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Transition to turbulence in the rotating disk
boundary layer of a rotor–stator cavity

Eunok Yim1, J.-M. Chomaz2, D. Martinand1 and E. Serre1,†
1Aix-Marseille Univ., CNRS, Centrale Marseille, M2P2 Marseille, France

2LadHyX, CNRS-Ecole Polytechnique, F-91128 Palaiseau, France

The transition to turbulence in the rotating disk boundary layer is investigated in a
closed cylindrical rotor–stator cavity via direct numerical simulation (DNS) and linear
stability analysis (LSA). The mean flow in the rotor boundary layer is qualitatively
similar to the von Kármán self-similarity solution. The mean velocity profiles,
however, slightly depart from theory as the rotor edge is approached. Shear and
centrifugal effects lead to a locally more unstable mean flow than the self-similarity
solution, which acts as a strong source of perturbations. Fluctuations start rising
there, as the Reynolds number is increased, eventually leading to an edge-driven
global mode, characterized by spiral arms rotating counter-clockwise with respect
to the rotor. At larger Reynolds numbers, fluctuations form a steep front, no longer
driven by the edge, and followed downstream by a saturated spiral wave, eventually
leading to incipient turbulence. Numerical results show that this front results from
the superposition of several elephant front-forming global modes, corresponding to
unstable azimuthal wavenumbers m, in the range m ∈ [32, 78]. The spatial growth
along the radial direction of the energy of these fluctuations is quantitatively similar
to that observed experimentally. This superposition of elephant modes could thus
provide an explanation for the discrepancy observed in the single disk configuration,
between the corresponding spatial growth rates values measured by experiments on
the one hand, and predicted by LSA and DNS performed in an azimuthal sector, on
the other hand.
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1. Introduction
Flows confined between two coaxial disks, one being at rest and the other rotating

at rotation rate ΩD, are prototype flows of both practical relevance and fundamental
interest (Launder, Poncet & Serre 2010). Industrial applications concern the increase
in performances of rotating systems, from computer hard drives to aeronautical turbine
stages, with issues related to a higher efficiency of the cooling (Owen & Rogers 1989)
or to the control of rotor vibrations induced by a strong unsteadiness of the flow
(Dimarogonas, Paipetis & Chondros 2013).
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Fundamental interest is instigated by the similitude of this flow with one of the few
exact self-similar solutions of the nonlinear Navier–Stokes equations, that provides a
well-defined theoretical framework. Assuming the cavity height H to be large with
respect to the characteristic viscous length δ = (ν/ΩD)

0.5, where ν is the kinematic
viscosity, the mean flow is indeed asymptotically close to the Batchelor solution
between two infinite parallel disks (Batchelor 1951).

This flow presents the structure of an inviscid core rotating at constant angular
velocity ΩF, bounded by two boundary layers near the disks, of von Kármán type
on the rotating disk (von Kármán 1921) and of Bödewadt type on the stationary disk
(Bödewadt 1940). These boundary layers have a three-dimensional profile, with the
radial component of the velocity presenting an inflection point along the wall-normal
direction.

The stability of the Batchelor flow is closely connected to that of the boundary
layer flow above a single rotating disk (Serre, Tuliszka-Sznitko & Bontoux 2004).
An extensive literature now exists on the linear instabilities arising in these boundary
layers, named Bödewadt–Ekman–von Kármán (BEK) flow after the different cases
covered by different Rossby numbers (ratio of the jump in rotation rate between the
disk and the bulk fluid rotation rate), from Ro= 1 (Bödewadt flow), Ro= 0 (Ekman
flow) to Ro = −1 (von Kármán flow). These instabilities are usually referred to as
type I (cross-flow) and type II (viscous) (Lingwood 1995). A type III, was eventually
identified in the upstream branch of the type I spatial mode, the coalescence of
types I and III creating the type I absolute instability (Lingwood 1997). The stability
properties of these instabilities are entirely known for self-similarity solutions obtained
for infinite disks. Even though some results cannot be directly extended to cavity
flow, they provide good reference data. In terms of the overall flow, these instabilities
cause waviness in the streamlines, but as the disturbances have vorticity, they appear
as travelling vortices rolling up around a circular or spiral axis when the mean flow is
subtracted from the total (Serre, Crespo del Arco & Bontoux 2001). The evolution to
subsequent bifurcations leading to turbulence in the rotor–stator cavity has received
much less attention. In the Batchelor regime, turbulence first occurs in the stator
boundary layer, where transition mechanisms are difficult to identify due to the
swift development of turbulence. To the best of our knowledge, experiments by Cros
et al. (2005) are the only ones to identify nonlinear interactions between circular
and spiral modes, eventually leading to turbulence for moderate global Reynolds
numbers Re= 73 890 (see § 2.2 for definition). In the rotor boundary layer, transition
to turbulence spreads over a larger range of Reynolds numbers, allowing a more
detailed analysis.

In an open cavity between two rotating disks with superimposed radial through
flow, direct numerical simulations (DNS) of Viaud, Serre & Chomaz (2008, 2011)
showed a transition mechanism based on an a cascade of ‘elephant’ modes. Such
a scenario had only been observed before on the Ginzbug–Landau model (Couairon
& Chomaz 1996). More precisely, the DNS showed a subcritical nonlinear saturated
elephant global mode characterized by a stationary front located at the boundary where
the flow transitions from local convective to local absolute instability as the fluid
moves downstream (referred to as the c/a boundary in the forthcoming). This global
mode is absolutely unstable to a secondary instability leading to turbulence. Due to
the similitude of this flow with the von Kármán boundary layer, this result brought
new insight to the long-term debate regarding the transition scenario in the case of a
single rotating disk. Moreover, recent experimental results on a clean rotating disk by
Imayama, Alfredsson & Lingwood (2014) tend to support this scenario.

The debate regarding the transition scenario in the rotating disk boundary layer
started in the middle of the nineties with Lingwood (1995, 1996, 1997). The local
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linear stability analysis (LSA) of the flow showed that the critical local Reynolds
number rδ (as defined in § 2.2) of the cross-flow absolute instability, rδ = 507, was
not far below rδ = 513 characterizing the onset of turbulence in the experiments,
thus suggesting the possibility of a direct route to turbulence. Since these pioneering
works by Lingwood, numerous theoretical, numerical and experimental studies have
been devoted to this problem. If further studies have confirmed these local linear
stability results (see Davies & Carpenter 2003; Serre et al. 2004; Appelquist et al.
2015, for example), no general agreement exists concerning their outcome in terms
of global behaviour of the instabilities, as the development of the flow along the
radial direction is taken into account. More specifically, this development could
include the effects of a finite radius of the disk or, in an infinite domain, the
competition between stabilizing non-parallel effects and destabilizing nonlinear ones.
Theoretical work by Pier (2003) showed the possible existence of a global nonlinear
elephant mode at the onset of local absolute instability, while numerical solutions
of linearized Navier–Stokes equations (Davies & Carpenter 2003; Davies, Thomas
& Carpenter 2007) and experimental investigation of Othman & Corke (2006) using
a low-amplitude initial pulse-jet excitation demonstrated that a convective behaviour
eventually dominates even though regions of strong local absolute instability were
present in the flow, therefore demonstrating its linear global stability. These two
behaviours, the existence of a nonlinear global mode, while the flow is linearly
globally stable, would imply the existence of a subcritical global bifurcation, which
was demonstrated in an open cavity between two rotating disks by Viaud et al. (2008)
using DNS and later in the infinite single disk case by Appelquist et al. (2016) using
linearized DNS.

These works led to further studies considering the effects of the roughness (Othman
& Corke 2006; Imayama, Alfredsson & Lingwood 2016) and the finite radius of the
disk (Healey 2010; Imayama, Alfredsson & Lingwood 2013). For rough disks, recent
experiments by Imayama et al. (2016) showed that an alternative scenario is possible
via a convectively unstable route occurring at a lower Reynolds number, leading
to transition to turbulence below the onset of the absolute instability. Using the
linearized complex Ginzburg–Landau equation in a spatially varying system of finite
extent, Healey (2010) showed that the flow could be linearly globally unstable before
the occurrence of an absolutely unstable region at the edge of the disk and predicted,
by adding a nonlinear term in the model, a stabilizing effect of the boundary condition.
As the consequence, the local critical Reynolds number is expected to increase when
the global Reynolds number at the edge is decreased. However, this behaviour was
not confirmed experimentally by Imayama et al. (2013), who observed that the
transition location remained unchanged in the vicinity of the disk edge. Pier (2013)
tried to reconciliate those contradictory results by suggesting to model the boundary
condition at the edge such that it acts as a source of random noise in order to mimic
the strong source of fluctuations observed in his experiments. DNS of Appelquist et al.
(2016) showed that there is almost no effect of the edge geometry on the nonlinear
global instability. Their results exhibited spatial growth rates of the perturbation in
agreement with the LSA, but not with the experimental data of Imayama et al. (2014).
The authors conjectured a possible effect of roughness of the disk surface leading to a
roughness-driven nonlinear solution instead of a self-sustained global mode. Recently,
Appelquist et al. (2018) numerically studied the role of the roughness of the disk to
bypass the linear growth of primary instabilities and directly trigger secondary global
instabilities involved in the transition to turbulence.

No clear mechanism has been fully identified so far, regarding the late stage of the
laminar–turbulent transition process. A secondary instability of the primary stationary
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vortices seems to be involved (Kobayashi, Kohama & Takamadate 1980; Pier 2003;
Viaud et al. 2011; Imayama et al. 2014) but its behaviour and its relation to the
primary instability is not yet understood.

This paper focuses on the transition scenario in the boundary layer of the rotating
disk of a closed rotor–stator cavity, using DNS and LSA. This paper is organized
as follows: in § 2 the set-up of the simulation is described including the geometrical,
mathematical and numerical modelling. Results are presented in § 3, and, finally,
discussion and conclusion are provided in § 4 with the goal of bringing new insight
on the transition process of the flow over a rotating disk.

2. Problem formulation
2.1. Geometry

The geometrical model corresponds to two horizontal disks enclosing a cylindrical
domain of radius R, bounded by a shroud, i.e. a vertical cylinder at rest, of height
2H. The lower disk of the cavity is stationary (stator) and the other (rotor) rotates at
uniform angular velocity Ω =ΩDez, ez being the unit vector along the vertical axis.
In all of the figures, seen from above, the disk rotates counter-clockwise. The cavity
aspect ratio is defined by G= R/H, and is fixed here to G= 10.26 (Peres, Poncet &
Serre 2012). In contrast to open systems (Viaud et al. 2008, 2011; Appelquist et al.
2015, 2016, 2018), the present set-up does not require any artificial inlet and outlet
boundary conditions to alleviate undesired spurious noise.

2.2. Mathematical model
The fluid motion is governed by the incompressible three-dimensional Navier–
Stokes equations written in the cylindrical coordinates (r, θ, z) and in primitive
variables (u, v, w, p). Quantities are made non-dimensional using [H, Ω−1

D , ΩDR] as
characteristic scales of space, time and velocity, respectively. The global Reynolds
number is defined as Re = ΩDR2/ν and has been varied here in the range
[103, 4× 105

].
Local stability parameters, Rossby (Ro) and local Reynolds numbers (rδ), are

defined according to Lingwood (1997):

Ro(r)=
1Ω∗(r)
Ω∗(r)

, rδ(r)=
r∗

δ
, (2.1a,b)

where r∗ and r = r∗/H denote the dimensional and non-dimensional radius, δ is
the characteristic viscous length δ =

√
ν/Ω∗(r) and Ω∗(r) = (1/4)(Ω∗F(r) + ΩD) +

((1/16)(Ω∗F(r) + ΩD)
2
+ (1/2)1Ω∗2(r))1/2 where 1Ω∗(r) = Ω∗F(r) − ΩD, with the

fluid rotation Ω∗F. Unlike Lingwood (1997), where Ω∗F was constant and estimated
at z = ∞, Ω∗F here varies with radius r, and is estimated by taking the azimuthal
component of the velocity at mid-height. According to definition (2.1), rδ varies from
0 to rδedge = R/

√
ν/Ω∗. Note that the local Reynolds number Reδ used in Lingwood

(1997) amounts to Reδ = rδRo.
No-slip boundary conditions apply at each disk and side wall: u = w = 0, the

azimuthal velocity v= 0 on the stationary disk and v= r∗/R on the rotating disk. At
the junction of the stationary shroud with the rotor, the azimuthal velocity profile is
regularized using v = exp[(z − 1)/0.006] as proposed in Serre et al. (2001) where
the value 0.006 was shown to accurately model the velocity profiles observed in
experiments. This alleviates the singularity of the boundary conditions at the junction
and obviates the need to model the thin gap between the edge of the rotating disk
and the stationary shroud occurring in experiments.
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2.3. Numerical methods
2.3.1. Direct numerical simulation (DNS)

The incompressible Navier–Stokes equations are solved over the domain
[−R/H,R/H]× [0, 2π]× [−1, 1] using an efficient pseudo-spectral Chebyshev Fourier
algorithm for a cylindrical geometry, as described and validated in Peres et al. (2012).
The mesh is based on Nr×Nz Gauss–Lobatto collocation points in the (r, z) plane and
Nθ points in the azimuthal direction. The grid refinement is progressively increased
with Reynolds number up to Nr × Nθ × Nz = 226× 336× 71 for Re= 4× 105, with
a corresponding time step δt = 10−4. To dissipate the energy cascading through
the nonlinear evolution of the primary and the secondary instabilities at large
Reynolds numbers, a spectral vanishing viscosity (SVV), introduced in Severac
& Serre (2007), is used. Former SVV computations have shown the ability of this
technique to accurately describe rotating disk cavity flows without affecting noticeably
the characteristic parameters of the instability (Severac & Serre 2007; Viaud et al.
2011; Peres et al. 2012). The code is not massively parallelized and uses the OpenMP
programming interface. For the grid sizes used in this paper, the typical computing
time per iteration is 15 s on 4 CPUs. Typical times to get convergence after increase
of Re vary between t= 5 and t= 20 depending on the Reynolds number value.

2.3.2. Local linear stability analysis (LSA)
LSA is also conducted on the mean flow obtained from DNS, as detailed in § 3.1.

It is based on a Chebyshev pseudo-spectral collocation method. Under the parallel
flow assumption, the perturbation to the mean flow is assumed to be a periodic
function of r, θ and t, as the components of the state vector φ are sought after as
φ=φ′(z) exp(imθ + ikr−ωt). LSA of the BEK flow is also performed for comparison
and the method is validated with respect to Lingwood’s results for Ro = −0.8 and
−0.6 (Lingwood 1997) (see table 1).

3. Results

The Reynolds number is increased step by step from zero up to Re = 4 × 105.
For each increment, the steady flow solution is assumed to be reached when
|Un+1

− Un
|/δt 6 10−5, where U is the velocity vector, and the subscripts n + 1

and n correspond to time steps (n + 1)δt and nδt. No extra disturbances are added.
Perturbations are then measured primarily by the magnitude of the axial component
of the velocity, which varies about a zero mean within the boundary layers on the
disks.

3.1. Steady and mean flow
The steady flow is axisymmetric with three velocity components, due to the circulation
in the meridional (r, z)-plane, created by the centrifugal force associated with the
rotation of the disk. In this meridional plane, the secondary flow is essentially radial
in the two boundary layers along the disks, separated by a central core in nearly
solid-body rotation, and where the azimuthal component of velocity is independent
of z. As there is no radial flow in the central core and the cavity is closed, the radial
outflow near the rotor is necessarily compensated by a radial inflow along the stator,
as seen in figure 1. At high Reynolds number, the mean flow solution is obtained by
averaging the solution, both in time and in the azimuthal direction.

Far from the rotor edge, the mean velocity profiles are very close to those
of the von Kármán self-similarity solution (not shown). The Rossby number is
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FIGURE 1. Sketch of the rotor–stator cavity of radius R and height 2H. Only the top disk
is rotating (anti-clockwise when seen from above). Steady velocity vectors projected in the
(r, z)-plane show the secondary flow developing in the meridional plane. A typical axial
profile of the mean radial velocity component is shown in the right panel, at r∗ = 0.7R.

Authors Ro rδc/a Reδc/a ki mm ωc

LSA of the BEK flow
Lingwood (1997) −0.8 543.5 434.8 −0.142 84.2 −0.0393
Lingwood (1997) −0.6 575.7 345.4 −0.164 97.3 −0.0418
Present results −0.8 540 432.0 −0.143 83 −0.0391

−0.72 529.2 381 −0.151 89.4 −0.042
−0.71 529.6 376 −0.152 89.6 −0.042
−0.6 565.3 339.2 −0.162 97.3 −0.044

LSA of the mean flow at Re= 4× 105

(r= 4.6) −0.72 492 354 −0.155 87 −0.051
(r= 7.2) −0.71 425 303 −0.157 76 −0.052

TABLE 1. Critical values for convective absolute (c/a) transition by linear stability analysis.
Present LSA results at Re = 4 × 105 and comparisons with former results of Lingwood
(1997) for BEK flow at various relevant Rossby numbers. Ro and rδ are the local Rossby
and Reynolds numbers defined in § 2.2. Reδ = rδRo is the local Reynolds number used
in Lingwood (1997). ki is the spatial growth rate, mm is the most unstable azimuthal mode
and ωc is the frequency at critical conditions for the absolute instability.

nearly constant over the radius, with variations of less than 2 % in the range of
Ro ∈ [−0.73; −0.7]. Due to radial confinement, however, the differences between
the BEK profiles and the mean flow grow when approaching the edge (growing
rδ). These differences are exemplified in figure 2 for r = 7.2 at Re = 4 × 105. This
departure of the velocity profiles from the BEK flow induces a decrease of rδc/a

for the same Rossby number, as shown in the table 1. The discrepancy in the
local critical Reynolds numbers even grows as r is increased from 4.6 to 7.2. LSA
of the mean flow shows how sensitive the stability properties are to variations in
the velocity profiles. Indeed, the large reduction of the critical Reynolds number
(rδc/a = 492→ 425) as r is increased from 4.6 to 7.2 cannot be attributed to the small
variation of the Rossby number (Ro = −0.72→ −0.71) governing the stability of
the BEK flow. It actually turns out that this shifted critical Reynolds number can be
accounted for by the small changes in the ū and v̄ profiles rather than the changes
in the w̄ profiles. This is related to the different scalings prevailing for the radial
and azimuthal components of the velocity, r∗Ω∗Ro, and for the vertical component,
Ω∗Ro, r∗ being of the order of O(102) near the critical limit (see Lingwood 1997).
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FIGURE 2. Comparisons of the velocities near the rotor between the mean flow solution
—— at r= 7.2 and Re= 4× 105, and the BEK self-similarity solution – – – for Ro=−0.72
(mean Ro of the mean flow): (a) radial velocity uBEK and ū (b) azimuthal velocity vBEK
and v̄ and (c) axial velocity wBEK and w̄. The insets show the differences 1u= uBEK − ū.
Here, the length and velocities are scaled as in Lingwood (1997), i.e. δ, r∗Ω∗Ro for u
and v and Ω∗Ro for w, where the superscript ∗ indicates dimensional values, and Ω∗ and
Ro are defined in (2.1).

3.2. Unsteady flows and solution patterns in the cavity
Typical solution patterns in the whole cavity are shown at the largest Reynolds
number considered in this work (Re= 4× 105) in figure 3. The stator boundary layer
(which will be not discussed further) is already turbulent and characterized by a
nearly axisymmetric pattern, except in a small flow region around the axis, where the
flow remains stable (see Serre et al. 2004). This small region of stable flow damps
any perturbation flowing inward along the stator, before it enters the rotor boundary
layer.

The rotor boundary layer, which is more stable than the stator one, becomes
unstable at large radii. Spiral arms form a regular pattern, followed downstream by
a temporally and spatially disorganized state, characteristic of incipient turbulence, as
seen in figure 3(a). As already observed in an open cavity by Viaud et al. (2011), the
transition to turbulence is characterized by a shortening of the radial wavelength of
the vortices, from λ∼ 25.5δ at rδ∼ 420 to λ∼ 15.6δ at rδ> 538, as seen in figure 3(b).
This is supported by theoretical results, which predict a shift of approximately 30 %,
from λ∼ 29δ to λ∼ 20δ, between the linear absolute instability analysis (Lingwood
1997, only valid ahead of the front where the amplitudes of the fluctuations are
small), and the saturated wave developing further downstream (Pier 2003).

The temporal evolution of w in the rotor boundary layer is shown in figure 4, as the
global Reynolds number is increased from rest. Each vertical black line in figure 4(a)
(for t > 550) indicates a Reynolds number increment of 2× 104, from Re= 2× 105

to 4× 105. As no visible change occurs until Re= 2× 105 (t ∼ 550), the time scale
has been reduced to save space. On the other hand, the time scale has been blown
up on the last three time units (t= 670–673) to detail the unstable flow dynamics at
Re= 4× 105.

The first instability pattern occurs at the edge, at Re= 2× 105 (figure 4b). Although
parameters (rδ, Ro) are in the range of characteristic values predicted for the local,
type I, absolute instability of the corresponding BEK flow, instability occurs here at
a much smaller local radius, rδ = 410, compared to rδc/a = 530 predicted by LSA
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FIGURE 3. Instantaneous flow pattern in the whole cavity for Re = 4 × 105. The
stator is below. Iso-surfaces and iso-contours of the instantaneous axial velocity w.
(a) Three-dimensional view. The rotor and stator boundary layers are shown for z =
±0.97H, respectively. (b) (r, z)-plane. The white dashed and solid lines in (b) show the
position of the spiral pattern at rδ ∼ 420 and the beginning of the turbulent region for
rδ > 538, respectively (see figure 4 for a definition).

for BEK flow. The pattern is characterized by 82 spiral arms, counter-rotating with
respect to the rotor at frequency ω=ω∗δ∗/(Ω∗r∗Ro)'−0.043. Increasing the global
Reynolds number moves these spiral arms radially inward in the rotor boundary layer,
the position of the front scaling like Re−1/2. This feature is shown by the proximity
of the dashed and dotted lines defined in the caption of figure 4(a). This relation is
demonstrated with r= rδc/aG/

√
ReΩ∗Ω−1

D since rδ = r∗/δ = r/G
√

ReΩ∗Ω−1
D .

For large Reynolds numbers (Re > 2.4 × 105), the spiral arms are followed
downstream by incipient turbulence, as indicated by the white solid line in figure 4
(the definition of which is given in the caption). For the highest Re (figure 4e),
turbulence is observed above rδ ' 538, corresponding to a non-dimensional radius
r ∼ 9. Although still coherent, spiral arms at this Reynolds number exhibit some
ripples suggesting interactions between azimuthal modes. This point is supported by
the spectrum in the azimuthal wavenumber m at each rδ shown in figure 5 for the
flows at three different global Reynolds numbers Re. Several azimuthal wavenumbers
m become unstable at large radii, in a range m∈ [75, 91] at Re= 2× 105, m∈ [39, 75]
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FIGURE 4. Temporal evolution of the flow patterns in the rotor boundary layer (z= 0.97)
for Re ∈ [2 × 105, 4 × 105

]. Stabilization of the solution is reached before the Reynolds
number is increased again. (a) Spatio-temporal diagram at θ = 0, for r ∈ [5, 10.26]. The
time axis is contracted for t.550 (Re<2×105), where the flow remains stable, while it is
expanded for t ∈ [670 673], to magnify the unstable solution. Vertical black lines indicate
instants when Re is increased by 2× 104. (b–e) Instantaneous top views of axial velocity
field w corresponding to four Re, at time instants as indicated on (a). The colour bar range
in (b) is exaggerated 5 times than the one of (a) otherwise the colour bar ranges for (c–d)
are the same as (a). The squares below correspond to zoomed plots. The white dashed
(– – –) and solid (——) lines in (a–e) show the positions of the primary (1/2 log(E)>−4)
and secondary fronts (first peak after the primary front where ∂E/∂r> 0.02), respectively,
with E the kinetic energy of the perturbation defined in (3.1). The white dotted line (· · ·)
in (a) is r= rδc/a G/

√
ReΩ∗Ω−1

D with rδc/a = 425 from table 1.

at Re= 3× 105 to m∈ [32, 78] at Re= 4× 105, the most energetic wavenumbers being
m = 82, 64 and 66, respectively. Horizontal lines in figure 5(c) delimit the group of
the most energetic azimuthal wavenumbers in the range m ∈ [32, 78], these bounds
being the lowest and largest wavenumbers satisfying 0.5 log(

∫ redge

0 Ew(r,m)dr) >−1.8,
where Ew(r,m) is the Fourier energy of the axial velocity.

For each azimuthal wavenumber m, a specific LSA is conducted, based on the
mean flow at the location of the primary front rδfront , where the spiral starts to develop
(defined in the caption of figure 4). The variability of the flow is weak at this
location, and the mean flow is assumed to depart weakly from the base flow. The
m-specific c/a boundaries obtained by LSA are indicated by triangles. Compared to
the spectral density plots, it appears that azimuthal modes grow upstream of the local
c/a transitions. Although m=82 spiral arms are observed in DNS for Re=2×105, the
LSA of the mean flow leads to a convective instability. At Re= 3× 105 (figure 5b),
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FIGURE 5. Logarithm of energy in the spectral space of the axial velocity component as
a function of the local Reynolds number rδ at z= 0.97: (a) Re= 2× 105, (b) Re= 3× 105

and (c) Re = 4× 105. The colour scales are normalized by the maximum amplitudes of
the non-axisymmetric components. The arrow in (a) indicates m= 82 and the solid and
dashed vertical lines correspond the primary and secondary fronts, as defined in figure 4.
The triangles correspond to the m-specific c/a boundaries computed by LSA of the mean
flow at the primary front locations. The horizontal lines (-·-) in (c) indicate the smallest
and the largest modes, m1 = 32 and m2 = 78, respectively.

azimuthal wavenumbers grow and saturate close to rδfront = 420, whereas, according
to LSA, the first mode becomes absolutely unstable at rδc/a = 450. The flow is
strongly convective at the front. This flow behaviour is similar to recent experimental
measurements on a single disk where surface roughness is accounted for (Imayama
et al. 2016). However, when the global Reynolds number is increased (Re= 4× 105,
figure 5c), the c/a boundary obtained by LSA of the mean flow matches the front
location obtained by DNS, meaning that the mean flow is marginally absolute at the
front. This feature is similar to what is observed in experiments with clean disks or
in former DNS performed either on single disk (Appelquist et al. 2016) or in an
azimuthal sector of an open cavity (Viaud et al. 2011).

3.3. Steep-fronted global modes
These patterns of instability are now investigated in the framework of the front-
forming, elephant, global modes. The turbulent kinetic energy E, corresponding to
the total kinetic energy of the velocity perturbation (u′, v′, w′), is defined within the
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rotor boundary layer at z= 0.97 as

E(r)=
r
2

∫ 2π

0
(u′2 + v′2 +w′2) dθ

∣∣∣∣
rotor

. (3.1)

Using Parseval’s identity, this energy can be split over the contribution of each
azimuthal wavenumber m, denoted Em. Radial variations of log(E) for various global
Reynolds numbers are plotted in figure 6 as a function of both the physical radius
r and the local Reynolds parameter rδ, for 0 6 rδ 6 600. Note that the maximum of
rδ, rδedge , varies with Re since rδedge ∝ r

√
ReΩ∗. At large global Reynolds numbers, the

rotation rate Ω∗ ' 0.91, and remains almost constant in space, except near the edge.
At each Re, the value of the perturbation is taken at the last computing time, when
the flow is steady.

For rδedge . 393 (Re < 1.7 × 105), the boundary layer remains undisturbed over
most of the rotor surface, and the E-profiles only show small-amplitude peaks in the
vicinity of the edge (approximately 4 times larger than the background noise). This
indicates that the flow close to the rotor edge is unstable, and may act as a source
of perturbations. At rδedge ' 427 (see the curve plotted in figure 6 for Re = 2 × 105),
the peak at the edge is still visible, but with a kinetic energy increased by about
two orders of magnitude. This is related to the sharply peaked m = 82 azimuthal
mode observed in figure 5(a), and characterized by spiral arms forming a regular
front located in a very narrow region near the edge, as seen in figure 4(a). Its
spatial growth rate, estimated from the corresponding energy profile in figure 6, is
kDNS

i =−0.2.
For larger Reynolds numbers, rδedge & 447 (Re > 2.2× 105), the front moves inward

(in term of physical radius r), as shown in figure 6(a). Whatever the Reynolds number,
fluctuations start growing around rδ ' 400 (black circular symbols in figure 6b) and
saturate around rδ ' 450, with an energy approximately two orders of magnitude
larger. Thus, the front location predicted by DNS does not substantially change with
rδedge (figure 6b). The front may appear upstream of the local c/a boundary predicted
by LSA, but this theoretical location gets progressively closer to the front when
increasing the Reynolds number. At Re = 4 × 105, the front location matches well
with the critical Reynolds number for the local absolute instability predicted by LSA
(rδfront ' 420 compared to rδc/a = 425 in table 1). The mean w̄-profile at a radial location
changes when increasing the Reynolds number, thus leading to more unstable local
stability properties.

Compared to smaller Reynolds number cases (Re 6 2 × 105), the spatial growth
rates of these fronts are smaller, and keep the same value kDNS

i ' −0.07, whatever
the rδedge . This value is about two times smaller than the spatial growth rate of
local absolute instability (ki predicted by LSA (table 1)) as well as the growth rate
usually measured in the literature when computations are restricted to an azimuthal
sector (Viaud et al. 2011; Appelquist et al. 2016). However, it matches very well the
experimental measurements carried out on a single disk by Imayama et al. (2013),
kEXP

i '−0.065, and reported in figure 4 of their paper. Although the Rossby numbers
Ro in this study and the other studies differ, the spatial growth rate does not vary
substantially from Ro=−1 to Ro=−0.7. To clarify this point, the flow dynamics has
been decomposed into three sets of azimuthal wavenumbers, according to its energy
level as computed in figure 5(c): the most energetic modes m1 6 m 6 m2 and two
other sets with lower energy, the low azimuthal wavenumber modes m 6 m1 − 1, and
the high azimuthal wavenumber modes such m>m2+ 1. The azimuthal wavenumbers

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.239


0 100 200 300 400 500 600
–6

–5

–4

–3

–2

–1

0(b)

–5

–4

–3

–2

–1

0(a)

5 6 7 8 9 10

FIGURE 6. Radial profiles of the turbulent kinetic energy E in the rotor boundary layer
at z = 0.97, and for various global Reynolds numbers: · · · Re = 0.7 × 105; - · - Re =
1.7× 105; - - - Re= 2× 105; — Re= 2.2× 105; - · - Re= 2.4× 105; · · · Re= 2.8× 105;
- - Re = 3.2 × 105; - - - Re = 3.6 × 105 and — Re = 4 × 105. The symbols represent
the locations of the primary (E) and the secondary fronts (A) as defined in figure 4. The
arrows in (b) indicate the edge local Reynolds number rδedge (maximum value of rδ) for
each Re.

m1 and m2 are shown in figure 5(c). Figure 7 shows the kinetic energies Em for
some selected wavenumbers of the perturbation, chosen within the three sets, as well
as the sums over the azimuthal wavenumber ranges for each set, compared to the

. 
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FIGURE 7. Kinetic energies of the perturbation for some selected azimuthal wavenumbers
m in the ranges of (a) intermediate m∈[32,78]: m=41 – – –, m=65 —— and m=72 · · ·
(b) low m=[0, 32]: m= 0 ——, m= 10 —— and m= 30 – – –, (c) large m> 78 : m= 90
——, m = 118 – – – and m = 140 · · · at Re = 4 × 105. The thick black lines show the
total energy (1/2 log(E)) shown in figure 6 and lines with symbols show the total energy
restricted to each range. The vertical solid line indicates the absolute instability transition
rδc/a = 425 of the mean flow and dashed line represents the primary front of DNS defined
in figure 4. The spatial growth rates are estimated as kDNS

i,m41=−0.18, kDNS
i,m65=−0.1, kDNS

i,m72=

−0.13 and for low and large m, the spatial growth rates are approximately estimated as
kDNS

i,low '−0.014 and kDNS
i,larg '−0.019.

total perturbation energy calculated on the whole spectrum. Results show that the
low azimuthal wavenumber modes mostly provide energy at small and large radii,
corresponding to rδ < 400 and rδ > 550, respectively (figure 7a). The most energetic
modes clearly determine the slope of the steep front shown in figure 6. Interestingly,
the slope of each front corresponds to a larger spatial growth rate (kDNS

i ∼ −0.12),
which is close to the value predicted by LSA for the local absolute instability of the

. 
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mean flow (ki ∼−0.157, see table 1). Although each azimuthal wavenumber exhibits
a steep front, their summation presents a smoother growth since the energy of each
mode starts growing at various radial locations. It is gratifying that this weaker
spatial growth rate is in agreement with experiments. For the highest azimuthal
wavenumbers m, the energies are low, but they still grow continuously with rδ, as
depicted in figure 7(c).

4. Summary and concluding remarks
The laminar–turbulent transition of the incompressible rotating disk boundary layer

has been investigated by DNS and LSA of the mean flow in a closed cylindrical rotor–
stator cavity. In the DNS, the global Reynolds number Re is increased incrementally
from zero, and no artificial perturbation is superimposed to the flow. Unlike all former
DNS studies in the literature, both in single disk and in cavity configurations, the
simulations are not restricted to an azimuthal sector of the cavity and thus include all
nonlinear interactions. The main findings of this study can be summarized as follows:

(i) Over a large radial extent, the steady boundary layers developing over the
rotor of the cavity match the von Kármán self-similarity solutions calculated
at corresponding Rossby numbers. The mean velocity profiles in the cavity,
nevertheless, increasingly depart from the von Kármán solution as the edge is
approached. These differences explain why the LSA yields a more unstable
configuration in the case of the mean flow in the cavity than in the case of the
self-similarity solution. Moreover, at the rotor edge, the flow is a radial wall jet
impacting the shroud combined with a centrifugally unstable vertical boundary
layer. That leads to a very unstable flow at the edge, associated with strong
fluctuations observed at all investigated Reynolds numbers.

(ii) At moderate Reynolds numbers, corresponding to rδedge . 426, strong fluctuations
are observed at the edge. These fluctuations are associated with the occurrence of
a steep front (corresponding spatial growth rate kDNS

i '−0.2), and are followed
downstream by a spiral pattern presenting m= 82 arms. This pattern is observed
at a local Reynolds number rδ smaller than the value rδc/a predicted by LSA
for the local convective absolute transition. This discrepancy suggests that the
corresponding global mode is driven by the edge, with a scaling constant in r
and varying with rδedge. It can be somewhat surprising that, although the mode
properties are in favour of an edge-driven mode, the dominant wavenumber m=
82 is consistent with the edge-independent theory of Lingwood (1997).

(iii) At large Reynolds numbers (rδedge & 447), fluctuations still take the form
of a steep front followed by a saturated spiral wave. The characteristics
of theses fronts are now independent of the Reynolds number at the edge
(rδedge), and this may be accounted for by a self-sustained rotor boundary layer
global mode. The spatial growth along the radial direction of the energy of
these fluctuations is quantitatively similar to that observed experimentally by
Imayama et al. (2014), and corresponds to a spatial growth rate two times
smaller than theoretically predicted for local absolute instability threshold
(kDNS

i '−0.07, kEXP
i '−0.065, ki '−0.157). Table 2 summarizes present results,

compared to existing experimental and numerical results in Imayama et al.
(2014) and Appelquist et al. (2016). Although the Rossby numbers differ, the
present DNS over a full disk quantitatively retrieve the experimental spatial
growth rate. Comparing the full disk DNS to LSA in our rotor–stator set-up also
qualitatively explains by the coexisting azimuthal wavenumbers the differences
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Authors Ro rδc ki ki/ki,LSA mm ω
ω

ω∗c

Experiment (Imayama et al. 2014) −1 510 −0.065 0.53 — ∼ 40 0.79
DNS m= 68 (Appelquist et al. 2016) −1 582.8 −0.12 0.99 68 52.36 1.04

Present DNS −0.71 420 −0.07 0.45 66 ∼ 48 0.79

TABLE 2. Summary of present results in comparison to the experimental and DNS data
for Ro = −1. Here, rδc varies depending on the definition of the characteristic location:
for (Imayama et al. 2014; Appelquist et al. 2016) rδend where the linear region ends and
for rδfront for the present DNS. The spatial growth rate ki is estimated near the rδc. The
frequency ω is defined as ω = ω∗/ΩD and the theoretical value ω∗c is the converted vale
of ωc to the same scaling as ω∗c =ωcReδc/a −mm.

previously observed between sector DNS (and LSA) and experiments. A similar
argument could also apply to explain the differences previously observed in the
temporal frequencies.

(iv) The azimuthal spectral analysis of the solutions at these Reynolds numbers
shows that the spiral front results from the superposition of several absolutely
unstable modes associated with azimuthal wavenumbers in the range m∈ [32, 78].
Interestingly, the spatial growth rates for each m match the theoretical value of
the LSA for m=76 (given table 1). The slopes measured in figure 5(b) are indeed
almost similar for all m in the range m ∈ [32, 78], with kDNS

i = [−0.18, −0.1],
compared to the results of the LSA in range kLSA

i ∼ [−0.2,−0.157].
(v) At the large rotation rates presently studied, a secondary front is also conspicu-

ously close to rDNS
δ = 538 and immediately followed by incipient turbulence.

The present results bring new insights to the way that turbulence occurs in the
rotating disk boundary layer. In agreement with recent experimental observations of
Pier (2013) in a single disk configuration, two distinct mechanisms can be identified
for the onset of turbulence. At small Reynolds numbers, before the flow transition
from convective to absolute instability, fluctuations start rising at the edge, within a
region where the flow is no longer similar to the von Kármán boundary layer, and
where shear and centrifugal effects cause a strong instability. This region acts as
a strong source of perturbations. This mechanism is related to finite-size effects of
the cavity, and leads to a global mode which is obviously driven by the edge. At
large Reynolds numbers, fluctuations take the form of a front the radial location of
which is nearly fixed in rδ, independently of the flow conditions at the edge. This
can be interpreted as a self-sustained global mode developing in the rotor boundary
layer and exhibiting a steeper front. Such a behaviour had been previously observed
in DNS in azimuthal sectors (Viaud et al. 2008, 2011; Appelquist et al. 2016).
But unlike previous DNS, the spatial growth rate of the front in the present DNS,
which is approximately twice smaller than predicted by LSA, matches also well
with experimental measurements of Imayama et al. (2013). It is the superposition of
various absolutely unstable modes with different azimuthal wavenumbers that accounts
for this gentler front. These results can be viewed as a collection of elephant global
modes whose the superposition would lead to a smoother integrated energy variation
in r.

This result explains the discrepancy observed in the growth rate values between
LSA and DNS in azimuthal sectors on the one side, and experiments and the present
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simulations on the other side. It also shows that fully nonlinear simulations are
required to reproduce experimental observations. It would seem, thus, that convective
modes produced by steady roughness are not necessary to explain this disagreement.
The fact that, in the present DNS, the m-dependent front associated with each
individual azimuthal wavenumber develops upstream of the m-specific convective
absolute boundary remains unexplained at this point. This could be related to the fact
that the LSA is performed on the numerical mean flow instead of the steady base
flow, or to a weak forcing through the inertial wave, and we are currently working
along those lines.

To finally address the transition to turbulence, the scenario seems to involve a
secondary instability, characterized by a second front occurring downstream of the
first one. At Re = 4 × 105, the highest Reynolds number of the present study, the
secondary front rises in the lee of the first and it is immediately followed by incipient
turbulence. This flow behaviour is similar to that observed in DNS of azimuthal
sectors of a rotating open cavity (Viaud et al. 2011), or of a single disk (Appelquist
et al. 2016). Further investigations at higher Reynolds numbers are however required
to better characterize this secondary instability and its role in the transition scenario.
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