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Abstract 15 

Peripersonal space can be considered as the interface between the body and the environment, 16 

where objects can be reached and which may serve as a reference for the central nervous system 17 

with regard to possible actions. Peripersonal space can be studied by assessing the perception 18 

of the reachable space, which depends on the body’s physical characteristics (i.e., arm length) 19 

since their modifications have been shown to be associated with a change in peripersonal space 20 

representation. However, it remains unclear whether the representation of limb dynamics also 21 

influences the representation of peripersonal space. The present study investigated this issue by 22 

perturbing the force-field environment. A novel force field was created by rotating an 23 

experimental platform where participants were seated while they reached towards visual targets. 24 

Manual reaching performance was assessed before, during and after platform rotation. 25 

Crucially, perception of peripersonal space was also assessed, with reachability judgments, 26 

before and after platform rotation. As expected, sensori-motor adaptation to the perturbed force 27 

field was observed. Our principal finding is that peripersonal space was systematically 28 

perceived as closer to the body after force-field adaptation. Two control experiments showed 29 

no significant difference in reachability judgments when no reaching movements were 30 

performed during platform rotation or when reaching movements were performed without 31 

platform rotation, suggesting that the change in perceived peripersonal space resulted from 32 

exposure to new limb dynamics. Overall, our findings show that sensori-motor adaptation of 33 

reaching movements to a new force field, which does not directly influence arm length but 34 

results in the updating of the arm’s internal model of limb dynamics, interacts with the 35 

perceptual categorisation of space, supporting a motor contribution to the representation of 36 

peripersonal space. 37 

 38 

Keywords: force-field adaptation, internal models, manual reaching, reachability judgment, 39 

peripersonal space, space representation 40 
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 41 

1. Introduction 42 

Interacting adequately with the physical world requires fine perceptual and motor skills, such 43 

as estimating the distance of an object or anticipating the effect of body movement on the object. 44 

As early as the beginning of the 20th century, Poincaré (1902) stated that to localise an object 45 

in space, we represent “the movements that are necessary to reach that object” or, in other 46 

words, “the muscular sensations which accompany them and which have no geometrical 47 

character". This implies that the central nervous system may use a functional representation of 48 

space, and recent research appears to support this view. For instance, the nervous system seems 49 

to represent object properties such as being reachable or not, and such attributes can be used to 50 

define the peripersonal and the extrapersonal space, respectively (Caggiano et al., 2009; 51 

Brozzoli et al., 2010). Behavioural as well as neuroimaging studies of the human neurotypical 52 

brain have provided evidence suggesting the specific processing of information in peripersonal 53 

and extrapersonal spaces. Object perception, in particular, seems to be associated with an 54 

activation of the motor system only when the object appears within the peripersonal space 55 

(Mark et al., 1997; Costantini et al., 2010; Iachini et al., 2014; Coello et al., 2008; Gallivan et 56 

al., 2009, 2011; Bartolo et al., 2014). Thus, visual presentation of objects in peripersonal space 57 

has been found to activate not only occipital but also parietal, ventral and premotor cortices 58 

(Chao & Martin, 2000; Chao et al. 2002; Creem-Regehr & Lee, 2005; Kan et al. 2006; Martin, 59 

2007), and sensori-motor cortices (Cardellicchio et al., 2011; Grafton et al., 1997; Matelli et al., 60 

1985; Gallivan et al., 2011; Wamain et al., 2016). Wamain et al. (2016), for instance, reported 61 

an event-related desynchronisation of the µ rhythm (8-13Hz) over the centro-parietal region 62 

when a graspable object was presented in peripersonal space. This typical neural activation 63 

related to the motor system was not observed for objects in extrapersonal space, and was 64 

congruent with the activation reported when executing a voluntary motor action (Babiloni et 65 
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al., 1999; Llanos et al., 2013; Salmelin & Hari, 1994; Salenius et al., 1997), observing a human 66 

movement (Cochin et al., 1999) or observing the picture of a graspable object (Proverbio, 2002). 67 

In addition, Coello et al. (2008) reported that transcranial magnetic stimulation of the left motor 68 

cortex altered the neural processing of objects located in peripersonal space, but not of those 69 

located in extrapersonal space. Likewise, Cardellicchio et al. (2011) reported greater motor-70 

evoked potentials when observing graspable objects located in the peripersonal space, 71 

compared to observing either non-graspable objects or graspable objects outside the 72 

peripersonal space. Accordingly, peripersonal space can be viewed as an abstract representation 73 

of the near-body space where allocation of attention is multisensorial (Cléry et al., 2015; di 74 

Pellegrino et al., 1997; Graziano & Gandhi, 2000) and where objects are coded in terms of 75 

possible actions (Coello & Iachini, 2016; de Vignemont & Iannetti, 2015; Di Pellegrino & 76 

Làdavas, 2014), as Rizzolatti et al. (1981) put it. It is therefore now generally accepted that the 77 

representation of peripersonal space may not be solely based on a perceptual representation of 78 

space, but may also be influenced by motor representations allowing the anticipation of possible 79 

actions.  80 

The relationship between peripersonal space representation and motor representations has 81 

been widely investigated, in particular in relation to tool use (Berti & Frassinetti, 2000; Làdavas 82 

& Serino, 2008; Cardinali et al., 2009; Canzoneri et al., 2013; Cléry et al., 2015; di Pellegrino 83 

& Làdavas, 2015; Gouzien et al., 2017). For instance, Bourgeois et al. (2014) showed that using 84 

tools to reach a target modifies the representation of peripersonal space. Their perceptual 85 

paradigm investigated peripersonal space representation through reachability judgment tasks 86 

that involved judging the reachability of various visual stimuli located at different distances 87 

from the body (Bourgeois et al., 2014). In another study, Cardinali et al. (2009) asked 88 

participants to repeatedly use long mechanical grabbers to reach objects. This period of repeated 89 

tool use modified the kinematics of the same reaching movements using the hand alone, 90 
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suggesting that the geometry of the arm was perceived as longer after using the grabber. Other 91 

work also suggests that after repeated use, the tool is integrated into the body schema, defined 92 

as a highly plastic representation of the body in terms of geometry and relative position of limbs, 93 

which is used for performed and imagined movements (Haggard & Wolpert, 2005; Medina & 94 

Coslett, 2010; De Vignemont, 2010; Martel et al., 2016). However, while it appears clear that 95 

the geometrical properties of the body and its hierarchical arrangement are linked to 96 

peripersonal space representation, it remains unclear whether dynamic properties also influence 97 

this representation. 98 

It has been hypothesised that internal models of limb dynamics are used to control 99 

movements (Wolpert et al., 1995; Kawato, 1999; Bursztyn et al., 2006; Cullen & Brooks, 2015; 100 

Ghez & Sainburg, 1995; Tanaka & Sejnowski, 2013). In reference to the mainstream literature, 101 

internal models are separately conceived as a model “within the brain that can predict the 102 

sensory consequences of an action”, namely the forward model, and as a model capable “[to 103 

transform] a desired sensory consequence into the motor command that would achieve it”, 104 

namely the inverse model (Wolpert et al., 2001). These internal models would thus operate at 105 

the neural level both as controllers producing motor commands and as predictors anticipating 106 

the sensory consequences of these motor commands (Wolpert & Kawato, 1998; Wolpert et al., 107 

2001; Pickering & Clark, 2014). Such internal models could underlie sensori-motor adaptation 108 

and learning (Shadmehr et al., 2010). For instance, whenever the dynamic characteristics of the 109 

limb change, these highly plastic sensori-motor representations may be updated to maintain a 110 

high level of motor performance (Ostry et al., 2010).  111 

The effect on motor performance of perturbing upper-limb dynamics has been extensively 112 

studied through adaptation to modified gravito-inertial fields (Bourdin et al., 2001; Coello et 113 

al., 1996; Lackner & DiZio, 1994; Sarlegna et al., 2010). The force-field environment can be 114 

modified by asking individuals to sit on a rotating platform and to perform reaching arm 115 
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movements. Such experiments are based on the fact that any movement performed during 116 

rotation will encounter an inertial force (i.e., the Coriolis force) proportional to the speed of 117 

both the reaching movement and the platform rotation. The force is applied to the body segment 118 

with an effect orthogonal to the radial trajectory and opposite to the direction of the platform 119 

rotation, resulting in lateral deviations of the movements during the first trials. Adaptation to 120 

this inertial perturbation typically requires a few trials before the movement characteristics 121 

return to baseline values, and produces an after-effect when the rotation (and the perturbation) 122 

is interrupted (Lackner & DiZio, 1994; Coello et al., 1996; Bourdin et al., 2001, 2006; Lefumat 123 

et al., 2015). Interestingly, the spatio-temporal features of the trajectories before and after 124 

adaptation have been found to be similar, suggesting that this adaptation involves changes to 125 

the dynamic properties of the motor system with no effect on the body’s spatial properties: 126 

length of limb segments, their arrangement and configuration in space, and shape of body 127 

surface (Morasso et al, 2015). 128 

 129 

We used a classic force-field adaptation protocol (Lackner & DiZio, 1994; Coello et al., 130 

1996; Bourdin et al., 2006; Sarlegna et al. 2010) and measured several kinematic parameters 131 

such as initial direction error, endpoint error and maximum perpendicular deviation (Lackner 132 

& DiZio, 1994; Lefumat et al. 2015) to validate the strong hypothesis of a sensori-motor 133 

adaptation. In the present study, force-field adaptation was a pre-requisite to assess whether the 134 

internal model of limb dynamics influences the representation of peripersonal space. Indeed, 135 

our subsequent hypothesis was that updating the arm’s internal model through sensori-motor 136 

adaptation (as revealed by after-effects on reach trajectories) would modify judgments of 137 

reachability. To test this hypothesis, we requested participants to perform a reachability 138 

judgment task, which enabled us to assess participants’ representation of peripersonal space, 139 

before and after adapting to new limb dynamics.  140 
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2. Material and methods 141 

2.1. Participants 142 

14 healthy right-handed adults (3 females, mean age = 21.9 ± 2.1 years) participated in this 143 

experiment. No prior data were available from the literature or pilot experiments to estimate a 144 

realistic effect size, so 14 participants were recruited for our main experiment because this 145 

number reflects the sample size used in similar studies (Canzoneri et al., 2013; Ambrosini & 146 

Costantini, 2013; Grade et al., 2015; Bartolo et al., 2018 for the reachability part and Lackner 147 

& DiZio, 1994; Shadmehr & Mussa-Ivaldi, 1994; Wolpert et al., 1995 for the sensori-motor 148 

adaptation part). Participants gave their written informed consent prior to inclusion in the 149 

study, which was approved by the institutional review board of the Institute of Movement 150 

Sciences and was performed in accordance with the ethical standards set out in the 1964 151 

Declaration of Helsinki. All participants had normal or corrected-to-normal vision and were 152 

naïve to the purpose of the experiment.  153 

 154 

2.2. Experimental set up 155 

As illustrated in Figure 1, participants sat at the centre of a motorised rotating platform. An 156 

adjustable headrest was used to restrain head movements and to keep the centre of the head 157 

aligned with the vertical (Z) axis of the platform, so as to minimise centrifugal forces on the 158 

head during platform rotation. When the upper limb was voluntarily moved towards the target 159 

during rotation, each moving point of the limb was subjected to the Coriolis force (Fcor in the 160 

following equation) acting perpendicularly to the limb displacement: Fcor = -2m x ω x v, with 161 

m the mass of the upper-limb segments in motion, ω the platform’s angular velocity and v the 162 

arm’s linear velocity (Lackner & DiZio, 1994).  163 
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Several visual targets were positioned on a horizontal table placed in front of the subjects, 164 

at waist level. All visual targets were low-intensity red light-emitting diodes (3 mm in 165 

diameter) presented in an otherwise completely dark room, a condition which does not 166 

preclude force-field adaptation (Lackner & DiZio, 1994, Lefumat et al., 2015). 167 

Participants had to perform two tasks, each involving different visual targets (see Figure 168 

1). In the manual reaching task, we used only one visual target, which was positioned 30 cm 169 

directly ahead of the starting hand position along the mid-body sagittal axis. In the reachability 170 

judgment task, 25 visual targets were aligned in a fronto-parallel plane and positioned in the 171 

subject’s right hemispace (with respect to the mid-body sagittal axis). The array of reachability 172 

targets (inter-target distance was 20 mm; see details on Figure 1) was positioned according to 173 

each subject’s arm length (see Procedure). Reachability targets were positioned horizontally 174 

in the right hemispace of participants in order to be in the same plane than the expected effect 175 

of the perturbation, and the adaptation to it, namely orthogonal to the manual reaching 176 

trajectory toward a straight-ahead visual target. On the horizontal table, two response buttons 177 

were positioned close to the participant, one located 1 cm from the table’s edge and the other 178 

located 1 cm farther away. The participants operated these buttons with their left hand to 179 

respond in the reachability judgment task (closer response button for reachable targets and 180 

more distant response button for non-reachable targets). The more distant response button in 181 

the reachability judgment task also served as the starting right hand position in the manual 182 

reaching task, and could be illuminated with a light-emitting diode.  183 

An infrared active marker was taped to the right index fingertip, whose position was 184 

sampled at 350 Hz using an optical motion tracking system (Codamotion cx1 and MiniHub, 185 

Charnwood Dynamics Ltd, Leicestershire, UK), to record hand movement kinematics during 186 

the manual reaching task. Response buttons were sampled at 800 Hz to record reachability 187 

estimates. The experimenter controlled the tracking system, the motorised platform and the 188 
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presentation of the visual targets from an adjacent room via customised software (Docometre) 189 

governing a real-time acquisition system (ADwin-Pro, Jäger, Germany). 190 

 191 

Figure 1. Experimental setup. (A) Reachability judgment task: participants had to judge 192 

whether a target illuminated on their right was reachable or not: they responded by pressing 193 

the closer response button with their left index or the more distant button with their middle 194 

finger, respectively. The 0 mm location, adjusted for each participant, corresponded to the 195 

maximum physical distance reachable with the arm fully stretched. (B) Manual reaching task: 196 

participants had to reach the visual target with their right index as accurately and as fast as 197 

possible. 198 

 199 

2.3. Procedure 200 

Once seated on the platform and before the experiment started, participants wore occluding 201 

glasses to prevent them viewing the target array. They were then asked to fully stretch out their 202 

right arm in the fronto-parallel plane: this allowed the experimenter to match the position of 203 

each participant’s index fingertip, with the arm fully stretched, with the position of the central 204 

target in the array used for the reachability judgment task. The individually-adjusted position 205 

of the central target thus corresponded to the actual maximum distance that was physically 206 

reachable by each participant (Bourgeois et al., 2014; Valdès-Conroy et al., 2014; Patané et al., 207 

2017). After this personalized adjustment of the setup, the occluding glasses were removed and 208 

participants were allowed to open their eyes in the dark room.  209 
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2.3.1. Manual reaching task 210 

In the manual reaching task, each trial began with the right index positioned at the starting 211 

hand location. The visual target was flashed for 200 ms, after a 100 ms auditory tone followed 212 

by a random time of 500 to 1000 ms. As soon as the visual target was turned on, participants 213 

had to reach towards it as fast and as accurately as possible with the right index. Participants 214 

were asked to maintain their final hand position once the finger touched the horizontal board. 215 

3.5 s after the start of the trial, the LED at starting hand location was turned on: this indicated 216 

the end of the trial and signalled to participants that they should move their hand back to the 217 

start position and prepare for the next trial. No explicit instructions were given with respect to 218 

hand path. 219 

 220 

2.3.2. Reachability judgment task 221 

In the reachability judgment task, after a 100 ms auditory tone followed by a random time 222 

of 500 to 1000 ms, one of the 25 visual targets was randomly presented in the participants’ 223 

right hemispace. Participants had to judge as fast and as accurately as possible, without 224 

performing any reaching movement, whether the illuminated visual target was reachable or 225 

not with their right index, from a stable trunk posture. This two-alternative forced choice was 226 

recorded as participants pressed either the closer response button (“reachable”) with their left 227 

index or the more distant response button (“unreachable”) with their middle finger. The target 228 

disappeared as soon as the participant provided his/her response and, at the end of a fixed 229 

period lasting 4 s from the 100 ms auditory tone, the next trial started with the same temporal 230 

sequence.  231 

  232 
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All participants were familiarised with both tasks during a pre-experiment session. The 233 

experiment involved five conditions, presented in successive blocks (see Figure 2): 234 

- Manual reaching task / PRE-rotation (platform stationary). Participants executed a series 235 

of thirty reaching movements towards the visual target to determine baseline sensori-motor 236 

performance.  237 

- Reachability judgment task / PRE-rotation (platform stationary). Participants performed 238 

a series of one hundred reachability estimates (each of the 25 targets randomly presented 4 239 

times) to determine baseline performance in the reachability judgment task. At the end of the 240 

PRE-rotation stage, the platform was progressively accelerated, counterclockwise, for 80 s 241 

(increase of 1.5°/s²) to reach a constant velocity of 120°/s (20 rpm). 242 

- Manual reaching task / PER-rotation (platform rotating). Participants executed sixty 243 

reaching movements towards the visual target. The platform’s rotation generated Coriolis 244 

force (Fcor) on the moving limb. Then, the platform was progressively decelerated for 80 s 245 

(decrease of 1.5°/s²) until stationarity. 246 

- Reachability judgment task / POST-rotation (platform stationary). Participants performed 247 

a new series of one hundred reachability estimates, as in PRE-rotation. 248 

- Manual reaching task / POST-rotation (platform stationary). Participants ended the 249 

experiment by performing a new series of thirty manual reaching movements. 250 

A 90 s pause was included between the end of the platform rotation acceleration (or 251 

deceleration) period and the ensuing task, to allow the vestibular semi-circular canals to return 252 

to their resting discharge frequency (Goldberg & Fernandez, 1971). Subjects were instructed 253 

not to move their opposite arm during the experiment (left arm during the manual reaching 254 

task, right arm during the reachability judgment task). 255 

The order of conditions was not counterbalanced, for two main reasons. First, the second 256 

reachability judgment task (namely reachability POST-rotation in our manuscript) had to be 257 
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performed right after a reaching movement task, so the first reachability judgment task 258 

(reachability PRE-rotation) was also performed right after a reaching movement task; this 259 

way, a reachability judgment task was always preceded by a reaching movement task. Second, 260 

this experimental design allowed to compare the reachability judgment tasks performed just 261 

before and just after the sensorimotor adaptation phase, as has been done by Bourgeois & 262 

Coello (2012) (see also Ostry et al. (2010) for a similar design albeit with a different perceptual 263 

test). 264 

 265 

 266 

 267 

Figure 2. Experimental procedure. Manual reaching movements were executed before (a), 268 

during (c) and after (e) platform rotation, while reachability was estimated before (b) and after 269 

(d) rotation. Under the black arrow of time, we specify the manual reaching trials used for 270 

statistical analyses: the ten last trials before the rotation (PRE-final), the first (PER-initial) and 271 

ten last trials during the rotation (PER-final), and the first (POST-initial) and ten last trials 272 

(POST-final) after the rotation.  273 

  274 
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2.4. Data recording and analysis 275 

In the manual reaching task, the (x, y, z) coordinates of the marker on the right index 276 

fingertip were recorded and then analysed via customised Matlab software (Mathworks, 277 

Natick, MA, USA). Raw data were low-pass filtered using a dual-pass, no-lag Butterworth 278 

(cut-off frequency: 8Hz; order: 2). Velocity data were obtained from the filtered position data. 279 

As in Lefumat et al. (2015), movement onset was defined as the first time hand velocity 280 

reached 3 cm/s and movement offset was defined as the first time hand velocity dropped below 281 

3 cm/s. These time markers were used to compute movement time. 282 

Previous work showed that Coriolis force mainly influences the directional control of 283 

movement (Lackner & DiZio, 1994; Coello et al., 1996; Bourdin et al., 2001; Sarlegna et al., 284 

2010). We therefore computed initial movement direction, as given by the angle between the 285 

vector start position-to-target position and the vector start position-to-hand position at the 286 

moment hand movement reached maximum velocity. Peak velocity was reached on average 287 

217 ± 55 ms (mean ± SD) after movement onset. We considered peak velocity to be of 288 

particular interest in the present study because it coincided with the maximum effect of 289 

Coriolis forces. We also analysed movement endpoint error as the angle between the vector 290 

start position-to-target position and the vector start position-to-hand position at the end of the 291 

reaching movement (Coello et al., 1996; Bourdin et al., 2001). In addition, we computed 292 

maximum perpendicular deviation as the maximum distance between the hand and its 293 

orthogonal projection on the straight line linking the hand starting position and its ending 294 

position (Brown & al., 2007), assuming that subject’s intended hand path would mainly be 295 

directly ahead, unless instructed otherwise, particularly given the planar workspace (Morasso, 296 

1981; Palluel et al., 2004). For all these variables, rightward trajectory deviations 297 

corresponded to positive values, and leftward deviations to negative values.  298 
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Sensori-motor adaptation to the Coriolis force was characterised using a method similar to 299 

that described by Lackner and DiZio (1994) and Lefumat et al. (2015). Data from the final ten 300 

trials in the PRE-rotation phase (labelled PRE-final) were averaged for each participant and 301 

used as baseline value. This baseline was then compared to the data of the first trial (PER-302 

initial) and the average of the final ten trials (PER-final) during the rotation of the platform, 303 

and then to the first trial (POST-initial) and the average of the final ten trials (POST-final) 304 

once rotation ceased. The analyses of initial direction, endpoint error and maximum amplitude 305 

deviation were used to characterise adaptation to the perturbation. The PER-initial data (with 306 

respect to baseline) reflected the effect of the velocity-dependent force field on the manual 307 

reaching movements (perturbation), while the PER-final data and POST-initial data reflected 308 

sensori-motor adaptation and after-effects of sensori-motor adaptation to the velocity-309 

dependent force field. In addition, we analysed peak acceleration, peak velocity and peak 310 

deceleration amplitude in order to provide a detailed kinematic account of the reaching 311 

movements throughout the experiment. 312 

In the reachability judgment task, reachability judgments and response times were 313 

registered through the participant’s answers via the response buttons. As in Bourgeois & 314 

Coello (2012), the estimated boundary of reachable space was determined using a maximum-315 

likelihood fit procedure based on the second-order derivatives (quasi-Newton method) to 316 

obtain the logit regression model that best fitted the reachable/unreachable responses of the 317 

participants. Taking into account the 25 positions of the target, the model relied on the 318 

following equation: y = e(α+βx)/(1+e(α+βx)) in which y was the participant’s response (0 for 319 

unreachable and 1 for reachable), x the distance (in mm) between the presented target and the 320 

target representing the physical limit of reachability, and (-α /β) the value of x at which the 321 

transition from one type of response (reachable) to the other type of response (unreachable) 322 

occurred (the probability p associated with the logit function was 0.50 for both responses). 323 
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This point of subjective equality (PSE) thus expresses the perceived boundary of reachable 324 

space. Positive PSE values corresponded to an overestimation of the peripersonal space 325 

boundary with respect to the physical one. We then calculated the difference between the PSE 326 

in PRE-rotation and POST-rotation corresponding to the shift in peripersonal space 327 

representation (ΔPSE) after the PER-rotation condition. In addition, we computed the 328 

discrimination threshold, defined as the distance between the value of PSE (target distance at 329 

p = 0.50) and the target distance at p = 0.84 (Ernst & Banks, 2002). The smaller the 330 

discrimination threshold, the more accurate the participant was in distinguishing between 331 

reachable and unreachable targets. 332 

To analyse response time, defined as the time between the onset of stimulus presentation 333 

and the onset of the button press, we divided the set of targets into three zones, corresponding 334 

to (1) the three most reachable targets (Near), (2) the three targets around the boundary of 335 

reachable space (adjusted for each participant) (Boundary) and (3) the three least reachable 336 

targets (Far). Once the boundary was determined for each reachability phase, we selected the 337 

closest target as well as the adjacent ones to determine response time in the boundary zone. 338 

We calculated the mean response time for each region and verified that no targets were situated 339 

in more than one zone (no overlap). 340 

 341 

2.5. Statistical analysis 342 

To assess sensori-motor adaptation in the manual reaching task, we conducted a repeated-343 

measure analysis of variance (ANOVA) with one factor, Phase (PRE-final, PER-initial, PER-344 

final, POST-initial, POST-final)], on the different variables. When there was a significant 345 

main effect, a Tukey HSD post-hoc test was used for further analysis. In the reachability 346 

judgment task, both perceived boundary of reachable space and discrimination threshold were 347 

compared between reachability PRE- and POST-rotation conditions, using a t-test for related 348 
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samples. Level of significance was 0.05 for all analyses. Normality of data distribution was 349 

verified in all experimental conditions, using the Kolmogorov-Smyrnov method. 350 

 351 

3. Results 352 

3.1. Manual reaching task 353 

Since our aim was to assess the effect of sensori-motor adaptation on reachability judgment, 354 

it was essential to confirm the presence of force-field adaptation in reaching arm movements. 355 

We thus analysed both the spatial performance (initial direction, endpoint error, maximum 356 

perpendicular deviation) and the temporal performance (movement time and time to peak 357 

velocity) of the voluntary, unconstrained targeted movements. 358 

 359 

3.1.1. Spatial performance 360 

The Coriolis force induced by platform rotation and limb movements influenced the spatial 361 

performance of every participant, and sensori-motor adaptation was systematically observed.  362 

3.1.1.1. Hand trajectory 363 

Figure 3 shows that hand trajectories towards the visual target were quite straight during 364 

baseline (PRE-rotation, average initial direction = -2.3 ± 3.5°; average endpoint error = 1.6 ± 365 

2.2°). During counterclockwise platform rotation, Coriolis force initially altered the hand path, 366 

as shown by the lateral deviation of the first reaching movement in the PER-rotation stage. 367 

After 60 trials performed in rotation, the hand path was similar to baseline, suggesting 368 

substantial force-field adaptation. After rotation was interrupted and the usual force field was 369 

restored, there was a pronounced after-effect on the hand path of each participant, confirming 370 

the presence of force-field adaptation. Indeed, the first movement in the POST-rotation 371 

condition was clearly deviated to the left. Finally, at the end of the experiment, the last 372 

movement in the POST-rotation condition was similar to the baseline. 373 
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 375 

 376 

  377 

  378 

Figure 3. Top view of the right index fingertip trajectories for a representative participant. 

Hand paths are shown for the last trial of the PRE-rotation (red line), the first trial of the PER-

rotation (black line), the last trial of the PER-rotation (yellow line), the first trial of the POST-

rotation (light blue line) and the last trial of the POST-rotation (light blue dotted line). 
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3.1.1.2. Initial direction 379 

An ANOVA revealed a significant effect of Phase on initial direction (F(4, 52) = 36.53; 380 

p < 0.001; η² = 0.738). HSD Tukey post-hoc comparison revealed that the initial direction of 381 

the PER-rotation initial movement was significantly deviated to the right (4.9 ± 5°) compared 382 

to PRE-final (-2.3 ± 3.5°), PER-final (-2.6 ± 3.1°), POST-initial (-13.7 ± 8.2°) and POST-final 383 

(-0.9 ± 1.5°, all p < 0.01). Statistical analyses revealed that initial direction at the end of the 384 

PER-rotation did not significantly differ from baseline (p = 0.99). The first movement in the 385 

POST-rotation condition (POST-initial) was significantly deviated to the left: initial direction 386 

(-13.6°) compared to PRE-final (-3.1°), PER-initial (4.9°), PER-final (-2.6°) and POST-final 387 

(-0.9°) movements (all p < 0.001). 388 

 389 

3.1.1.3. Endpoint error 390 

An ANOVA revealed a significant effect of Phase on endpoint error (F(4, 56) = 76.64; 391 

p < 0.001; η² = 0.855). HSD Tukey post-hoc comparison revealed that the PER-initial 392 

endpoints were significantly deviated rightward (11.3 ± 4.1°) compared to PRE-final (1.7 ± 393 

2.2°), PER-final (3.9 ± 3.6°), POST-initial (-8.9 ± 5.3°) and POST-final (1.6 ± 2.6°, all 394 

p < 0.001). Statistical analyses revealed that endpoint error at the end of the PER-rotation did 395 

not significantly differ from baseline (p = 0.35). Once rotation stopped, the first movement 396 

endpoint error in the POST-rotation condition (POST-initial) was significantly deviated to the 397 

left (-13.6°) compared to PRE-final (-3.1°), PER-initial (4.9°), PER-final (-2.6°) and POST-398 

final (-0.9°) movements (all p < 0.001). 399 

 400 

 401 

 402 
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 403 

Figure 4. Behavioural adaptation to the force-field perturbation. (A) Mean angular endpoint 404 

error and initial direction of the first (PER-initial) and last ten trials (PER-final) of PER-405 

rotation, and the first (POST-initial) and last ten trials (POST-final) of the POST-rotation 406 

phases, normalised with respect to the last ten trials of the PRE-rotation condition (PRE-final). 407 

(B) Mean maximum perpendicular distance of the hand trajectory from the straight line linking 408 

its starting and its final location as a function of the different phases and normalised with 409 

respect to PRE-final. Vertical bars represent the standard error of the mean. Asterisks 410 

correspond to statistically significant differences with respect to baseline (***: p < 0.001). 411 

 412 

3.1.1.4. Maximum perpendicular deviation 413 

An ANOVA on maximum perpendicular deviation revealed a main effect of Phase (F(4, 52) 414 

= 74.63, p < 0.001; η² = 0.852) and post-hoc analysis revealed that deviations were 415 

significantly greater for the PER-initial trial (6.0 ± 3.6 cm) compared to the trials in PRE-final 416 

(1.1 ± 1.6 cm), PER-final (-0.8 ± 2.3 cm), POST-initial and POST-final (-0.9 ± 1.5 cm; all 417 

p < 0.001) phases. Figure 4 shows that data for the first trial after rotation ended (POST-418 

initial:-7.8 ± 2.3 cm) differed from PRE-final data (p < 0.001), highlighting the after-effects 419 

of sensori-motor adaptation. As shown in Figure 5, participants corrected the deviation 420 

observed in the first trial of PER-rotation and POST-rotation phases such that, trial after trial, 421 

they recovered a straight hand path to the target. 422 

 423 

 424 

A B 
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 425 

Figure 5. Mean maximum perpendicular deviation across participants for all reaching 426 

movements throughout the experiment. The dark grey area surrounding black points represents 427 

the standard deviation of the mean. Participants progressively adapted to the Coriolis force 428 

that initially deviated their moving limb to the right when they performed manual reaching 429 

tasks during platform rotation (PER-rotation). After the perturbation ceased, participants’ 430 

movements were deviated to the left during the first trials before recovering trajectories similar 431 

to the baseline (POST-rotation). Reachability judgment tasks (light grey vertical bars) were 432 

interleaved with platform rotation.  433 

 434 

3.1.2. Temporal performance and related kinematic data 435 

3.1.2.1. Movement time 436 

Statistical analysis revealed an effect of Phase on the duration of reaching movements (F(4, 437 

52) = 4.3; p = 0.004; η² = 0.249). According to post-hoc analyses, movements were performed 438 

in a longer time in the POST-initial phase (mean = 485 ± 142 ms) compared to PRE-final (386 439 

± 49 ms; p < 0.05) and POST-final (mean = 431 ± 54 ms; p < 0.05), and also in the PER-initial 440 

phase (mean = 497 ± 138 ms) compared to PRE-final (p < 0.05) and POST-final (p < 0.05). 441 

However, there was no significant difference between PRE- and PER-final trials (mean = 431 442 

± 54 ms; p = 0.5). The percentage of movement time (51 ± 19%) taken to reach maximum 443 

velocity was not significantly altered by Phase (F(4, 52) = 1.45; p = 0.22; η² = 0.101), suggesting 444 

that the overall temporal organisation of the movement was preserved. 445 
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 446 

3.1.2.2.Acceleration, velocity and deceleration peaks amplitude 447 

 We conducted a repeated-measure, one-way analysis of variance with one factor Phase (PRE-448 

final, PER-initial, PER-final, POST-initial, POST-final) for peak velocity, peak acceleration 449 

and peak deceleration. There was no significant effect for peak acceleration (F(4, 52) = 0.2987; 450 

p = 0.88; η² = 0.022) and peak deceleration (F(4, 52) = 2.34; p = 0.07; η² = 0.153). For peak 451 

velocity, the ANOVA revealed a significant main effect (F(4, 52) = 3.18; p = 0.02; η² = 0.196). 452 

Post-hoc analysis (HSD Tukey test) only showed a greater peak velocity in the PER-initial 453 

trial (mean = 227 ± 59 cm/s) compared with the POST-initial trial (mean = 195 ± 51 cm/s; 454 

p < 0.05). However, there was no significant difference between either PRE-final (mean = 229 455 

± 44 cm/s) and PER-final trials (mean = 218 ± 54 cm/s; p = 0.72), PRE-final and PER-initial 456 

trials (p = 0.24) or PER-initial and PER-final trials (p = 0.91). There was also no significant 457 

difference between either PRE-final and POST-final trials (mean = 210 ± 49 cm/s; p = 0.99), 458 

PRE-final and POST-initial trials (mean = 195 ± 51 cm/s; p = 0.74), or POST-initial and 459 

POST-final trials (p = 0.52). 460 

 461 

3.2. Reachability judgment task 462 

3.2.1. Reachability judgments 463 

We performed a paired t-test to compare the perceived boundary of reachability between 464 

the POST-rotation and the PRE-rotation stages. The shift (mean ΔPSE = 55 ± 34 mm) in 465 

perceived reachable space was statistically significant: a t-test showed that the perceived 466 

boundary of reachability in POST-rotation (mean PSE = -13 mm ± 89 mm) was significantly 467 

reduced compared to the PRE-rotation (mean PSE = 42 mm ± 75 mm; t(13) = 6.06; p < 0.001; 468 

η² = 0.674). Figure 6 illustrates the finding that, on average, participants overestimated the 469 

boundary of reachable space by 45 mm in baseline, before being subjected to the rotating 470 
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platform. Figure 6 also illustrates the main finding of the present study, i.e. that following 471 

exposure to the rotation (POST-rotation), reachability was shifted compared to PRE-rotation. 472 

By contrast with the perceived boundary of reachability, the discrimination threshold in the 473 

PRE-rotation (116 ± 53 mm) and POST-rotation (115 ± 64 mm) conditions did not 474 

significantly differ (t(13) = 0.4; p = 0.7). Thus, after force-field adaptation, the perceptual 475 

reachability estimates shifted with respect to baseline, in the direction of the compensatory 476 

reach response (opposite to the perturbation).  477 

 478 

 479 

Figure 6. Systematic shift in reachability judgment. (A) Results of logit regression analysis for 480 

a representative participant during reachability PRE-rotation (dark line) and POST-rotation 481 

(grey line) conditions. (B) Individual shift in the limit of perceived reachable space [POST-482 

rotation - PRE-rotation] for each participant (in black) and mean perceived reachable limit (in 483 

grey). 484 

 485 

3.2.2. Response time  486 

An ANOVA with repeated measures on RT (mean for the Near zone = 708 ± 176ms; mean 487 

Boundary = 917 ± 286ms; mean Far = 824 ± 225ms) confirmed the significant effect of Target 488 

zone (F(2, 26) = 11.28;  p < 0.001; η² =0.465)  but did not show a significant effect of Condition 489 

(F(1, 13) = 2.1;  p = 0.12;  η² = 0.172) or interaction (F(2, 26) =0.119; p = 0.89; η² = 0.009). Post-490 

A 
B 
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hoc analysis of the Target zone effect showed that RTs for targets in the Near zone were 491 

significantly lower than for those in the Boundary zone (p < 0.001). Figure 7 illustrates the 492 

finding that response time (RT) was greater for targets at the boundary of reachable space. 493 

 494 

 495 

Figure 7. Mean response time for three different sets of targets in the reachability judgment 496 

task across both conditions of rotation. The three zones (Near, Boundary and Far) 497 

corresponded to the 3 most reachable (closest) targets, 3 targets around the boundary of 498 

reachable space and the 3 least reachable (farthest) targets, respectively. Vertical bars 499 

represent the standard deviation of the mean. Statistically significant differences between zones 500 

were tested using Tukey’s HSD post-hoc test (***: p < 0.001). 501 

 502 

3.3. Correlation analyses 503 

We performed correlation analyses (Pearson’s correlation coefficient) to test the link 504 

between the shift in peripersonal space representation (ΔPSE) and movement parameters in 505 

the POST-initial trial which reflect sensorimotor adaptation. Results showed no significant 506 
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correlation between ΔPSE and initial direction (r = 0.50; p = 0.07), maximal perpendicular 507 

deviation (r = 0.47; p = 0.09) and endpoint error (r = 0.48; p = 0.08). 508 

In summary, the present study suggests that the estimated boundary of reachable space is 509 

shifted as the result of sensori-motor adaptation to a novel force field. However, the possibility 510 

that the change in peripersonal space perception observed here could also be due to the 511 

movement repetition itself (Verstynen & Sabes, 2010; Marinovic et al., 2017; Mawase et al., 512 

2017) and/or to the platform rotation (Pfeiffer et al., 2018), rather than to sensori-motor 513 

adaptation, cannot be ruled out. To test our hypothesis on the role of sensori-motor adaptation, 514 

we separately investigated the effect of movement repetition and platform rotation, without 515 

sensori-motor adaptation. Based on the results from the main experiment, we conducted a 516 

post-hoc power analysis (paired-samples t test, effect-size = 1.07, α = .05, two-tailed) 517 

indicating a minimum of 9 participants to reach a power of 0.8. 10 participants were thus 518 

enrolled for each of the following control experiments. 519 

  520 
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Control experiment 1 521 

To assess whether the observed change in peripersonal space could be due to the nature of 522 

the manual reaching task itself (rather than to sensori-motor adaptation), a control experiment 523 

was run using the same experimental setup and the same protocol as in the main experiment 524 

but without platform rotation. 525 

Ten new healthy participants (4 females and 6 males, age = 23.7 ± 2.7 years) took part in 526 

this experiment. They gave their prior informed consent in accordance with the ethical 527 

standards set out in the 1964 Declaration of Helsinki. All participants were self-declared right-528 

handed and had normal or corrected-to-normal vision. No significant difference in reachability 529 

judgments (t(9) = 1.83; p = 0.1) was found between PRE- (mean PSE = 18 ±78 mm) and 530 

POST-tests (mean PSE = -3 ± 82 mm ). No significant difference was found between 531 

discrimination thresholds in PRE- and POST-tests (mean = 85 ± 23 mm; t(8) = 0.18; p = 0.86). 532 

These results support the hypothesis that neither the boundary of estimated reachable space 533 

nor the precision of this judgment were affected by the movement repetition in the main 534 

experiment. 535 

RTs were also analysed for the three zones, using the same methods as in the main 536 

experiment. A 2x3 ANOVA with repeated measures (2 Conditions: PRE-, POST-rotation x 3 537 

Target zones: Near, Boundary, Far) showed the significance of the effect of Target zone on 538 

RT (F (2, 18) = 6.93; p = 0.006; η² = 0.052) but there was no significant effect of Condition   539 

(mean PRE-rotation = 389 ± 142 ms; mean POST-rotation = 335 ± 122 ms) (F (2, 18) = 1.98; 540 

p = 0.19; η² = 0.243) and no significant interaction between Target zone and Condition (F (2, 541 

18) = 1.49; p = 0.25; η² = 0.076). RT varied according to whether targets were in the Near 542 

(mean = 318 ± 115 ms), Boundary (424 ± 163 ms) or the Far zone (374 ± 149 ms) but post-543 

hoc analysis only showed that RT for the Near zone was lower than for the Boundary zone (p 544 

= 0.004). 545 
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Overall, the results of the first control experiment indicated that when reaching arm 546 

movements were repeated in the absence of platform rotation, there was no significant change 547 

in reachability estimates (see also Bourgeois & Coello 2012). In the second control 548 

experiment, new participants underwent the same experiment but without manual reaching 549 

during the rotation, to assess the effect of platform rotation without adaptation on reachability 550 

judgments. 551 

 552 

Control experiment 2 553 

Ten new healthy participants (3 females and 7 males, mean age = 20.9 ± 2.4 years) took 554 

part in this experiment. They gave their prior informed consent in accordance with the ethical 555 

standards set out in the 1964 Declaration of Helsinki. All participants were self-declared right-556 

handed and had normal or corrected-to-normal vision. The participants were required to 557 

perform the reachability judgment task (identical to experiment 1) before (PRE-rotation), 558 

during (PER-rotation) and after (POST-rotation) platform rotation, but without any manual 559 

reaching. A one-way analysis of variance with repeated measures was used to compare the 560 

perceived boundary of reachable space and the discrimination threshold in the PRE- (mean 561 

PSE = 36 ± 60 mm), PER- (mean PSE = 12 ± 75 mm) and POST-rotation (mean PSE = 32 ± 562 

71 mm) conditions. 563 

No significant effect of the rotation on perceived boundary of reachable space (mean PSE 564 

= 27 ± 67 mm) was found (F (2, 18) = 2.54; p = 0.11; η² = 0.22). In addition, analysis of the 565 

discrimination threshold (85 ± 23 mm) showed no significant effect of the rotation (F (2, 18) 566 

= 0.191; p = 0.83; η² = 0.021). 567 

RTs were also analysed. A 3x3 ANOVA with repeated measures (3 Conditions: PRE-, 568 

PER-, POST-rotation x 3 Target zones: Near, Boundary, Far) on response time showed an 569 

effect of Target zone (F (2, 18) = 7.53; p = 0.004; η² = 0.455) but not of Condition (F (2, 18) = 570 
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3.36; p = 0.057) and no significant interaction (F (2, 18) = 0.83; p = 0.52; η² = 0.084). RT varied 571 

according to whether participants judged targets to be the most reachable (Near zone: mean 572 

RT = 491 ± 192 ms) around the boundary of reachable space (Boundary zone: 781 ± 326 ms) 573 

or the least reachable (Far zone: 599 ± 216 ms). However, post hoc analysis only pinpointed 574 

a lower RT for the Near zone than for the Boundary zone (p = 0.003). Overall, the results of 575 

the second control experiment indicate that when movements were not performed during 576 

platform rotation, i.e. in the absence of sensori-motor adaptation, there was no significant 577 

change in reachability estimates. 578 

 579 

Thus, the two control experiments show that neither the boundary of reachable space nor 580 

the accuracy of reachability judgment was significantly affected by the rotation of the platform 581 

or the repetition of 60 reaching movements. This is consistent with the hypothesis that the 582 

shift in boundary of reachable space observed in the main experiment was related to sensori-583 

motor adaptation, and not merely due to the rotation of the platform.  584 
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4.  Discussion 585 

The aim of the present study was to investigate whether sensori-motor adaptation to a 586 

change in limb dynamics alters the representation of peripersonal space, as in the case of 587 

geometrical changes due to tool use (for a review see: Làdavas & Serino, 2008; Cléry et al. 588 

2015; di Pellegrino & Làdavas, 2015). By assessing perception of peripersonal space before 589 

and after force-field adaptation, we found that peripersonal space was systematically 590 

perceived as being closer to the body after sensori-motor adaptation. 591 

 592 

4.1. Confirmation of sensori-motor adaptation: a prerequisite  593 

A rotating platform can be used to study sensori-motor adaptation to a perturbed force field 594 

(Lackner & DiZio, 1994; Coello et al., 1996; DiZio & Lackner, 2000; Sarlegna et al., 2010; 595 

Lefumat et al., 2015). In our study, participants had to deal with the Coriolis force acting on 596 

their active, unconstrained arm during the rotation. Participants exhibited the classic pattern 597 

of motor response to this kind of novel dynamics: deviation of the movement trajectory during 598 

the first PER-rotation trials in the direction of the perturbation, followed by a rapid recovery 599 

of unperturbed kinematic performance, i.e. reaching straight ahead towards the target. 600 

Moreover, once the rotation has stopped, the trajectories were deviated in the opposite 601 

direction from the perturbation, which is typical of the after-effects of sensori-motor 602 

adaptation. This was systematically observed for each participant. Moreover the after-effect 603 

was statistically significant when analysing endpoint error, initial movement direction and 604 

maximum perpendicular deviation. These are clear markers of sensorimotor adaptation, which 605 

is classically considered as arising from an updating of the arm’s internal model to take 606 

account of new limb dynamics (Ghez & Sainburg, 1995; Ostry et al., 2010; Shadmehr, 2017). 607 

It is noteworthy that the period between the first modification in limb dynamics at the very 608 

beginning of the rotation and the first movement after the rotation stop lasted about ten 609 
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minutes. We were thus able to investigate whether this sensori-motor adaptation had an effect 610 

on peripersonal space representation by comparing judgments before and after the adaptation 611 

phase. 612 

 613 

4.2. Reproduction of reachability judgment task features 614 

Perception of peripersonal space was investigated through a widely used reachability 615 

judgment task (Grade et al., 2015; Bartolo et al., 2018; Cartaud et al., 2018). However, we 616 

slightly modified this perceptive task to match the direction of the force-field perturbation 617 

(Coriolis force applied orthogonally to the main direction of movement). Our participants had 618 

thus to judge the reachability of targets aligned in the frontal plane (rather than in the more 619 

commonly used sagittal plane) and in their right hemispace (rather than aligned with the 620 

cyclopean eye). We made these modifications to assess the hypothesised lateral effect of 621 

sensori-motor adaptation, while verifying that the task was feasible in such a configuration 622 

with subjects and platform still. Interestingly, our results share numerous characteristics with 623 

the results generally observed in the literature. For example, participants overestimated their 624 

reachable limit, as frequently reported for reachability judgment tasks (Carello et al., 1989; 625 

Rochat & Wraga, 1997; Gabbard et al. 2007; Bourgeois & Coello, 2014; Coello et al., 2012; 626 

Wamain et al., 2016; Gouzien et al., 2017). Another important common feature concerned the 627 

increase in response time around the boundary of reachability compared to the nearest targets. 628 

Several studies have reported the same results (Valdès-Conroy et al. 2012; Bourgeois & 629 

Coello, 2012; Bartolo et al., 2014; Grade et al., 2015; Wamain et al., 2016), which could be 630 

due to participants experiencing difficulty responding around the more uncertain reachable 631 

space boundary.  632 

Specifically for the Near and Far zones, where judgment can be assumed to be less 633 

uncertain, response time tended to be lower for the close, most reachable targets than for the 634 
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far, less reachable targets. While this was not statistically significant, this is consistent with 635 

psychophysics findings which usually show a longer response time for a negative answer (‘Not 636 

reachable’ in our study) than for a positive one (Coltheart et al., 2001; Brouillet et al., 2010). 637 

However, in our experimental design, the eccentric peripheral position of the more distant 638 

targets may also have induced higher latency in detecting them (Fuler, 1996; Gruber et al., 639 

2014; Bartolo et al., 2017). Given that studies using reachability judgment tasks in the sagittal 640 

plan did not show a difference in response time between the nearest and the farthest targets 641 

(Bourgeois & Coello, 2014; Coello et al., 2012), the differences here are likely due to the 642 

varying target eccentricity in our experimental protocol. Overall, our results are consistent 643 

with the literature and therefore support the reliability of our method to assess reachability 644 

judgments. 645 

 646 

4.3. Sensori-motor adaptation and reachability judgment are linked 647 

The core concern of this study was to examine the relationships between sensori-motor 648 

adaptation to changes in limb dynamics and peripersonal space representation. Our results 649 

strongly suggest that the perceived boundary of reachable space, used as proxy for the 650 

representation of peripersonal space, systematically moved towards the body after sensori-651 

motor adaptation. In other words, participants perceived the boundary of their peripersonal 652 

space as being closer after sensori-motor adaptation compared to before. Whereas plasticity 653 

of peripersonal space has previously been shown to depend on the geometrical properties of 654 

the body-environment relationship, which change when using a tool (Maravita & Iriki, 2004; 655 

Witt et al., 2005; Cardinali et al., 2009; Martel et al., 2016) or when artificially modifying 656 

current visuomotor calibration (Bourgeois & Coello, 2012), our study is the first to indicate 657 

that the representation of limb dynamics may play a major role in the representation of the 658 

peripersonal space.  659 
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We did not find any significant correlation between the shift in the perception of 660 

reachability and motor behavior measures of force-field adaptation. We considered that the 661 

systematic effect we observed on peripersonal space representation could have two 662 

explanations other than an influence of the new force field, hence the new limb dynamics. 663 

Firstly, our main experimental procedure involved rotating the platform, which could have 664 

been sufficient to influence perception of the surrounding space. Indeed, the vestibular 665 

stimulation induced by whole-body rotation can have an effect on peripersonal space 666 

representation, as shown in particular for the peri-head space (Pfeiffer et al., 2018). Our 667 

control experiment, however, dismisses this possible interpretation, showing that the platform 668 

rotation alone does not induce any significant effect on reachability judgments, in contrast to 669 

the main experiment. The absence of significant effect may not be surprising given that 670 

participants performed the reachability judgment tasks either without rotation or when the 671 

platform’s angular velocity was constant. During rotation at constant velocity, vestibular semi-672 

circular canals remain in a resting state (Goldberg & Fernandez, 1971) and thus do not appear 673 

to modulate the representation of peripersonal space. Secondly, the repetition of the 674 

movements during the sensori-motor adaptation phase might have had an effect. Participants 675 

had to perform several manual reaching movements during rotation in order to adapt. 676 

However, another control experiment enabled us to exclude the possibility that reaching 677 

movement repetition influences peripersonal space representation. Both control experiments 678 

proved essential to our conclusions on the effect of sensori-motor adaptation to a new force 679 

field on the representation of peripersonal space. Furthermore, throughout our experiments, 680 

the discrimination threshold related to the accuracy of reachability judgments in the perceptual 681 

task did not differ before and after sensori-motor adaptation, indicating that the observed effect 682 

cannot be explained by a different (lesser or greater) difficulty of the reachability judgment 683 

task after the adaptation stage. 684 
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 685 

One question remains: was the observed effect of sensori-motor adaptation specifically 686 

anchored to peripersonal space or more generally related to a modification of the space 687 

representation? In other words, perception could be shifted after the experience of the force 688 

field such that the whole external space underwent an overall rotation, indirectly leading to a 689 

shift in the peripersonal space representation. Although our study did not settle this question, 690 

a recent study by Michel et al. (2018) investigated the relationship between adaptation to new 691 

limb dynamics and space perception. In their study, participants had to perform a perceptual 692 

task before and after adaptation to a velocity-dependent perturbation generated by a robotic 693 

device. Unlike the reachability judgement task, their perceptive task (line bisection) likely did 694 

not imply action simulation. Their results did not show any significant difference between 695 

participants’ performances in the two line bisection tasks. In the light of our results, adaptation 696 

to new limb dynamics may thus have a specific effect on peripersonal space representation, as 697 

a space directly related to our motor experience, but does not appear to influence the line 698 

bisection task. 699 

Bufacchi & Iannetti (2018) recently conceptualized the peripersonal space as a functional 700 

space around the body whose measures can “reflect the relevance of potential actions that aim 701 

to either create or avoid contact between a stimulus and a body part”. In agreement with the 702 

interactive view of Cisek and Kalaska (2010), Bufacchi & Iannetti (2018) refer to the 703 

importance of the prediction of potential actions consequences to act appropriately in the 704 

peripersonal space. Such predictions which are updated during sensori-motor adaptation may 705 

be the key factor leading to the modification of peripersonal space representation. 706 
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4.4. Somatosensory modifications may contribute to perceived peripersonal space 707 

changes 708 

In our study, reaching movement kinematics before and at the end of the sensori-motor 709 

adaptation phase, i.e. preceding each reachability judgement task, shared the same features. 710 

This means that the trajectories of reaching movements after sensori-motor adaptation were 711 

strictly comparable under force-field perturbation and under a normal gravity force field. As 712 

previously discussed, sensori-motor adaptation to novel limb dynamics can be explained by 713 

an update of the arm’s internal models (Ghez & Sainburg, 1995; Shadmehr et al., 2010). 714 

Reaching a visual target requires the sensori-motor system to map the limb’s desired motion 715 

with the predicted acting forces. If these forces change, as during platform rotation, motor 716 

commands and expected sensory consequences are modified so as to adapt to the new 717 

properties of the environment (Shadmehr & Mussa-Ivaldi, 1994). Representing peripersonal 718 

space and its boundaries does not require an actual motor command to be performed but after 719 

sensori-motor adaptation to novel limb dynamics, the predicted sensory consequences of the 720 

reaching movement are modified, and this modification may have induced a change in 721 

peripersonal space representation. The after-effects observed in movement trajectories once 722 

the rotation stopped suggest that the internal model was no longer appropriate to the novel 723 

force-field environment (namely, the normal force field) and we eventually observed similar 724 

modifications of motor performance and perception in the peripersonal space. 725 

An alternative explanation may be rooted in the influence of sensori-motor adaptation on 726 

the spatial representation of the limb. Studies have shown that the arm reaching adaptation to 727 

a perturbed force field can lead to modifications in the somatosensory perception of the 728 

adapted limb’s location in space (Ostry & Gribble, 2016). Ostry et al. (2010) studied the effect 729 

of exposure to a force field generated by a robotic device on the active hand’s position. Their 730 

results showed that after sensori-motor adaptation to novel limb dynamics, perception of the 731 
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altered limb position is changed in the opposite direction of the perturbation. In our study, 732 

modifications of peripersonal space perception after the sensori-motor adaptation to novel 733 

limb dynamics could also arise from the modified felt position of the participant’s right hand. 734 

In line with this idea, Fischer (2000) showed that reachable judgement is linked to the body 735 

configuration. We thus could speculate that a modified arm’s localization (concurrently with 736 

sensori-motor adaptation) could have an effect on peripersonal space perception. It would be 737 

interesting to further study this issue and measure the perceived arm’s position before and 738 

after exposure to a novel force field created by means of a platform rotation. 739 

Besides the representation of arm’s position, an interesting approach to probe the 740 

representation of the arm’s length is to analyse kinematic parameters of movement before and 741 

after the sensori-motor adaptation phase (Cardinali et al., 2009). In the present study, peak 742 

velocity, peak acceleration and peak deceleration did not significantly differ between reaching 743 

movements in PRE- and POST-tests. Subtle changes in movement time were found, but they 744 

likely reflect the additional time that was necessary to correct for the substantial movement 745 

errors in the initial trials of PER- and POST-rotation. Overall, our findings may suggest that 746 

the body schema, or the representation of arm length, was not modified by the change in limb 747 

dynamics. Other paradigms such as tool-use directly modify the length of the segment used to 748 

act on the environment: this methodological difference may explain the difference between 749 

our results and those of Cardinali et al. (2009) for instance. 750 

It would be interesting in future studies to assess whether the effect reported on peripersonal 751 

space representation can be generalised to different target directions, and to investigate any 752 

relationships between this effect and the reference systems used by the organism to interact 753 

with the environment (Dupierrix et al., 2009; Herlihey et al., 2013). 754 

 755 

 756 
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5. Conclusion 757 

The present study provided the first demonstration that sensori-motor adaptation to altered 758 

limb dynamics leads to a modification of the representation of peripersonal space. Overall, 759 

our findings are consistent with the idea that force-field adaptation does not only influence 760 

sensori-motor mechanisms, but can also affect the perception and possibly the representational 761 

level of peripersonal space. This insight should prove valuable for future studies exploring 762 

sensori-motor plasticity and its potential consequences on cognitive processes. A way to 763 

further investigate the nature of the effect of sensori-motor adaptation on the representation of 764 

peripersonal space would be to perform new experiments with a clockwise rotation of the 765 

platform (opposite to the rotation used in our study) or with reachability targets in the opposite 766 

hemispace. An inverse effect on peripersonal space (rightward shift) would strengthen the 767 

hypothesis of a specific link between sensori-motor adaptation to novel dynamics and 768 

peripersonal space representation. In a wider perspective, the influence of the sensori-motor 769 

adaptation to novel limb dynamics on space perception and categorization may be important 770 

to understand how to accurately perform and coordinate movements in microgravity. In 771 

spaceflight for example, alterations of spatial representation could be crippling for crew safety 772 

and mission success in addition to other critical alterations of oculomotor control, eye-hand 773 

coordination, spatial orientation, and time perception (Clement, 2018).  774 
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