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Abstract

Recent findings suggest that vestibular information plays a significant role in anchoring the

self to the body. Out-of-body experiences of neurological origin are frequently associated

with vestibular sensations, and galvanic vestibular stimulation in healthy participants

anchors the self to the body. Here, we provide the first objective measures of anchoring the

self to the body in chronic bilateral vestibular failure (BVF). We compared 23 patients with

idiopathic BVF to 23 healthy participants in a series of experiments addressing several

aspects of visuo-spatial perspective taking and embodiment. In Experiment 1, participants

were involved in a virtual “dot-counting task” from their own perspective or the perspective

of a distant avatar, to measure implicit and explicit perspective taking, respectively. In both

groups, response times increased similarly when the avatar’s and participant’s viewpoint dif-

fered, for both implicit and explicit perspective taking. In Experiment 2, participants named

ambiguous letters (such as “b” or “q”) traced on their forehead that could be perceived from

an internal or external perspective. The frequency of perceiving ambiguous letters from an

internal perspective was similar in both groups. In Experiment 3, participants completed a

questionnaire measuring the experienced self/body and self/environment “closeness”. Both

groups reported a similar embodied experience. Altogether, our data show that idiopathic

BVF does not change implicit and explicit perspective taking nor subjective anchoring of the

self to the body. Our negative findings offer insight into the multisensory mechanisms of

embodiment. Only acute peripheral vestibular disorders and neurological disorders in ves-

tibular brain areas (characterized by strong multisensory conflicts) may evoke disembodied

experiences.

Introduction

As suggested by Merleau-Ponty’s statement “I am not in front of my body, I am in my body, or
rather I am my body” [1], common self experience is characterized by strong anchoring of the

self to the body. Pioneer [2] and current [3] psychological studies revealed that adults and
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children invariably locate their self within their body boundaries. Only in rare clinical condi-

tions as well as during drug use, meditation, and sleep paralysis do individuals claim that their

self is located outside their physical body (i.e., out-of-body experience) [4].

Current neuroscientific models of self-location propose that the accurate integration of

visual, tactile, proprioceptive, interoceptive, motor and vestibular signals underpins the experi-

ence of an embodied self [5]. In support of these models, clinical observations show that

abnormal multisensory integration in epileptic, and brain-damaged patients may evoke a loss

of unity between the self and the body [6–8]. Moreover, experimentally induced conflicts

between vision and touch [9–13], or between vision and motor-proprioceptive signals [14],

can modify the anchoring of the self to the body in neurologically normal people. However,

despite the importance of the vestibular system in encoding self-motion and orientation in

space, its contribution to the sense of self has received much less attention than has vision,

touch and proprioception.

The last 10 years has seen a growing amount of evidence from research involving neurologi-

cal patients and healthy participants suggesting that vestibular signals contribute to anchoring

the self to the body (for recent reviews, see Ref. [15–17]). First, neurological patients reporting

out-of-body experiences often experience concomitant vestibular illusions, such as sensations

of floating and elevation of the self [7,16]. In these patients, damaged areas most frequently

overlap with key vestibular regions, including the temporo-parietal junction [11] and posterior

insula [8]. Second, patients with peripheral vestibular disorders may report an abnormal self–

body relationship, which is reminiscent of depersonalization disorders [18–20]. For example,

patients with Menière’s disease may report experiences such as “I feel like I’m outside of myself.
I feel like I’m not in myself”, or “I am not actually being there or having anything to do with
my body” ([21], p. 531–532). Yet, we lack convincing evidence of full-blown disembodiment

related to peripheral vestibular disorders [19,22]. Third, experiments involving healthy partici-

pants indicate the possibility of manipulating anchoring of the self to the body by using vestib-

ular stimulation. Ferrè et al. [23] showed that low-intensity galvanic vestibular stimulation

promoted first-person perspective taking in participants who perceived letters drawn on their

forehead. This finding suggests that weak vestibular stimulation may increase the natural ten-

dency of the vestibular system to anchor the self to the body.

If vestibular information plays a significant role in anchoring the self to the body, as sug-

gested by the corpus of data summarized above, how do vestibular-defective patients experi-

ence self-location? Anecdotal reports have been collected over the last century [18–20], but we

have no objective measures of self-body anchoring in vestibular patients according to well-

controlled paradigms from cognitive neuroscience. Here, we tested the contribution of vestib-

ular signals to anchoring the self to the body by comparing the performance of patients with

chronic, idiopathic, bilateral vestibular failure (BVF) and healthy controls in three experiments

addressing several aspects of embodiment. Experiment 1measured implicit and explicit visuo-

spatial perspective taking in a virtual-reality–based “dot-counting task” [24–26]. Experiment 2
measured implicit perspective taking in a non-visual task [23,27] and required naming letters

drawn on the participant’s forehead and neck. Experiment 3measured the experienced close-

ness between the self and the body by using pictorial descriptions adapted from the Inclusion

of Other in the Self (IOS) scale [28]. The rationale and hypotheses for each experiment are

reported in details in the subsequent sections.

Participants with Idiopathic Bilateral Vestibular Failure

We tested a population of 23 patients with idiopathic bilateral vestibular failure (BVF) in a

series of experiments (22 participants in Experiment 1, 23 in Experiment 2, and 22 in
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Experiment 3). The BVF occurred at a mean of 14 ± 12 years before inclusion in the study. At

the time of the tests, all patients were adapted to the vestibular loss, which had moderate func-

tional impact on their daily life, although they reported oscillopsia and imbalance in darkness.

The clinical status of these patients and their performance in cognitive, postural and oculomo-

tor tasks are described elsewhere [29–31].

The BVF was established on the basis of standard otoneurological examinations including a

bithermal caloric test (irrigation of the left and right auditory canals with water at 44˚C and

30˚C), the video head impulse test (vHIT) [32], and measurement of vestibulo-ocular re-

sponses during a pendular test on a rotating chair. The saccular and utricular functions were

evaluated for some patients by recording cervical vestibular-evoked myogenic potentials

(cVEMPs) over the sternocleidomastoid muscles [33] and ocular vestibular-evoked myogenic

potentials (oVEMPs) over the inferior oblique muscles [34], respectively.

All patients had weak responses to the caloric test [mean slow phase eye velocity <5˚/s [35];

left ear (mean ± SD): 2.42 ± 2.73˚/s, right ear: 2.36 ± 2.53˚/s] and reduced responses to the

vHIT [mean gain <0.7 [36]; horizontal canals: 0.38 ± 0.19; anterior canals: 0.34 ± 0.17; poste-

rior canals: 0.34 ± 0.15]. Responses to the pendular test were also reduced [mean slow phase

eye peak velocity <20˚/s; left rotation: 5.89 ± 7.37˚/s; right rotation: 4.84 ± 5.11˚/s]. Cervical

VEMPs were present in the left ear for 9 patients (mean p13-n23 amplitude ± SD: 33.59 ±
42.14 μV) and in the right ear for 12 patients (41.76 ± 44.09 μV). Ocular VEMPs were present

in the left ear for 5 patients (0.68 ± 1.34 μV) and in the right ear for 6 patients (0.97 ± 1.61 μV).

In conclusion, all patients presented severe bilateral vestibular hypofunction that was not asso-

ciated with neurological disorders.

Ethics statement

All participants were informed about the study and gave their written informed consent.

Experimental procedures were approved by the local Ethics Committee (Comité de Protection

des Personnes Sud-Méditerranée II) and followed the ethical recommendations laid down in

the Declaration of Helsinki.

Experiment 1

Experiment 1 aimed at measuring the degree of anchoring the self to the body by visuo-spatial

perspective taking tasks. Recent research has suggested that implicit third-person perspective

taking can be evaluated by asking participants to perform visuo-spatial judgments from their

own perspective while another, task-irrelevant, person is in their visual environment. Partici-

pants spontaneously adopt the viewpoint of the person in their environment. For example,

participants instructed to describe the relative position of two objects more often located these

objects according to the perspective of a person sitting in front of them [37–39]. This effect

was further increased when the other person gazed or acted toward one of the objects.

Here, we compared implicit and explicit visuo-spatial perspective taking tasks in BVF

patients and controls by using a virtual “dot-counting task” developed by Samson and col-

leagues and replicated by others [24–26,40–44]. In this task, participants reported whether the

number of dots presented on the walls of a 3D virtual room matched a digit presented in a pre-

vious instruction. The environment involved a task-irrelevant avatar. Under conditions where

the avatar could “see” a number of dots incongruent with the number of dots visible from the

participants’ viewpoint, response times and error rates increased. Several studies confirmed

that such effects were due to “altercentric intrusion” [24–26,40,41,43,44], that is, an implicit

and unconscious simulation of the avatar’s viewpoint. An opposite effect was reported when

participants were explicitly asked to simulate the avatar’s perspective (i.e., to imagine how
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many dots the avatars would see). Participants were slower and made more errors when the

number of balls seen from the avatar’s and participant’s viewpoints was incongruent. This

effect, referred to as “egocentric intrusion”, indicates that participants cannot totally ignore

their own visuo-spatial perspective.

If vestibular signals are important to anchor the self to the body [23], BVF patients may

more easily separate from their own perspective. Accordingly, they may be more prone to

implicitly take the avatar’s disembodied perspective (i.e., more altercentric intrusion) and less

anchored to their body when required to explicitly take the avatar’s perspective (i.e., less ego-

centric intrusion). An opposite hypothesis would be that BVF patients would be less likely to

implicitly and explicitly adopt the avatar’s perspective because vestibular signals are required

for computing a third-person perspective [45]. Preliminary findings were presented in a con-

ference abstract [46].

Methods

Participants. Twenty-two patients with idiopathic BVF participated in the experiment (9

females and 13 males, mean age ± SD: 60 ± 11 years, mean duration of education after high

school: 4 ± 2 years). All patients but one were right-handed, as confirmed by the Edinburgh

Handedness inventory (mean laterality quotient: 91 ± 30%) [47]. They had normal or cor-

rected-to-normal vision. BVF patients were compared to 22 healthy volunteers matched on

age, sex and education level (9 females and 13 males, age: 58 ± 12 years, education: 5 ± 3

years). Healthy participants were all right-handed, (laterality quotient: 94 ± 13%), had normal

or corrected-to-normal vision, and no history of vestibular, neurological, or psychiatric

disease.

Implicit perspective taking task (IPT task). Visual stimuli consisted of a colored 3D ren-

dering of a room with three visible walls. The left and right walls were yellow and contained

from 0 to 3 blue balls aligned horizontally. In the middle of the room and at the center of the

screen, an avatar was shown sitting on a cube placed on the room floor. Two sets of pictures

were created: female avatars were always shown to female participants, and male avatars were

always shown to male participants. The avatar faced the left or right wall of the 3D room. The

spatial arrangement of the balls was manipulated to create situations where the participant and

avatar could “see” the same number of balls on the walls (i.e., congruent viewpoint), or a differ-

ent number of balls (i.e., incongruent viewpoint) (Fig 1). In total, for both female and male

avatars and for both avatar orientations (i.e., facing the left or right wall), 10 visual stimuli

were created to balance the number of trials with congruent and incongruent viewpoints (fol-

lowing procedures from Ref. [24]).

Visual presentation was controlled, and responses were collected by using PsychoPy2

v1.82.01 [48]. Each trial started with the presentation of a white fixation cross on a black back-

ground for 750 ms. This was followed by the presentation of the question “How many blue
balls do you see?” for 1500 ms and the presentation of a number (0, 1, 2 or 3) for 1000 ms.

Then, one of the visual scenes was presented. Participants were instructed to indicate as

quickly and accurately as possible whether the number of balls they saw matched the number

specified after the question. The response time was not limited. Participants pushed one of two

buttons on a keyboard to respond: half of the participants had to press a button with their

right index finger to answer “yes” or another button with their right middle index finger to

answer “no”; the other participants had a reverse configuration for the response buttons. As

soon as participants pressed a button, the visual scene disappeared and the next trial started.

Although participants had to count the number of balls according to their first-person per-

spective, the presence of the avatar in the visual scene allowed for measuring implicit third-
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Fig 1. Methods for visuo-spatial perspective-taking tasks (Experiment 1). (A) Examples of visual stimuli

used for the tasks of implicit perspective taking (IPT), explicit perspective taking (EPT) task, and visuo-spatial

control (VSC) task. Visual stimuli presented a congruent or an incongruent viewpoint of the avatar with the

participant’s viewpoint. (B) Participants indicated whether the number of balls seen from their viewpoint (IPT

and VSC tasks) matched (i.e., matching trials) or did not match (i.e., mismatching trials) the number

presented in the instruction.

doi:10.1371/journal.pone.0170488.g001
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person perspective taking (IPT), i.e. the extent to which the avatar’s viewpoint interfered with

the participant’s viewpoint.

In half of the trials (“matching trials”), the number specified after the question matched the

number of balls visible from the participant’s viewpoint (Fig 1B). For the trials involving a

congruent viewpoint, the number shown after the question corresponded to the quantity of

balls visible from both the participant’s and avatar’s viewpoints. For the trials involving an

incongruent viewpoint, the number corresponded to the quantity of balls visible only from

participant’s viewpoint. In the other half of the trials (“mismatching trials”), the number speci-

fied after the question differed from the quantity of balls the participant could see. For the trials

involving a congruent viewpoint, the number shown after the question corresponded to one of

the three quantities of balls that did not match the quantity of balls visible from the partici-

pant’s and avatar’s viewpoints. For the trials involving an incongruent viewpoint, the number

corresponded to the quantity of balls visible only from the avatar’s viewpoint. Following the

procedures from Ref. [24], we created six “filler trials” corresponding to a visual scene contain-

ing no ball on the left and right walls and for which the number “0” shown after the question

was the correct answer. Visual stimuli were presented as 35 × 20 cm images on a computer

screen.

Explicit perspective taking task (EPT task). Visual stimuli were identical to the 10 sti-

muli created for the IPT task, with the same avatar at the center of the screen facing one of the

walls (Fig 1A). Here, the instruction differed: participants were explicitly asked to take the ava-

tar’s viewpoint (explicit third-person perspective taking, EPT).

Each trial started with the presentation of a white fixation cross on a black background for

750 ms. This was followed by the presentation of the question “How many blue balls does the
character see?” for 1500 ms and the presentation of a number (0, 1, 2 or 3) for 1000 ms. Then,

one of the visual scenes was presented. Participants were instructed to indicate as quickly and

accurately as possible whether the number of balls seen by the character matched the number

specified after the question. Participants responded using the same two buttons on a keyboard

as for the IPT task.

As for the IPT task, we included trials in which the participant and the avatar could “see”

the same number of balls (i.e., congruent viewpoint) or a different number of balls (i.e., incon-

gruent viewpoint). Half of the trials were “matching trials” and the other half were “mismatch-

ing trials” and we included six filler trials.

Visuo-spatial control task (VSC task). To control for visuo-spatial and attentional bias

in the IPT and EPT tasks, participants completed a visuo-spatial control task (VSC task)

involving neither implicit nor explicit perspective taking. Here, a grey rectangle (a geometric

shape devoid of social meaning) replaced the avatar at the center of the screen (for similar pro-

cedures, see Ref. [24,25,49]) (Fig 1A). The control task aimed to control for (1) differences in

visual processing, motor response accuracy and speed between BVF patients and controls and

(2) visuo-spatial effects that may account for longer response times in incongruent trials (balls

on one wall or on two opposite walls) as compared to congruent trials (balls always on the

same wall).

An arbitrary “orientation” of the rectangle in the room was created by coloring the left and

right sides of the rectangle in orange or green. Half of the participants were presented with the

right side of the rectangle in orange and the left side in green, and other participants were pre-

sented with the opposite orientation. Spatial arrangements of the balls labeled “congruent

viewpoint” in the IPT task were considered the congruent viewpoint in the control task and

vice versa for trials labeled “incongruent viewpoint” in the IPT task (Fig 1A).

As for the IPT task, the VSC task involved matching trials in which the number specified

after the question matched the number of balls visible from the participant’s viewpoint. In the
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other half of the trials (i.e., mismatching trials), the number specified after the question dif-

fered from the quantity of balls the participant could see. Six filler trials were also presented.

The VSC task involved the same instructions, experimental procedures and timing of events

presentation as for the IPT task.

Experimental procedures. For all three tasks, participants sat on a chair facing a screen

placed on a table. Their heads were aligned with the center of the screen, which was at a view-

ing distance of 70 cm. A keyboard was placed on the table in front of participants.

For each task, participants completed a total of 78 trials presented in random order in 2

blocks of 39 trials. There was an equal number of matching trials (n = 39) and mismatching tri-

als (n = 39), and an equal number of trials with congruent (n = 36) and incongruent (n = 36)

viewpoints. Before the experiment, participants completed a training session consisting of a ran-

dom selection of 20 trials for familiarization with the keyboard and experimental procedures.

Participants first performed the VSC task then the IPT task and the EPT task. This order

was chosen because our pilot experiments [50] and other studies [25,49] showed that perform-

ing the IPT or EPT tasks first changes reaction times in a control task presenting a non-corpo-

real object (i.e., a rectangle or an arrow). Accordingly, since the control task was a baseline to

measure the participant’s ability to process space, it was always conducted first. To allow for

between-group comparisons, the sequence was identical for the BVF patients and healthy

controls.

Data analysis. We calculated the mean response time and percentage of correct answers

for the matching trials. Data for mismatching trials and filler trials were discarded from the

analysis according to previous studies [24]. Trials yielding incorrect answers were discarded

from the analysis of the response times and we removed trials for which response times

exceeded 2 standard deviations of the participant’s grand average. We focused on response

times, shown to be more sensitive than accuracy to multisensory conflicts [51–53]. For the

three tasks, response times were analyzed by repeated-measures ANOVAs with Statistica, Ver-

sion12 SP3 (StatSoft Inc.), with Viewpoint (congruent vs incongruent) as a within-subject fac-

tor and with Group (BVF patients vs controls) and Gender (female vs male) as between-

subject factors. Main effects and interactions were considered significant at p<0.05. We also

calculated a congruency effect (CE), adapted from the cross-modal CE used to investigate

visual-tactile and visuo-vestibular conflicts [51–53]. For each of the three tasks, CE was calcu-

lated as the difference in response times between the incongruent and congruent viewpoints.

Results

IPT task. Results showed a main effect of Viewpoint (F1,40 = 22.87, p<0.0001, η2
p = 0.36).

As predicted, the mean response time was significantly longer when participant’s and avatar’s

viewpoints were incongruent (mean ± SD: 1040 ± 234 ms) than congruent (995 ± 230 ms),

thereby showing a typical pattern of “altercentric intrusion” (Fig 2A). There was no main effect

of Group (F1,40 = 1.27, p = 0.27, η2
p = 0.03) and no Viewpoint × Group interaction (F1,40 = 0.90,

p = 0.35, η2
p = 0.02), showing no effect of vestibular deficits on altercentric intrusion. There

was no main effect of Gender (F1,40 = 1.38, p = 0.25, η2
p = 0.03), but a significant Viewpoint ×

Gender interaction (F1,40 = 4.43, p<0.05, η2
p = 0.10). Although response times were longer

with incongruent than congruent trials for both females (planned comparison: F1,40 = 20.07,

p<0.0001) and males (F1,40 = 4.38, p<0.05), the statistical difference was stronger in females. In

addition, the CE was numerically larger for females (70 ± 63 ms) than males (27 ± 67 ms).

EPT task. As predicted, again we found a main effect of Viewpoint (F1,40 = 10.61, p<0.01,

η2
p = 0.21), with significantly longer response times when the participant’s and avatar’s view-

points were incongruent (mean ± SD: 956 ± 268 ms) than congruent (925 ± 239 ms). This
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finding indicates a typical pattern of “egocentric intrusion” (Fig 2B). We found no main effect

of Group (F1,40 = 1.18, p = 0.28, η2
p = 0.03) and no Viewpoint × Group interaction (F1,40 =

0.50, p = 0.49, η2
p = 0.01), which again shows no effect of vestibular deficits on altercentric

intrusion, and no effect of Gender (F1,40 = 0.44, p = 0.51, η2
p = 0.01).

VSC task. In contrast to IPT and EPT tasks, analysis of the response times for the VSC
task depicting a non-human object revealed no effect of Viewpoint (F1,40 = 2.53, p = 0.12, η2

p =

0.06). Thus, response times did not differ for incongruent (1097 ± 200 ms) and congruent

(1075 ± 203 ms) viewpoints (Fig 2C). We found no significant effect of Group (F1,40 = 0.66,

p = 0.42, η2
p = 0.02), no Viewpoint × Group interaction (F1,40 = 0.08, p = 0.77, η2

p<0.01) and

no effect of Gender (F1,40 = 0.52, p = 0.47, η2
p = 0.01).

Congruency effects. We compared the CE between groups for both perspective taking

tasks and VSC tasks (Fig 3). Although the CE for the IPT task was numerically lower for the

BVF patients (37± 78 ms) than controls (53 ± 57 ms), which suggests reduced altercentric

intrusion for patients, the difference was not statistically significant (F1,42 = 0.63, p = 0.43,

η2
p = 0.02). An opposite trend was found for the EPT task, with numerically higher CE for

patients (42 ± 72 ms) than controls (21 ± 61 ms), which suggests increased egocentric intrusion

for patients, but the difference was not statistically significant (F1,42 = 1.06, p = 0.31, η2
p =

0.01). Post-hoc analyses revealed that CEs were significantly different from zero for the per-

spective taking tasks (except for controls in the EPT task) but never for the VSC task.

Experiment 2

Experiment 2 was designed to measure implicit perspective taking in BVF patients using a tac-

tile task instead of a visuo-spatial task, as in Experiment 1 and in previous studies [54–56]. We

adapted a tactile perception task referred to in the literature as a “graphaesthesia” task. The

task consists of drawing ambiguous letters (such as d, b, p and q) on the participant’s forehead

directly with the experimenter’s finger [57], a cotton bud [23], or a mechanical device [58].

Participants may perceive letters drawn on their forehead from an egocentric, first-person

Fig 2. Results for the visuo-spatial perspective-taking tasks (Experiment 1; Response times). Histograms represent the

effect of the within-subject factor Viewpoint, which was significant for the implicit perspective-taking (IPT) task (p<0.05) and the

explicit perspective-taking (EPT) task (p<0.05), but not for the visuo-spatial control (VSC) task (n.s.: not significant). Data for

patients and controls are shown separately for illustration purposes only. Vertical bars represent the standard error of the mean.

doi:10.1371/journal.pone.0170488.g002
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perspective (e.g., they perceive the letter “d” after the letter “b” is drawn on their forehead) or

from a disembodied, third-person perspective (e.g., they perceive the letter “d” after the letter

“d” is drawn) (reviewed in [59]). An early study by Natsoulas and Dubanoski [27] revealed

that 70% of participants experienced ambiguous letters drawn on their forehead according to a

first-person perspective. Interestingly, this proportion changed depending on the site of stimu-

lation and the spatial orientation of stimulated body parts [27,60–62]. For example, only 13%

of participants used a first-person perspective when letters were drawn on the back of their

head, whereas about 50% of participants used a first-person perspective for letters drawn on

the side of their head [27]. Altogether, these data indicate that interpreting tactile patterns on

the skin varies across participants and may reflect sensory and cognitive styles, such as those

involved in visual field dependence/independence. Accordingly, the graphaesthesia task con-

stitutes a valid measure of implicit perspective taking [23,60].

Two opposite predictions can be made regarding the consequences of BVF in the gra-

phaesthesia task: (1) If vestibular signals are involved in simulating another person’s perspec-

tive, as suggested by healthy participant research [45], the lack of vestibular information in

BVF patients may promote tactile perception according to a first-person perspective. (2) Con-

versely, if vestibular signals anchor the self to the body, as suggested by the effect of galvanic

vestibular stimulation in healthy participants [23], BVF patients without vestibular signals may

more easily take a disembodied viewpoint.

Fig 3. Results for the visuo-spatial perspective-taking tasks (Experiment 1; Congruency effects).

Histograms represent the average congruency effect (incongruent viewpoint minus congruent viewpoint)

calculated for the implicit perspective-taking (IPT) task, explicit perspective-taking (EPT) task, and visuo-

spatial control (VSC) task for patients and controls. * indicates significant differences with respect to zero (t-

test). Vertical bars represent the standard error of the mean.

doi:10.1371/journal.pone.0170488.g003
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Methods

Participants. Twenty-three BVF patients (9 females and 14 males, mean age ± SD: 61 ±
11 years, 22 right-handed and 1 left-handed, Edinburgh Handedness inventory [47]: 90 ± 30%,

duration of education: 4 ± 2 years) and 23 healthy volunteers (mean age: 59 ± 12 years, all

right-handed, Edinburgh Handedness inventory: 93 ± 15%, duration of education: 6 ± 3 years)

participated.

Tactile stimuli and experimental procedures. Procedures for this graphaesthesia task

were adapted from those used by Ferrè et al. [23] and by Natsoulas and Dubanoski [27]. Before

the experiment, participants were verbally instructed that the experimenter would draw letters

on their forehead or their neck (on the back of the head below the hairline) by using a cotton

bud (Fig 4A). Participants were informed that only one of those letters–d, b, p, q, n, v, w and

o–would be drawn on their skin, and they were instructed to report as spontaneously as possi-

ble the letter they experienced (Fig 4B). The experimenter traced the letters by using a cotton

bud in a single continuous motion on the skin. To increase the difficulty of the task and to not

cue participants to select a strategy based on the direction of the writing, all letters were drawn

with the motion starting from one or the other end of each letter, so that letters were traced

according to a canonical or non-canonical direction of writing. Thus, participants first had to

create a representation of the global shape of the letter before giving an answer, because the

direction of the writing was uninformative.

Participants were comfortably seated on a chair and were instructed to close their eyes

throughout the recording session. In one session, the experimenter sat in front of the participant

and drew the letters on the central part of the participant’s forehead. In the other session, the

experimenter sat at the back of the participant and drew the letters on the participant’s neck.

Each session comprised 48 trials, including 32 presentations of ambiguous letters (8 presenta-

tions of d, b, p and q) and 16 presentations of non-ambiguous letters (4 presentations of n, v, w

and o). Letters with their direction of drawing were presented on a computer screen to the exper-

imenter in a randomized order by using PsychoPy2 (v1.82.01) [48]. The experimenter used a

Fig 4. Methods for the graphaesthesia task (Experiment 2). (A) The experimenter drew letters on the participants’ forehead and neck by

using a cotton bud while participants kept their eyes closed. (B) Letters included ambiguous, non-symmetrical letters (b, d, p, q) and non-

ambiguous, symmetrical letters (w, n, o, v) that were all drawn in the canonical direction of writing or in the reverse direction, starting from the

opposite end of the letter. All letters were drawn by using a single and continuous hand motion.

doi:10.1371/journal.pone.0170488.g004
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keyboard to manually enter participants’ verbal responses, which were saved by using PsychoPy

and processed offline.

Data analysis. To measure the degree of anchoring the self to the body, we calculated the

proportion of ambiguous letters (d, b, p and q) that were experienced from a first-person per-

spective (e.g., when participants reported the letter “q” after the experimenter drew the letter

“p” on their skin) [23]. The ability to correctly represent the pattern of letters drawn on the

skin was calculated as the proportion of correct identification of symmetrical letters (n, v, w

and o). Data were analyzed by using repeated-measures ANOVAs with the Site of stimulation

(forehead vs neck) as a within-subject factor and with the Group (BVF patients vs controls)

and Gender (female vs male) as between-subject factors.

Results

Analysis of the proportion of ambiguous letters experienced from a first-person perspective

revealed a significant main effect of the Site of stimulation (F1,42 = 68.96, p<0.001, η2
p = 0.62).

Fig 5 shows that letters were more often experienced from a first-person perspective when

drawn on the forehead (mean percentage of trials ± SD: 60 ± 31%) and almost never from a

first-person perspective when drawn on the neck (10 ± 18%). We found no main effect of

Group (F1,42 = 0.40, p = 0.53, η2
p = 0.01) and no significant Site of stimulation × Group inter-

action (F1,42 = 0.01, p = 0.93, η2
p<0.001). There was a significant main effect of Gender (Fig

5): letters were more often experienced from a first-person perspective for females (40 ± 15%)

than males (30 ± 15%; F1,42 = 5.20, p<0.05, η2
p = 0.11).

Fig 5. Results from the graphaesthesia task (Experiment 2). Histograms on the left represent the main

effect of the within-subject factor Site of stimulation and histograms on the right represent the main effect of

the between-subject factor Group. Data from patients and controls are shown separately for illustration

purposes only. Histograms represent the mean of the percentage of trials perceived from a first-person

perspective and vertical bars represent the standard error of the mean.

doi:10.1371/journal.pone.0170488.g005
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Analysis of the proportion of correct identification of symmetrical letters revealed a similar

performance for both Groups (F1,42 = 0.01, p = 0.94, η2
p = 0.001) and Genders (F1,42 = 0.1,

p = 0.75, η2
p = 0.002). Participants discriminated letters better when drawn on their forehead

than on their neck as revealed by a main effect of Site of stimulation (F1,42 = 7.62, p<0.01,

η2
p = 0.15). There was no significant interaction.

Experiment 3

Anecdotal reports in the clinical literature suggest that acute vestibular disorders may impair

bodily self-consciousness, for example, evoking sensations that the body feels enlarged,

strange, or unreal [18,19]. The subjective content of these symptoms is evocative of deperson-

alization disorders [21]. Studies involving the depersonalization-derealization questionnaire

from Cox and Swinson [63] reported a higher incidence of depersonalization in patients with

vestibular disorders than healthy participants and greater incidence of depersonalization in

bilateral than unilateral vestibular disorders [64–67]. The Cox and Swinson questionnaire [63]

includes items tapping self/body and self/environment relationships, such as “feeling detached
or separated from [the] body” and “feeling of detachment or separation from surroundings” that

vestibular patients report significantly more often [64]. Yet, it is notable that there is only few

descriptions of complete out-of-body experiences in vestibular disorders [18,19,21,68]. Here,

we measured the experienced self/body and self/environment “closeness” in idiopathic BVF

patients by using questionnaires.

Methods

Participants. Twenty-two BVF patients (8 females and 14 males, mean age ± SD: 61 ± 11

years, 21 right-handed and 1 left-handed, Edinburgh Handedness inventory [47]: 90 ± 30%,

duration of education: 4 ± 2 years) and 22 healthy volunteers (mean age ± SD: 59 ± 12 years,

22 right-handed: 93 ± 13%, duration of education: 6 ± 3 years), who also took part in Experi-

ment 2 filled out a questionnaire.

Subjective reports. Participants completed a four-item questionnaire about the perceived

closeness between their self and body (Item 1), self and immediate body environment (Item

2), body and immediate body environment (Item 3), and self and others (Item 4). They were

asked to answer in terms of their average perception over the last year. Participants had to

select one of seven pictorial descriptions (Fig 6) of the degree of closeness between their self

and body, for example, whereby two distinct circles represent clear separation between the self

and the body (score = 1) and two overlapping circles represent high closeness between their

self and body (score = 7). This simple, pictorial description of closeness was adapted from the

“Inclusion of Other in the Self” (IOS) scale developed by Aron et al. [28] to measure interper-

sonal closeness.

Results

For each questionnaire item, the degree of closeness reported was converted into a score

ranging from 1 to 7 (Fig 6). Scores for the BVF patients and controls were compared by a non-

parametric statistical procedure based on the Mann-Whitney U test (i.e., nonparametric alter-

native to the t-test for independent samples). Patients and controls reported a similar degree of

closeness between their self and body (U = 235, Z = −0.16, p = 0.87), self and immediate body

environment (U = 170, Z = 1.69, p = 0.09), body and immediate body environment (U = 217,

Z = 0.59, p = 0.56), and self and others (U = 226, Z = 0.36, p = 0.72). Finally, a separate analysis

revealed no modulation of the scores by Gender as a between-subject factor (all U>183,

Z<0.99 and p>0.32).
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Discussion

Three experiments revealed that severe bilateral vestibular hypofunction does not change the

anchoring of the self to the body. Although negative findings are difficult to interpret, they

should be reported more systematically in behavioral and clinical neuroscience [69,70]. Here-

after we discuss our results with respect to current multisensory models of embodiment and

compare results from each experiment with earlier studies, while pointing out the limitations

of the present study.

Multisensory mechanisms of embodiment

The negative findings from this study shed light on the multisensory mechanisms of embodi-

ment. Current neuroscientific models of embodiment propose that the common experience of

Fig 6. Subjective measures of self-body anchoring (Experiment 3). Pictorial descriptions used to

measure the closeness between the self, body, environment and others. Seven pairs of circles shown at the

bottom of the figure were presented to participants, who had to indicate which one better represented the

perceived degree of “closeness” between two items, such as the self and body. Colored symbols represent the

mean of self-reports from patients and controls and horizontal bars represent the standard error of the mean.

doi:10.1371/journal.pone.0170488.g006
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an embodied self relies on normal integration of sensory signals, including vestibular signals

[5,16]. These models also predict that a multisensory conflict can evoke the experience that the

self is disconnected from the body [5,22].

BVF patients were tested when most of their functional deficits were moderated and they

usually did not complain about vertigo and dizziness. Because vestibular information is miss-

ing in these patients, it does not contradict nor confirm visual and somatosensory signals

during body motions. Accordingly, there should be no sensory mismatch and perceptual inco-

herence due to bilateral vestibular failure. By contrast, in patients with acute peripheral vestib-

ular disorders, the central nervous system receives signals from the inner ear about self-

motion and self-orientation that are incongruent with visual and somatosensory signals,

thereby creating sensory mismatch and perceptual incoherence. We propose that abnormal

forms of anchoring the self to the body may arise from perceptual incoherence in acute vestib-

ular disorders but not from long-lasting vestibular deafferentation. Indeed, disorders of the

bodily self have been reported in clinical conditions such as Menière’s disease [21], recurrent

vertigo attacks [68] and epileptic vertigo [71], which are characterized by episodes of strong

perceptual incoherence. By contrast, we found no objective measure in the clinical literature

showing that bilateral vestibular loss may evoke strong disembodied self-location.

The normal embodiment we found in BVF patients also suggests that the mechanisms

underpinning the experience of an embodied self and first-person perspective are robust. Neu-

rologically normal individuals rarely spontaneously report disembodied experiences, unless

they experience multisensory conflicts. For example, Pfeiffer et al. [12] used visuo-tactile con-

flicts in healthy participants and could manipulate the direction of their first-person perspec-

tives. Yet, the origin of the first-person perspective invariably remained bound to self-location.

In addition, low-intensity galvanic vestibular stimulation promoted a first-person perspective

in healthy participants during the graphaesthesia task [23]. This suggests that weak vestibular

stimulation may increase the natural tendency of the vestibular system to anchoring the self to

the body. In conclusion, we propose that when vestibular information does not conflict with

visual and somatosensory signals, as in healthy participants and BVF patients, visuo-spatial

processing from a first-person perspective may be unaffected.

We cannot exclude that our negative findings are due to some patients having a severe bilat-

eral vestibular hypofunction rather than a total bilateral vestibular loss. If vestibular signals

anchor the self to the body, even a weak residual vestibular function may be enough to main-

tain a coherent experience of an embodied self. Yet, additional analyses (not presented here)

revealed that patients with and without cervical VEMPs had similar performances in the three

experiments. Finally, because vestibular signals have been involved in both anchoring the self

to the body (egocentric viewpoint) [23] and in simulating another person’s viewpoint (allo-

centric viewpoint) [45], an alternative explanation for our negative findings could be that these

effects tend to cancel each other out. It is unknown from the literature whether vestibular sig-

nals are more important for anchoring the self to the body or changing the viewpoint.

The negative findings we report here may also be due to the nature of the task. In Experi-

ments 1 and 2, we used implicit perspective taking tasks. Participants did not explicitly evalu-

ate their self-location and self-identification with an avatar in their environment, as done in

experiments using visuo-tactile stimulation [9–14,72,73]. In these experiments, participants

received a tactile stimulation on their back or chest while they observed in a head-mounted

display an avatar being stroked at the same time on the same body region [9–11,13]. Partici-

pants self-identified with the avatar and localized themselves closer to it (i.e., disembodied self-

location; for reviews see Ref. [5,74]). Variants of these illusions evoked sensations of body

translation, lightness and levitation [11–13], which are reminiscent of otolithic vestibular sen-

sations. By contrast, when tested with variants of the illusions that do not alter self-location,
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participants do not report vestibular sensations [72,73]. These data suggest a relation between

disembodied self-location and vestibular information processing. It is likely that if BVF pa-

tients (or patients with unilateral vestibular disorders) were tested using paradigms of visuo-

tactile stimulation, their self-location and self-identification would differ from that of healthy

controls as they strongly rely on visual information for self-orientation [75]. This hypothesis

seems supported by a recent case study by Kaliuzhna et al. [68]. A patient with a unilateral ves-

tibular disorder, who already had out-of-body experiences, reported during synchronous

visuo-tactile stimulation a stronger sensation that he was floating in the air than control partic-

ipants. The anchoring of the self to the body should now be investigated in large samples of

BVF patients and patients with unilateral vestibular disorders using experimental inductions

of out-of-body—like experiences, in order to fully understand the vestibular contributions to

embodiment.

Comparison with previous findings

Implicit visuo-spatial perspective taking. As predicted, our data revealed a typical

pattern of altercentric intrusion: participants spontaneously adopted the perspective of the

avatar to the detriment of visuo-spatial processing from their own perspective (i.e., longer

reaction times for incongruent viewpoint). The data also revealed an egocentric intrusion

effect, whereby participants did not ignore their own perspective when required to simulate

the viewpoint of a distant avatar [24–26,42]. Finally, our data indicate that altercentric and

egocentric intrusion effects exist in participants older (mean age 66 years old) than previously

tested healthy populations (e.g., mean age was 21 in Ref. [24]; 22 in Ref. [25]; 22 in Ref. [26]).

There is now convincing evidence that altercentric intrusion cannot be accounted for by

unspecific attentional and visuo-spatial bias (see Ref. [42]). In contrast with most studies of

implicit perspective taking, Santiesteban et al. [49] proposed that the mere presence of an ava-

tar gazing to one side of a virtual room redirects spatial attention to this side of the room,

thereby accounting for the altercentric intrusion effect. For these authors, altercentric intru-

sion reflects automatic attentional orienting rather than perspective taking. Because of time

constraints in Experiment 1 and the effect of the order of task presentation (see Methods), we

could not add another control task presenting an arrow instead of an avatar. Yet, some evi-

dence suggests that when the avatar is replaced by an arrow pointing to one side of the virtual

room (which also draws the participant’s attention to this direction), the incongruence of the

viewpoint is weaker than when an avatar is presented [25,50]. These data indicate that the pres-

ence of the avatar does more than merely draw the participant’s attention to one side of the vir-

tual room.

Implicit non-visual perspective taking (graphaesthesia task). Our results showed that

participants implicitly used different perspectives when letters were drawn on their forehead

or the back of their head. In many trials (58%), participants used a first-person perspective

when ambiguous letters were traced on the forehead but mainly an external, third-person per-

spective when traced on their back. In addition, 63% of the patients and 63% of the controls

preferentially used a first-person perspective to interpret letters drawn on their forehead. This

percentage dropped to only 4% for patients and 0% for controls when letters were drawn on

the back of their neck. Such percentages are congruent with data from Natsoulas and Duba-

noski [27], showing that 70% of the participants preferentially used a first-person perspective

for letters drawn on their forehead, whereas 13% used this strategy for letters drawn on the

back of their head. Overall, our results agree with previous studies for letters drawn manually

by an experimenter [23,27] or automatically with a mechanical device [58]. We note that the

fact that an experimenter, instead of a mechanical device drawing letters on the participant’s
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skin may have increased the likelihood that participants used a third-person perspective. This

proposition agrees with implicit perspective taking when a conspecific is located in the partici-

pant’s immediate visual environment [24,37].

Another finding of our study was a main effect of the Gender, in that female participants

more often used a first-person perspective than did males, which shows an overall stronger

anchoring of the self to their body. Gender effects in perspective-taking tasks are controversial,

but we have some evidence that females simulate another person’s visuo-spatial perspective

[76,77] or perform own-body mental transformation tasks [78] differently from males. In par-

ticular, females had longer response times during perspective-taking tasks and were more

prone to conflicts between their own body posture and that of a seen individual [76]. Such

effects may relate to different cognitive strategies and brain mechanisms used by females and

males for mental imagery of objects and bodies, as suggested by early functional neuroimaging

studies [79,80].

Subjective reports. The IOS scale measuring the perceived closeness between the self and

the body did not reveal differences between BVF patients and controls. This result seems to

contrast with the greater occurrence of depersonalization-derealization symptoms in vestibu-

lar patients than healthy volunteers [64,65,67]. Jauregui-Renaud et al. [65] found greater

depersonalization-derealization scores for BVF patients than unilateral vestibular-defective

patients. Yet, previous studies used a global score of depersonalization-derealization derived

from questionnaire items assessing various aspects of the patient’s perception [63]. As a result,

whether responses to questionnaire items specifically investigating the anchoring of the self to

the body differ for BVF patients and controls remain unknown.

Limits of the study and future directions

The present findings must be considered with caution because many factors can influence per-

spective taking and the sample size was limited. Although we controlled for age, gender and

education level, which all influence perspective taking [81,76,78], cultural factors [77], person-

ality traits [25,53,78] or anxiety [82] can also play a significant role and may have introduced

variability in the data. In addition, we did not perform a power analysis before we included

participants; we were constrained by the number of patients with severe BVF, which is a rare

condition. Yet, a power analysis for repeated-measures ANOVAs ran a posteriori showed that

the sample size was not underestimated for Experiments 1 and 2 (G�Power [83]: f = 0.3, α =

0.05, power = 0.8). By contrast, the number of participants was underestimated for Experiment

3, for which a sample size of n = 27 per group (instead of n = 22) was required (based on a

power analysis for Mann-Whitney tests using G�Power [83]: d = 0.8; α = 0.05, power = 0.8).

As noted above, embodiment may be distorted in BVF patients tested with paradigms

designed to evoke ‘out-of-the body’ self-locations [9,10,73] and this should be the topic of

future investigations. It might also be interesting to evaluate the consequence of acute unilat-

eral vestibular failure (UVF) on anchoring the self to the body. This would allow to compare

the consequence of left vs. right UVF as there is an ipsilateral dominance of the vestibulo-tha-

lamo-cortical pathways, and an overall right hemisphere dominance for vestibular information

processing in right-handed participants [84,85]. Left and right UVF impact differently visuo-

spatial tasks, with a stronger impact of left UVF on the perceived straight-ahead [86], and a

stronger impact of right UVF on visual vertical perception [87]. Interestingly, out-of-body

experiences have been related to the right temporo-parietal junction [7,11], an important

region of the cortical vestibular network [88,89]. Due to the ipsilateral predominance of the

vestibulo-thalamo-cortical pathways, patients with right UVF may be more prone to disem-

bodied self-location. This hypothesis should be tested using implicit perspective tasks, such as
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those used in the present study, and using multisensory conflicts designed to evoke out-of-

body—like experiences [9,10,73].
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Clin Neurophysiol. 2015; 45: 400–401.

47. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia.

1971; 9: 97–113. PMID: 5146491

48. Peirce JW. PsychoPy—Psychophysics software in Python. J Neurosci Methods. 2007; 162: 8–13. doi:

10.1016/j.jneumeth.2006.11.017 PMID: 17254636

49. Santiesteban I, Catmur C, Hopkins SC, Bird G, Heyes C. Avatars and arrows: implicit mentalizing or

domain-general processing? J Exp Psychol Hum Percept Perform. 2014; 40: 929–937. doi: 10.1037/

a0035175 PMID: 24377486

50. Lopez C, Parlanti A, Deroualle D. La posture influence de façon préconsciente la perception visuo-spa-
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86. Saj A, Honoré J, Bernard-Demanze L, Devèze A, Magnan J, Borel L. Where is straight ahead to a

patient with unilateral vestibular loss? Cortex. 2013; 49: 1219–1228. doi: 10.1016/j.cortex.2012.05.019

PMID: 22795184

87. Toupet M, Van Nechel C, Bozorg Grayeli A. Influence of body laterality on recovery from subjective

visual vertical tilt after vestibular neuritis. Audiol Neurootol. 2014; 19: 248–255. doi: 10.1159/000360266

PMID: 25074802

88. Kahane P, Hoffmann D, Minotti L, Berthoz A. Reappraisal of the human vestibular cortex by cortical

electrical stimulation study. Ann Neurol. 2003; 54: 615–24. doi: 10.1002/ana.10726 PMID: 14595651

89. Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res Rev.

2011; 67: 119–146. doi: 10.1016/j.brainresrev.2010.12.002 PMID: 21223979

Anchoring the Self to the Body in Bilateral Vestibular Loss

PLOS ONE | DOI:10.1371/journal.pone.0170488 January 20, 2017 21 / 21

http://dx.doi.org/10.1016/j.neuropsychologia.2006.01.026
http://www.ncbi.nlm.nih.gov/pubmed/16678867
http://dx.doi.org/10.1037/xge0000048
http://dx.doi.org/10.1037/xge0000048
http://www.ncbi.nlm.nih.gov/pubmed/25602753
http://www.ncbi.nlm.nih.gov/pubmed/17695343
http://www.ncbi.nlm.nih.gov/pubmed/12902399
http://dx.doi.org/10.1016/j.neuroimage.2008.06.026
http://www.ncbi.nlm.nih.gov/pubmed/18644454
http://dx.doi.org/10.1016/j.cortex.2012.05.019
http://www.ncbi.nlm.nih.gov/pubmed/22795184
http://dx.doi.org/10.1159/000360266
http://www.ncbi.nlm.nih.gov/pubmed/25074802
http://dx.doi.org/10.1002/ana.10726
http://www.ncbi.nlm.nih.gov/pubmed/14595651
http://dx.doi.org/10.1016/j.brainresrev.2010.12.002
http://www.ncbi.nlm.nih.gov/pubmed/21223979

