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The transition to turbulence in the rotating disk boundary layer is investigated in a closed
cylindrical rotor-stator cavity via direct numerical simulation using spectral vanishing vis-
tocity method (DNS-SVV) and linear stability analysis (LSA). As shown in the Figure 1,

Figure 1: Instantaneous flow pattern in the whole cavity for Re = 4 × 105. The stator is
below. Iso-surfaces and iso-contours of the instantaneous axial velocity w. Three dimensional
view. The rotor and stator boundary layers are shown for z = ±0.97H, respectively.

the stator boundary layer (lower part) is already turbulent while the rotor boundary layer
(upper part) remains stable until very high Reynolds number Re = U/νR then shows an
organised behaviour followed by incipient turbulence. We focus on the global stability and
the transition to turbulence of the rotor boundary layer. The mean flow in the rotor bound-
ary layer is qualitatively similar to the von Kármán self-similarity solution [1]. The mean
velocity profiles, however, slightly depart from theory which is developed on the infinite disk
assumption [2] as the rotor edge is approached. Such meanflow modification near the edge
seems to affect the stability behaviour of the system [3, 4]. Shear and centrifugal effects
lead to a locally more unstable mean flow than the self-similarity solution, which acts as a
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strong source of perturbations. Fluctuations start rising there, as the Reynolds number is
increased, eventually leading to an edge-driven global mode, characterized by spiral arms
rotating counter-clockwise with respect to the rotor (see Figure 1). At larger Reynolds num-
bers, fluctuations form a steep front, no longer driven by the edge, and followed downstream
by a saturated spiral wave, eventually leading to incipient turbulence. Numerical results
show that this front results from the superposition of several elephant front-forming global
modes, corresponding to unstable azimuthal wavenumbers m, in the range m ∈ [32, 78]. The
spatial growth along the radial direction of the energy of these fluctuations is quantitatively
similar to that observed experimentally on the infinite single disk [5]. This superposition
of elephant-modes could thus provide an explanation for the discrepancy observed in the
single disk configuration, between the corresponding spatial growth rates values measured
by experiments on the one hand, and predicted by LSA and DNS performed in an azimuthal
sector [6], on the other hand.
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