mean concentration was 0.294 ± 0.435 260 

µmol/g creatinine while we found total DAPs mean concentration of 0.41 ± 0.64 among conventional 261 

consumers. These differences in the level of exposure may be explained by different designs 262 

(experimental vs observational) as well as by different methodological approaches. Indeed, our study 263 

is based on observational data, i.e. based on actual self-reported data with participants that did not 264 
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consume 100% organic or conventional food. In other words, given the cut-off used herein (i.e. 265 

minimum 50% of the diet coming from organic sources) conventional foods could also make up a 266 

quite important part of the diet in the “organic group”, leading to a certain and variable dietary 267 

pesticide exposure. In the same line, our sensitivity analysis data clearly showed that reducing the 268 

proportion of organic foods (from maximum 10% to 5%) in the conventional consumer diet 269 

exacerbated the differences between groups in some metabolite concentrations. In addition, in our 270 

study, the definition of organic consumers was based on data collected using a self-administered food 271 

frequency questionnaire covering the past year. Use of a self-administered food frequency 272 

questionnaire, prone to some measurement error may have led to misclassification. Moreover, as 273 

organophosphorus metabolites exhibit a short half-live 39, it is possible that some participants 274 

identified as organic consumers have consumed highly contaminated (conventional) food just before 275 

the urine sampling. As underlined in another study 20, the very short half live of these compounds may 276 

strongly limit the relevance of this type of measure to assess the overall exposure to 277 

organophosphorus.  278 

In the only other observational study carried out in adults, urinary DAPs and self-reported organic 279 

food consumption habits (using a 3-categories question) were assessed in 480 US participants 20. In 280 

that study, total DAPs concentrations significantly decreased while increasing consumption of organic 281 

food with a difference of 65% between never organic food consumers and often/always organic food 282 

consumers. The magnitudes of the effects of switching from conventional to organic diets were 283 

comparable to those observed in our study, i.e. lower than in experimental controlled trials. 284 

Herein, total DEAMP, total TBZ-OH, total tebuconazole, most EPs and MPs, and free 3-PBA were 285 

frequently detected with rather high levels, even among organic consumers. As already mentioned, 286 

this may be explained by the fact that, in so-called high organic food consumers, organic food made 287 

up, on average, “only” 63% of the diet, meaning that, on average, almost 40% of the food was 288 

conventional. These individuals may have also been big consumers of conventional fruit and 289 

vegetables, leading to an overall quite high dietary pesticide exposure. 290 

Compared with pesticide exposures estimated in 2006 in a random representative French survey 291 

(ENNS), participants of the conventional group in our study exhibited comparable urinary pesticide 292 
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levels for DETP, DMTP and lower for DMDTP 40. In contrast, mean urinary concentrations of DEP 293 

and DMP were markedly higher in our study 40. For instance, mean and median of DEP urinary 294 

concentrations among our conventional group were 31.68 and 0.96 µg/g creatinine while in the ENNS 295 

study the respective values were 3.89 and 3.66. These findings reveal extremely different distributions 296 

of pesticide exposure levels between the ENNS survey and our study in which some participants had 297 

very high exposure levels. These differences can also partly be explained by the different approach 298 

used for left-censored data. Concerning pyrethroid metabolites, the median urinary concentration of 299 

free 4-F-3-PBA was very low in our study (LOD=0.02 µg/L), as in the ENNS study (<LOD=0.03 300 

µg/L). For 3-PBA, the urinary concentration was higher in the ENNS study with a geometric mean of 301 

0.72 µg/g creatinine which compares to a mean of 0.13 µg/g creatinine in the conventional group of 302 

our study. As we mentioned above, it can be hypothesized that since subjects in our sample were very 303 

high consumers of fruit, vegetables and whole grains compared to the French population 41, they must 304 

have been particularly exposed to pesticides from plant-based products, which are indeed largely 305 

sprayed by synthetic chemicals 16. This hypothesis is reinforced by the observation that some urinary 306 

organophosphorus pesticide metabolites concentrations (namely DETP and DMTP) and 3-PBA are 307 

linearly associated with conventional fruit and vegetable consumption (data not shown) in our study. 308 

For instance a factor 4 was observed for DETP urinary concentration between 1st and 3rd tertiles of 309 

consumption of conventional fruit and vegetables. 310 

Some limitations should be highlighted. First, our study design is entirely observational and based on 311 

self-reported data. Thus, consumption data are prone to misestimating, and in particular organic food 312 

consumption may have been overestimated 31. While food consumption data are relatively precisely 313 

recorded, we did not quantify the extent of other sources of exposure (i.e. occupational, home or 314 

environmental ones). For instance, thiabendazole is not only authorized as a plant protection product 315 

but is also a biocide for wood treatment (see Supplemental Table 1). In addition, it is a preservative 316 

authorized for use in foodstuffs intended for human consumption (E233), and an anthelminthic drug 317 

used in human and veterinary medicine. In this case, the presence of thiabendazole metabolites in 318 

urine can be due to multiple non-dietary sources, although it should be born in mind that diet remains 319 

the main source of pesticide exposure in the general population. The absence of difference in 320 
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pesticides exposure may also be due to a lack of power, at least for contaminants with very low 321 

detection or quantification levels. The use of a middle bound scenario for left-censored data may also 322 

have led to the overestimation of some estimates. 323 

Another limit pertains to the efficiency of matching. Although a wide range of confounders were used 324 

to estimate the propensity score, we cannot rule out possible residual confounding between organic 325 

and conventional consumers. In addition, propensity score matching leads to the exclusion of 326 

“particular” subjects unable to be matched, thus avoiding the external validity of findings as 327 

previously highlighted 33. Our study sample, composed of volunteers, was particular with respect to 328 

sociodemographic characteristics and dietary intakes and thus is not comparable to the general 329 

population. NutriNet-Santé participants have indeed higher intakes of fruit and vegetables than the 330 

general French population 41. Finally, as previously mentioned, concerning urinary DAPs and 3-PBA 331 

concentrations, the reliability of such biomarkers to reflect long-term exposure (usual diet, as assessed 332 

with the Org-FFQ) is questionable as their half live is short 39,42 and only one biological sampling has 333 

been available. It should also be noted that given most pesticide moieties studied herein were no 334 

longer authorized for use in conventional agriculture at the time of urine sampling, the differences in 335 

overall pesticide exposure between the two groups of consumers are likely under-estimated.  336 

 337 

Our study also exhibits major strengths. Detailed data was used to assess organic and conventional 338 

consumption in the overall diet. We used an effective method, i.e. propensity score, allowing to match 339 

organic and conventional consumers using a wide range of covariates (including sociodemographic, 340 

dietary and health data). Finally, this is the first study conducted in Europe comparing pesticide 341 

urinary concentrations from different classes of pesticides, in adults who differed by their organic 342 

consumption in real conditions.  343 

 344 

Conclusions 345 

Compared to individuals with low organic food consumption, individuals with high proportion of 346 

organic food in their diet had significantly lower levels of various metabolites of pesticides of the 347 

organophosphate and pyrethroid families, suggesting that an organic food based-diet may help reduce 348 
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the dietary pesticide exposure, at least for some agrochemicals as tested herein. Overall, low detection 349 

rates were found for parent compounds in both groups. It also should be stressed that urines of 350 

participants in our study displayed rather high exposure levels, irrespective of the group considered, 351 

compared to other populations.. It would be also of high interest to conduct similar comparisons in 352 

large and representative samples. Accurate assessment of organic food consumption in representative 353 

national surveys is therefore required to better evaluate the clinical effects of such differences at the 354 

national level. Additional research is also needed to assess the part attributable to dietary pesticide 355 

exposure and non-dietary sources as well as the effects of such differences over the long term on 356 

health status.  357 
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Table 1: Main characteristics of the sample, n=300 , NutriNet-Santéa 

 Conventional group Organic group P-valueb 
N 150 150  
Proportion (%) of organic food 
in the diet 0.03 ± 0.03 0.67 ± 0.13 <0.0001* 

Age (y) 58.71 ± 12.78 58.35 ± 11.69 0.60 
% Male 28% 32% 0.47 
Energy intake (kcal/d) 1927± 561.3 1994 ± 601.6 0.37 
mPNNS-GSc (13.5) 8.73 ± 1.76 8.73 ± 1.67 0.59 
Body mass index (BMI) (kg/m²)  24.18 ± 4.11 24.19 ± 4.02 0.93 
Tobacco status (%)   0.38 
never smoker 48.67 47.33  
former smoker 44 40.67  
current smoker 7.33 12  
Physical activity (%)   0.85 
missing 9 8  
low 17 19  
medium 37 35  
high 37 38  
Vegetarian or vegan diet (yes) 
(%) 1.33 2 0.65 

Location (%)   0.75 
rural community  24 25.33  
urban unit with a population  
smaller than 20 000 inhabitants 11.33 14  

urban unit with a population 
between 20 000 and 200 000 
inhabitants 

18.67 20.67  

urban unit with a population  
higher than 200 000 inhabitants 46 40  

Education (%)   0.60 
< high school diploma 22 22  
high school diploma 12.67 16.67  
> high school diploma 65.34 61.34  
Monthly income per household 
unit (€)%   0.77 

refused to declare 9.33 7.33  
900-1200 6.67 8.67  
1200-1800 22.67 20  
1800-2700 22 26.67  
>2700 39.33 37.33  
Abbreviation: mPNNS-GS, modified Programme National Nutrition Santé Guidelines score 

aMeans (± SD) or percentages as appropriate.  

bP-values referred to Wilcoxon matched pair signed-rank tests for continuous variables, Mc Nemar's 

test or conditional logistic regression for categorical variables 

cmPNNS-GS is a dietary index reflecting the level of adherence to French nutritional guidelines 

*Significant difference, p-value<0.05
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Table 2: Results for the pesticide parent compounds across organic (n=150) and conventional (n=150) groups, NutriNet-Santé  

Pesticides  
(µg/g creatinine) Mean ± SD P10 P50 P90 P-

valuea 
LOD 

(µg/L) 

LOQ 
(µg/L

) 

Crude 
mean 
(µg/L) 

Crude median 
(µg/L) 

% of 
detection 

% of 
quantificatio

n 
Malathion     0.09 0.003 0.01     
Organic group 0.0083 ± 0.0321 0.0009 0.0020 0.0068    0.0039 0.0015 3 3 
Conventional group 0.0080 ± 0.0283 0.0009 0.0023 0.0116    0.0041 0.0015 9 7 
Chlorpyrifos     0.55 0.02 0.05     
Organic group 0.0405 ± 0.2419 0.0058 0.0138 0.0420    0.0151 0.0100 3 2 
Conventional group 0.0227 ± 0.0287 0.0056 0.0144 0.0511    0.0103 0.0100 2 0 
Chlorpyrifos-
methyl     0.45 0.2 0.5     

Organic group 0.1886 ± 0.1520 0.0582 0.1350 0.3975    0.1010 0.1000 1 1 
Conventional group 0.2089 ± 0.1899 0.0555 0.1437 0.4858    0.100 0.1000 0 0 
Phoxim     0.65 0.05 0.1     
Organic group 0.0510 ± 0.0439 0.0148 0.0348 0.1089    0.0298 0.0250 5 2 
Conventional group 0.0569 ± 0.0643 0.0139 0.0371 0.1246    0.0272 0.0250 3 2 
Diazinon     0.33 0.02 0.05     
Organic group 0.0188 ± 0.0152 0.0058 0.0133 0.0398    0.0100 0.0100 0 0 
Conventional group 0.0277 ± 0.0654 0.0056 0.0144 0.0511    0.0124 0.0100 1 1 
Dichlorvos     0.42 0.3 0.9     
Organic group 0.2819 ± 0.2285 0.0873 0.1993 0.5962    0.1500 0.1500 0 0 
Conventional group 0.3134 ± 0.2849 0.0833 0.2156 0.7286    0.1500 0.1500 0 0 
Abbreviations: LOD, Limit of detection; LOQ, Limit of quantification 

aP-values referred to Wilcoxon matched pair signed-rank tests 
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Table 3: Results for the pesticide metabolites across organic (n=150) and conventional (n=150) groups, NutriNet-Santé 

Pesticides  
(µg/g creatinine) Mean ± SD P10 P50 P90 P-valuea LOD 

(µg/L) 
LOQ 

(µg/L) 
Crude mean 

(µg/L) 
Crude median 

(µg/L) 
% of 

detection 
% of 

quantification 

 CPO     0.45 0.005 0.01     

Organic group 0.0050 ± 0.0053 0.0015 0.0033 0.0102    0.0026 0.0025 1 1 

Conventional group 0.00548 ± 0.0062 0.0014 0.0036 0.0125    0.0025 0.0025 1 0 

 CPMO     0.42 0.02 0.05     

Organic group 0.0188 ± 0.0152 0.0058 0.0133 0.0398    0.0100 0.0100 0 0 

Conventional group 0.0209 ± 0.0190 0.0056 0.0144 0.0486    0.0100 0.0100 0 0 

            

free TCP     0.32 0.2 0.5     

Organic group 0.1918 ± 0.1574 0.0582 0.1350 0.4097    0.1020 0.1000 1 0 

Conventional group 0.2254 ± 0.2337 0.0610 0.1485 0.5110    0.1183 0.1000 3 1 

total TCP     0.14 0.2 0.5     

Organic group 0.3177 ± 0.4123 0.0590 0.1794 0.7078    0.1804 0.1000 21 8 

Conventional group 0.4155 ± 0.6757 0.0678 0.2029 0.7902    0.2435 0.1000 29 13 

            

free DEAMP     0.46 0.03 0.1     

Organic group 0.0404 ± 0.0620 0.0090 0.0237 0.0733    0.0232 0.0150 10 5 

Conventional group 0.0378 ± 0.0379 0.0091 0.0230 0.0798    0.0212 0.0150 8 3 

total DEAMP     0.06 0.03 0.1     

Organic group 0.6121 ± 1.368 0.0115 0.1104 1.386    0.3927 0.0500 65 42 

Conventional group 0.6953 ± 1.243 0.0151 0.2116 1.894    0.4874 0.1400 70 58 



24 
 

 

            

free TBZ-OH     0.60 0.03 0.1     

Organic group 0.0339 ± 0.0445 0.0087 0.0209 0.0654    0.0181 0.0150 5 1 

Conventional group 0.0336 ± 0.0315 0.0087 0.0225 0.0767    0.0180 0.0150 3 1 

total TBZ-OH      0.26 0.03 0.1     

Organic group 0.2762 ± 0.8386 0.0095 0.0424 0.5728    0.1664 0.0150 38 26 

Conventional group 0.1635 ± 0.2193 0.0124 0.0757 0.4165    0.1324 0.0500 51 35 

            

free tebuconazole      0.44 0.03 0.1     

Organic group 0.0292 ± 0.0240 0.0087 0.0206 0.0630    0.0157 0.0150 2 0 

Conventional group 0.0334 ± 0.0364 0.0083 0.0217 0.0748    0.0158 0.0150 1 1 

total tebuconazole      0.83 0.03 0.1     

Organic group 0.2859 ± 0.5257 0.0136 0.0937 0.7685    0.2554 0.0500 68 37 

Conventional group 0.2704 ± 0.5995 0.0153 0.0904 0.6416    0.1986 0.0500 61 41 

            

DEP     0.14 0.2 0.6     

Organic group 18.61 ± 42.06 0.0646 0.6388 55.01    10.61 0.1000 49 48 

Conventional group 31.68 ± 69.38 0.0684 0.9682 80.96    15.91 0.6800 52 51 

DETP     0.0003* 0.2 0.6     

Organic group 0.4305 ± 1.208 0.0623 0.1963 0.8601    0.2775 0.1000 22 11 

Conventional group 1.018 ± 2.480 0.0758 0.2966 1.966    0.6775 0.1000 37 24 

DEDTP     0.42 0.2 0.6     

Organic group 0.1879 ± 0.1523 0.0582 0.1329 0.3975    0.1000 0.1000 0 0 
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Conventional group 0.2089 ± 0.1899 0.0555 0.1437 0.4858    0.1000 0.1000 0 0 

DMP     0.49 0.6 2     

Organic group 17.85 ± 35.22 0.2253 5.427 50.61    14.30 3.860 65 61 

Conventional group 18.66 ± 45.14 0.2171 3.132 40.62    11.89 2.330 61 53 

DMTP     0.001* 0.2 0.6     

Organic group 2.654 ± 6.488 0.0894 0.6209 6.603    2.103 0.3000 62 44 

Conventional group 6.310 ± 18.55 0.1676 1.382 13.88    4.102 1.245 73 62 

DMDTP      0.25 0.2 0.6     

Organic group 0.1879 ± 0.1523 0.0582 0.1329 0.3975    0.1000 0.1000 0 0 

Conventional group 0.2212 ± 0.2080 0.0555 0.1437 0.5189    0.1053 0.1000 3 0 

            

free 3-PBA     0.03* 0.02 0.05     

Organic group 0.0380 ± 0.0730 0.0061 0.0171 0.0610    0.0263 0.0100 16 10 

Conventional group 0.0579 ± 0.1023 0.0068 0.0208 0.1137    0.0415 0.0100 26 21 

total 3-PBA     0.16 0.02 0.05     

Organic group 0.0885 ± 0.2877 0.0064 0.0201 0.1798    0.1178 0.0100 23 18 

Conventional group 0.1301 ± 0.3536 0.0076 0.0282 0.3429    0.1303 0.0100 35 29 

            

free 4-F-3-PBA     0.32 0.02 0.05     

Organic group 0.0191 ± 0.0154 0.0059 0.0133 0.0410    0.0102 0.0100 1 0 

Conventional group 0.0222 ± 0.0221 0.0060 0.0149 0.0499    0.0122 0.0100 3 1 

total 4-F-3-PBA     0.71 0.02 0.05     

Organic group 0.0237 ± 0.0392 0.0059 0.0137 0.0447    0.0123 0.0100 3 2 
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Conventional group 0.0223 ± 0.0226 0.0060 0.0149 0.0499    0.0144 0.0100 3 1 
Abbreviations: 3-PBA, 3-phenoxybenzoic acid; 4-F-3-PBA, 4-fluoro-3-phenoxybenzoic acid; CPMO, Chlorpyrifos-methyl-oxon; CPO, Chlorpyrifos-oxon; 

DAPs, dialkylphosphates; DEAMP, 2-(diethylamino)-6-methylpyrimidin-4-ol/one; DEDTP, diethyldithiophosphate; DEP, diethylphosphate; 

DETP, diethylthiophosphate; DMDTP, dimethyldithiophosphate; DMP, dimethylphosphate; DMTP, dimethylthiophosphate; EPs, diethylphosphates; LOD, 

Limit of detection; LOQ, Limit of quantification; MPs, dimethylphosphates; TBZ-OH, thiabendazole-5-OH; TCP, 3,5,6- trichloropyridinol  

aP-values referred to Wilcoxon matched pair signed-rank tests 

*Significant difference, p-value<0.05 
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Table 4: Molar sum of DAP metabolites in µmol/g creatinine organic (n=150) and conventional 

(n=150) groups, NutriNet-Santé a 

 Mean ± SD P10 P50 P90 P-valueb 
total EPs      
Organic group 0.13 ± 0.28 0.00 0.01 0.36 0.09 
Conventional group 0.21 ± 0.45 0.00 0.02 0.54  
total MPs     0.47 
Organic group 0.16 ± 0.29 0.00 0.06 0.45  
Conventional group 0.20 ± 0.39 0.01 0.06 0.42  
total DAPs     0.03* 
Organic group 0.29 ± 0.42 0.01 0.12 0.82  
Conventional group 0.41 ± 0.64 0.01 0.16 1.23  

Abbreviations: DAPs, dialkylphosphates; EPs, diethylphosphates; MPs, dimethylphosphates    

aConventional consumers were defined as individuals with a maximum of 10% of organic food in their 

diet   

bP-values referred to Wilcoxon matched pair signed-rank tests 

*Significant difference, p-value<0.05 
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Table 5: Molar sum of DAP metabolites in µmol/g creatinine across organic (n=109) and 

conventional (n=109) groups, NutriNet-Santé a    

 Mean ± SD P10 P50 P90 Pb 
total EPs     0.02* 
Organic group 0.11 ± 0.24 0.00 0.01 0.37  
Conventional group 0.25 ± 0.51 0.00 0.03 0.88  
total MPs     0.50 
Organic group 0.17 ± 0.32 0.00 0.06 0.43  
Conventional group 0.20 ± 0.42 0.01 0.05 0.51  
total DAPs     0.04* 
Organic group 0.28  ± 0.42  0.01 0.11 0.84  
Conventional group 0.45 ± 0.70 0.01 0.17 1.37  
Abbreviations: DAPs, dialkylphosphates; EPs, diethylphosphates; MPs, dimethylphosphates    

aCompared to data presented in Table 4, the population sample was restricted to pairs with 

conventional consumers defined as individuals with a maximum of 5% of organic food in their diet 

bP-values referred to Wilcoxon matched pair signed-rank tests 

*Significant difference, p-value<0.05 
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Figure 1: Selection of the study sample 

 

 

 

n=33,384 had completed the 
organic food questionnaire 

n=5,746 had available individual, 
dietary and clinical data 

n=4,598 did not report major 
health events 

n=2,351 were classified as either 
low or high organic food 

consumers and were available for 
matching    

FINAL SAMPLE n=300 

n=344 subjects were successfully 
matched using a propensity score 

procedure 
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Figure 2: Molar sum of DAP metabolites across organic and conventional groups, n=300, NutriNet-

Santé 

 

Abbreviations: DAPs, dialkylphosphates; EPs, diethylphosphates; MPs, dimethylphosphates    

 


