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INTRODUCTION

Tuberculosis (TB), which is caused by the highly versatile pathogenic agent Mycobacterium tuberculosis (Mtb), remains an important global health issue with more than 10 million new cases and approximately 1.6 million deaths in 2017 [START_REF] Who | Global Tuberculosis Report[END_REF]. Upon infection, Mtb uses several strategies to avoid and/or resist a wide range of microbicidal processes of immune cells. It can also persist for extensive periods of time within granulomas, resulting in a clinically asymptomatic latent tuberculosis infection (LTBI) [START_REF] Dutta | Latent tuberculosis infection: myths, models, and molecular mechanisms[END_REF][START_REF] Getahun | Latent Mycobacterium tuberculosis infection[END_REF]. It is estimated that around two billion individuals are latently infected worldwide, providing a major reservoir for Mtb [START_REF] Who | Global Tuberculosis Report[END_REF]. Our understanding of the processes leading to LTBI establishment and reactivation at the molecular and cellular levels, remains an outstanding challenge for the scientific community and a crucial step for a better control of the disease [START_REF] Esmail | The ongoing challenge of latent tuberculosis[END_REF]. It is assumed that Mtb's survival processes rely mainly on a very dynamic metabolic realignment within the granuloma microenvironment, where Mtb preferentially uses fatty acids (FFA) as a carbon source during long-term infections [START_REF] Bloch | Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro[END_REF][START_REF] Mckinney | Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase[END_REF][START_REF] Munoz-Elias | Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence[END_REF][START_REF] Garton | Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum[END_REF][START_REF] Guirado | Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model[END_REF]. Several studies demonstrated that pathogenic mycobacteria can utilize host-derived FFA to build up their own intracytosolic lipid inclusions (ILI), which will be further used as a source of nutrient [START_REF] Peyron | Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence[END_REF][START_REF] Daniel | Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages[END_REF][START_REF] Podinovskaia | Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function[END_REF][START_REF] Caire-Brandli | Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis[END_REF][START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF]. The exact role of these neutral lipid-rich structures in mycobacterial pathogenesis remains elusive, but it has been proposed that ILI may promote Mtb survival and persistence in vivo [START_REF] Garton | Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum[END_REF][START_REF] Peyron | Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence[END_REF][START_REF] Daniel | Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages[END_REF][START_REF] Low | Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin[END_REF]. However, the molecular bases of the dynamics of FFA acquisition and storage remain poorly understood [START_REF] Santucci | Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis[END_REF].

Mtb contains two specific families of proteins, designated PE and PPE proteins [START_REF] Cole | Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[END_REF][START_REF] Camus | Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv[END_REF], and while the PE proteins possess a conserved N-terminal domain of about 100 amino acids typified by a Pro-Glu signature motif, the PPE proteins possess a 180 amino acids N-terminal domain characterized by a Pro-Pro-Glu signature [START_REF] Tekaia | Analysis of the proteome of Mycobacterium tuberculosis in silico[END_REF][START_REF] Mukhopadhyay | The PE and PPE proteins of Mycobacterium tuberculosis[END_REF][START_REF] Brennan | The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination[END_REF]. Due to their abundance in pathogenic mycobacteria, it has been postulated that PE and PPE proteins play important functions in mycobacterial survival and pathogenesis. Nevertheless, the real function of these proteins remains to be elucidated [START_REF] Brennan | The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination[END_REF][START_REF] Basu | Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-alpha[END_REF][START_REF] Brennan | Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells[END_REF].

Several studies emphasized the participation of the PE domain in protein translocation, an event very likely to be mediated by the type VII secretion system ESX-5 [START_REF] Abdallah | PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5[END_REF][START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF][START_REF] Daleke | General secretion signal for the mycobacterial type VII secretion pathway[END_REF][START_REF] Cascioferro | Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall[END_REF]. Among the PE members, Rv3097c, also known as LipY, is a 437 amino acids protein belonging to the Hormone-Sensitive Lipase family (HSL) possessing a C-terminal lipase domain [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF][START_REF] Deb | A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis[END_REF][START_REF] Delorme | MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth[END_REF]. [START_REF] Deb | A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis[END_REF] demonstrated that LipY is a true triacylglycerol (TAG) lipase involved in intracellular TAG hydrolysis in Mtb upon carbon deprivation [START_REF] Deb | A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis[END_REF]. Moreover, a Mtb lipY-deficient mutant failed to escape from dormancy in an in vitro granuloma model [START_REF] Kapoor | Human granuloma in vitro model, for TB dormancy and resuscitation[END_REF]. Together, these results point out to LipY as an essential factor required for intracytosolic lipid catabolism and exit from a dormancy state. Subsequent work described that the dual location of LipY in mycobacteria and its secretion rely both on a well-defined sequence of events by the ESX-5 pathway [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. The consensus YxxxD/E motif within the PE domain allows the recognition/translocation by the ESX-5 machinery. The protein is subsequently cleaved by the MycP5 protease within the linker region between Gly 149 and Ala 150 , leading to the formation of an N-terminal truncated form associated with the mycobacterial cell surface [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. In M. marinum LipY, the PE domain is substituted by a PPE domain [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF] and the presence of this surface-exposed mature LipY strongly increases its TAG hydrolase activity [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. Recently, we have demonstrated that a M. bovis BCG ΔlipY mutant is impaired in ILI formation within foamy macrophages, suggesting that LipY is an essential factor involved in host-derived TAG consumption [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF]. Additional biochemical data indicated that LipY lacking its PE domain expresses increased TAG-hydrolase activity in vitro [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF],

suggesting that the PE domain acts as a modulator of the catalytic activity [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF]. Collectively, these findings imply that LipY plays a central role in TAG metabolism during the Mtb life cycle by participating in the hydrolytic processes of both extracellular and intracellular lipids. Nevertheless, little is known about the biochemical properties at the molecular level of the various forms of LipY as well as their respective contribution in hydrolysis of extracellular TAG contained in LB and/or intracellular TAG contained in ILI.

In this study, the shortest domain of LipY exerting hydrolytic activity has been defined and several recombinant variants of LipY have been characterized. We thus examined the ability of these proteins to interact with membranes using Langmuir monolayers as an in vitro model of cell membranes along with Fourier Transform InfraRed (FTIR) spectroscopy. Langmuir monolayers consisting of supramolecular lipid films formed at an air-buffer interface are mimicking biological membranes and represent attractive membrane models [START_REF] Brockman | Lipid monolayers: why use half a membrane to characterize proteinmembrane interactions?[END_REF] particularly suited to study membrane-protein interactions [START_REF] De La Fournière | Surface behaviour of human pancreatic and gastric lipases[END_REF][START_REF] Boisselier | Influence of the physical state of phospholipid monolayers on protein binding[END_REF][START_REF] Bénarouche | New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique[END_REF][START_REF] Bénarouche | An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy[END_REF][START_REF] Nitenberg | The potent effect of mycolactone on lipid membranes[END_REF]. Fourier Transform InfraRed (FTIR) spectroscopy, performed in parallel to Langmuir monolayers, is a suitable technique to investigate the lipid membrane physical states (i.e., chain ordering, phase transition) occurring in presence of a protein [START_REF] Mendelsohn | Vibrational spectroscopic studies of lipid domains in biomembranes and model systems[END_REF][START_REF] Lewis | Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy[END_REF][START_REF] Mateos-Diaz | IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 1. Discriminative recognition of mixed micelles versus liposomes[END_REF].

Phosphatidylglycerol being the most abundant glycerophospholipid found in mycobacteria [START_REF] Brennan | The envelope of mycobacteria[END_REF][START_REF] Minnikin | Pathophysiological implications of cell envelope structure in Mycobacterium tuberculosis and related taxa in Tuberculosis -Expanding Knowledge[END_REF][START_REF] Santucci | LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling[END_REF], 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) is often chosen as model phospholipid interfacial experiments. Therefore, combining both techniques can provide crucial information regarding interactions of protein with either the cytoplasmic or the outer membrane. In addition, in order to link their potential physiological roles in vivo, a set of LipY variants were either overproduced in lipid-rich persistent-like M. smegmatis, or in M. marinum which allows a constitutive translocation of these effectors through the ESX-5 machinery. Both mycobacteria were used as tools for establishing the respective role of the PE, linker and lipase domains in the translocation and maturation processes, thereby yielding essential information regarding the hydrolytic mechanisms of intra-as well as extracellular TAG.

RESULTS AND DISCUSSION

Expression and biochemical characterization of LipY and its truncated versions.

LipY is either found in the mycobacterial cytoplasm where it hydrolyzes ILI [START_REF] Deb | A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis[END_REF] or translocated via ESX-5 to the bacterial surface, where, upon cleavage of the N-terminal PE domain, the mature enzyme can interact and hydrolyze the host cell lipids [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. The contribution of the various LipY domains in its interfacial activity has, however, not yet been explored. To provide insights into their specific biological functions, we first generated LipY∆PE, LipY∆149 and LipY∆170 truncated forms, by i) removing the PE domain (LipY∆PE; lacking the first 97 residues), ii) deleting the first 149 residues (LipY∆149; the mature form exposed to the mycobacterial cell wall surface) and iii) by further shortening the protein towards the C-terminus (LipY∆170; consisting essentially of the Cterminal catalytic domain), respectively (Figure 1A). All genes, including full-length lipY, were cloned into the pSD26 and fused to a 6×His-tag encoding sequence and used to transform the M. smegmatis mc 2 155 groEL1∆C strain [START_REF] Noens | Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1DeltaC expression strain[END_REF][START_REF] Brust | Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis[END_REF]. Following induction with acetamide, cultures were harvested and the recombinant proteins were purified using Ni 2+ -charged immobilized metal affinity chromatography, yielding 15-20 mg of protein per L of culture. Following size exclusion chromatography, the purity of each protein was subsequently analyzed by SDS-PAGE gel (Figure 1B) and the nature of each protein was further confirmed by MALDI-TOF and N-terminal sequencing analyses (data not shown).

TAG with short, medium and long fatty acyl chains were used as substrates and assayed in the presence of each protein using the pH-stat technique [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Dhouib | A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction[END_REF][START_REF] Point | Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases[END_REF]. As shown in Figure 1C-D-E, for each protein, the specific activity (SA) decreased gradually as a function of the lipid chain length.

The removal of the first 170 residues did not affect the enzyme typoselectivity. LipY, LipY∆PE, LipY∆149 and LipY∆170 hydrolyzed preferentially short-chain TAG (tributyrin) with a SA of around 119.0 ± 11.1, 185.0 ± 13.0, 215.0 ± 24.0 and 75.0 ± 6.0 U/mg, respectively. Regardless of the substrate used, LipY∆PE and LipY∆149 were up to 1.8 times more active than full-length LipY (Figure 1F). LipY∆170, the shortest LipY variant, exhibited SA of 75.0 ± 6.0, 16.0 ± 2.0 and 2.8 ± 0.1 U/mg on tributyrin, trioctanoin and olive oil, respectively; and expressed the lowest activity as compared to the other proteins (Figure 1C-D-E). The SA of LipY∆PE and LipY∆149 were comparable for tributyrin (185.0 ± 13.0 and 215.0 ± 24.0 U/mg, respectively), trioctanoïn (63.0 ± 1.0 and 55.0 ± 5.0 U/mg, respectively) and for long-chain triolein (5.2 ± 0.2 and 6.3 ± 0.1 U/mg, respectively) used as substrates, suggesting that the first 53 residues of the linker motif had only a slight impact on LipY catalytic activity.

Moreover, since some lipases can also act as phospholipases, each LipY mutant form was also tested for their potential phospholipase A1 and A2 activities using a highly sensitive fluorescentlabeled phospholipid assay [START_REF] Santucci | LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling[END_REF]. As anticipated and previously showed for LipY [START_REF] Santucci | LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling[END_REF], none of the LipY truncated versions exhibited phospholipase activity.

Overexpression of LipY variants increased TAG consumption in M. smegmatis under lipid-rich persistent-like conditions.

It is well recognized that TAGs are major lipid storage molecules in bacteria belonging to the Actinobacteria phylum [START_REF] Alvarez | Triacylglycerols in prokaryotic microorganisms[END_REF], including Mycobacterium [START_REF] Low | Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin[END_REF][START_REF] Garton | Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum[END_REF][START_REF] Kremer | Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol[END_REF][START_REF] Sirakova | Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress[END_REF][START_REF] Viljoen | MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus[END_REF]. We recently showed that TAG accumulation under the form of ILI during infection in foamy macrophages was impaired when constitutively overproducing the cytoplasmic LipYΔPE in M. bovis BCG. These effects were neither observed with the full length protein nor with the catalytically-inactive mutant (LipY∆PE S309A ), supporting that the PE domain is directly influencing the activity of LipY towards both mycobacterial and host-derived TAGs [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF]. To gain additional insight and confirm our previous biochemical results, we investigated here the effect of the PE domain and the linker region with respect to lipase activity in vivo. M. smegmatis recombinant strains harboring either the empty pSD26 vector, pSD26::lipY, pSD26::lipYΔPE, pSD26::lipYΔ149 or pSD26::lipYΔ170 were grown for 48 h in a well-defined carbon rich/nitrogen limiting medium that promotes the induction of heavily lipidloaded mycobacteria [START_REF] Santucci | Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria Scientific reports[END_REF]. Cultures were harvested and re-suspended in a mineral salt medium devoid of glycerol but supplemented with 0.2% (w/v) acetamide to trigger catabolic reprogramming [START_REF] Santucci | Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria Scientific reports[END_REF] and the production of the respective LipY recombinant forms. Bacteria were collected at two distinct time points (i.e. 6 h and 12 h), and lyophilized prior to apolar lipid extractions and thin layer chromatography (TLC) for lipid profile analysis. As shown in Figure 2A, the overproduction of LipY and its variants significantly reduced the intracellular pool of TAG by 37-51% after 6 h and up to 69% after 12 h, in comparison with the control strain carrying the empty vector. In each case, LipY∆PE and LipY∆149 were the most active forms in vivo, leading to respectively 26.4% and 19.0% relative TAG levels, vs. a mean value of 36.0 ± 3.2% for LipY and LipY∆170 after 12 h of induction.

These results are consistent with our biochemical data and with previous studies using either genetically-modified M. smegmatis pSD26::lipY and M. smegmatis pSD26::lipY∆PE [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF] or M. bovis BCG pMV261::lipY and M. bovis BCG pMV261::lipY∆PE strains [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF].

To gain further insight into this molecular mechanism, 3D structural models were generated using the I-TASSER server. As proposed previously [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Saxena | Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia[END_REF], the N-terminal PE domain could be easily distinguished from the C-terminal domain and is composed of four α-helices (α1 to α4) (Figure 2B highlighted in blue) [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Saxena | Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia[END_REF]. Comparison of the LipY and LipYΔPE models [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF] suggests that the four α-helices of the PE domain cover the active site of the enzyme. This steric hindrance may be responsible for a reduced substrate accessibility and for the lower catalytic activity of the full-length protein, as previously proposed [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF][START_REF] Garrett | Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain[END_REF]. Concerning the linker motif, this 53 amino acid region comprises three α-helices (Figure 2B-Chighlighted in green). From its location, this region is very likely to be extremely flexible, hence unable to induce a steric barrier masking the catalytic site. The 3D model of LipYΔ149 displays a similar "open" active site (Figure 2D). These observations are in agreement with the biochemical data. In contrast, amputation of the next 21 amino acids in LipYΔ149, yielding LipYΔ170 (Figure 2D highlighted in orange; and Figure 2E) triggers a sharp drop in the lipase activity (Figure 1F). Since this deletion occurs directly in a α-helix, one can speculate it would lead to severe conformational alterations affecting catalysis.

From these results, it could be inferred that the increased activity shared by LipY∆PE and LipY∆149, as compared to LipY, would result from a better accessibility and/or recognition of the lipid to the active site, due to the absence of the PE domain. In addition, the 21 first amino acid residues of the linker region in LipY∆149 (Figure 2D-E) seem to be essential for the enzyme activity, possibly by stabilizing this extracellular mature form in a suitable conformation within the cell wall and during TAG hydrolysis, as previously proposed [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF][START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF][START_REF] Garrett | Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain[END_REF].

Interactions and binding capacity of LipY and its truncated forms with model membrane lipids.

To get additional elements regarding the anchoring process of LipY within biological membranes, we investigated how the LipY domains influence the adsorption capacity of the protein using the nonhydrolysable 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) monomolecular films.

This was achieved by measuring the interfacial binding properties of each LipY variant onto DOPG monolayers, first by determining the effect of initial surface pressure (Πi) on the interaction of the different protein forms with the monolayer. For this purpose, the increase in surface pressure (ΔΠmax), directly reflecting the variation of DOPG molecular area (i.e. lipid packing) upon protein adsorption, was monitored immediately following protein injection at various Пi values, ranging from 5 to around 20 mN/m. The plot ΔΠmax = f(Πi) depicted in Figure 3A allowed to evaluate the adsorption parameters of LipY and its derivatives onto DOPG monolayer. In all cases, the ΔΠmax was found to decrease linearly with the increase of Πi. Linear extrapolation to zero surface pressure increase (ΔΠmax = 0) allowed to estimate the critical surface pressure (Πc) [START_REF] De La Fournière | Surface behaviour of human pancreatic and gastric lipases[END_REF] (also called "maximum insertion pressure" [START_REF] Benarouche | New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique[END_REF]) as being equal to 22.5 ± 1.2, 17.2 ± 0.83, 16.4 ± 0.49 and 14.3 ± 0.25 mN.m - 1 for LipY, LipY∆PE, LipY∆149 and LipY∆170 adsorbed onto DOPG film, respectively. Above these Πc value, specifically related to the protein and the lipid forming the monolayer, no increase in the surface pressure occurred [START_REF] De La Fournière | Surface behaviour of human pancreatic and gastric lipases[END_REF]. The full-length protein appeared as the most tensioactive form binding to DOPG monolayers, followed by LipY∆PE and LipY∆149, while LipY∆170 poorly adsorbed onto the phospholipid membrane. It appears that the ranking in the penetration capacity (i.e., Πc values) of the four proteins is directly related to the size of the deletions.

The plots depicted in Figure 3A can also provide additional information regarding the binding parameters of these enzymes (Table 2), such as ΔΠ0 (y-intercept of the curves corresponding to Πi = 0) and the synergy factor noted "a" (slope of the linear regression + 1) introduced by Salesse's group [START_REF] Boisselier | Influence of the physical state of phospholipid monolayers on protein binding[END_REF][START_REF] Calvez | Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers[END_REF][START_REF] Calvez | Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins[END_REF], where a positive "a" value is linked to favorable binding of the protein and the Πc represents an insertion surface pressure. In contrast, a negative synergy factor correlates with unfavorable binding of a protein to a phospholipid monolayer whereas the associated Πc corresponds to an exclusion surface pressure. Finally, an "a" value close to zero corresponds to a stationary state where the binding of the protein is neither favored nor disfavored by the lipid monolayer.

Based on these rules, the positive value of the synergy factor (+0.113 ± 0.010) and the occurrence of a ΔΠ0 (20.0 ± 1.1 mN.m -1 ) lower than the related Πc (22.5 ± 1.2 mN.m -1 ) observed for LipY was consistent with a high penetration capacity of LipY onto phospholipid films. In contrast, with LipY∆170 (a = -0.177 ± 0.005; ΔΠ0 = 16.9 ± 0.3 mN.m -1 ) and LipY∆PE (a = -0.564 ± 0.043; ΔΠ0 = 26.9 ± 1.3 mN.m -1 ), the negative a values and a ΔΠ0 larger than the corresponding Πc were correlated with a repulsion of both enzymes as a function of the compactness of the monolayer. Regarding LipY∆149, a negative but almost close to zero synergy factor (-0.023 ± 0.001) was determined and the ΔΠ0 (16.8 ± 0.5 mN.m -1 ) was not significantly different from the Πc value (16.4 ± 0.49 mN.m -1 ). These results reflect that the binding of LipY∆149 onto DOPG monolayer is neither favored nor disfavored. As a consequence, the decrease in the adsorption capacity of this protein may only be related to the reduction of the "free" area due to an increase in the lipid packing with the surface pressure [START_REF] Boisselier | Influence of the physical state of phospholipid monolayers on protein binding[END_REF][START_REF] Calvez | Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins[END_REF].

It can be inferred that, upon deletion of the PE domain and/or the linker unit, the proteins are excluded from the DOPG monolayer, in contrast to the full-length protein which retains the capacity to bind to phospholipid films. Thus, the PE domain may, presumably, favor the adsorption of LipY onto DOPG monolayers, thereby playing a key role in the penetration/binding of LipY to membranes.

Conversely, cleavage of the N-terminus results in a mature protein that remains loosely attached to the cell wall, as proposed by Daleke et al. [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF].

IR spectroscopy was subsequently used to study the protein to lipid interaction from a molecular point of view. Since lipid molecules are active in infrared (IR) through their hydrophobic [START_REF] Kodati | Comparison between orientational and conformational orders in fluid lipid bilayers[END_REF], interfacial and polar head group [START_REF] Lewis | The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs[END_REF], the molecular characterization of phospholipid assembly and phenomena affecting the behavior of the hydrophobic core of the lipid molecule [63-65] was followed in the presence or absence of the different proteins. Here, multilamellar liposomes of DOPG were used as a simple model for biomembranes and the conformational changes of lipids induced by the interaction of the acyl chain region with LipY and its mutants was monitored by analysis of the methylene stretching band vibration (Figure 3B). This region of IR spectra is indeed dominated by two main bands namely symmetric (υs(CH2)) and antisymmetric (υas(CH2)) methylene stretching located near 2850 and 2920 cm -1 , respectively (data not shown). The thermotropism of lipid is characterized by a shift of the wavenumber of these stretching vibration bands, which are sensitive to the presence of gauche conformers [66-68], making them useful probes for following lipid phase transition and membrane fluidity. The Figure 3B displays the temperature dependence of υas(CH2) vibration of the DOPG acyl chain in the absence and the presence of recombinant proteins. According to the literature, the transition temperature (Tm) for pure DOPG is -18°C [69, 70]; therefore all experiments were carried out in the DOPG liquid-crystalline phase. All the wavenumbers of υas(CH2) mode from 27 to 40°C were lower in the presence of each protein form in comparison to the pure lipid, indicating that all the proteins studied altered the acyl chain conformation. These changes have been attributed to the presence of hydrophobic protein segments within the hydrophobic core of lipid membranes increasing the steric hindrance and therefore decreasing the membrane flexibility [71,72]. However, while the differences of the υas(CH2) of the lipid alone and in the presence of each protein was significant, the impact of each protein on the conformational change of the acyl chains was difficult to quantify. Above 40°C, the wavenumber of the υas(CH2) mode in the presence of LipY was still below the wavenumber of the lipid alone, meaning that the protein was still interacting with the acyl chains of lipid membranes, while the effect of the LipY mutant forms (LipY∆PE, LipY∆149 and LipY∆170) was less obvious. This suggests that LipY strongly interacts with the lipid chains while this interaction is weaker for the mutants. Thus, regardless of the temperature, LipY induces a stronger conformational change in the lipid acyl chains, than the different mutants, suggesting that the presence of the PE domain enhanced the insertion within the hydrophobic core of the bilayers while the extracellular LipY149 is weakly anchored to DOPG liposome. Overall, these results are in agreement with those obtained using DOPG monomolecular films.

Translocation through ESX-5 and anchoring investigations of LipY and its truncated forms in vivo.

Mycobacteria belonging to the M. tuberculosis complex express LipY in infected cells but are unable to do so when growing in vitro under standard laboratory conditions [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF][START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF]. Furthermore, M. smegmatis lacks an ESX-5 secretion system. Thus, to further delineate LipY processing and anchoring to the mycobacterial cell wall, studies were done in M. marinum, which is able to translocate and mature LipY through the ESX-5 secretion machinery [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. To achieve this goal, pVV16-based constructs allowing the constitutive expression of the lipY truncated versions fused to a C-terminal His-tag (Figure 4A) were generated. The corresponding M. marinum strains were grown and bacterial pellets subjected to detergent extraction using Genapol ® -X080, a powerful non-ionic detergent which allows to solubilize proteins that are localized within the capsule and the mycomembrane without impacting the cytoplasmic membrane (CM), the peptidoglycan (PG) or arabinogalactan (AG) fractions [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF][START_REF] Cascioferro | Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall[END_REF][START_REF] Heinz | Selective extraction and purification of a mycobacterial outer membrane protein[END_REF][START_REF] Sani | Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins[END_REF][START_REF] Van Der Woude | Differential detergent extraction of mycobacterium marinum cell envelope proteins identifies an extensively modified threonine-rich outer membrane protein with channel activity[END_REF]. Proteins were then revealed by immunoblotting using a HisProbe TM HRP conjugate [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF] (Figure 4B-C). As expected, two immunoreactive bands were detected in the strain harboring pVV16::lipY, corresponding to the mature (black arrow) and cytoplasmic forms (grey arrows) (Figure 4C upper panel). When cells were treated with Genapol ® -X080, the mature protein was only detected in the surface-exposed fraction, demonstrating that translocation and maturation occurred. Two other variants, LipYΔ149 and LipY E92A (carrying a point mutation within the YxxxD/E consensus secretion signal abrogated maturation and secretion of the protein) were also included as cytoplasmic controls [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF][START_REF] Daleke | General secretion signal for the mycobacterial type VII secretion pathway[END_REF] (Figure 4B). LipY maturation catalyzed by the MycP5 protease occurred at a specific site between Ser 148 , Gly 149 and Ala 150 [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. However, that point mutations at each of these three residues failed to abolish maturation and secretion of the protein suggested alternative cleavage sites [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. Our results, using a LipY G149D mutant, support the findings by Daleke et al. [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF] (Figure 4C).

Overall, these data prompted us to investigate the contribution of the linker domain in both translocation and anchoring processes and to define whether the S 148 GA 150 motif and the linker domain were required for maturation and surface localization of the protein in M. marinum.

Therefore, two additional LipY mutated proteins were constructed by fusion of the PE domain to the S 148 GA 150 motif to retain the putative proteolytic site and by deleting: i) either the 51 residues of the linker motif to generate a PE-SGA-LipYΔ149 recombinant protein; or ii) the entire linker motif thus producing the PE-SGA-LipYΔ170 chimera (Figure 4A). In both cases, the chimeric proteins PE-SGA-LipYΔ149 and PE-SGA-LipYΔ170 were translocated and found anchored to the mycobacterial surface (Figure 4C). Interestingly, a single band of approximately 30 kDa was detectable for the PE-SGA-LipYΔ149 variant, suggesting that the cleavage may have occurred, as for a WT protein, at the G 149 A 150 position. In contrast, concerning the PE-SGA-LipYΔ170-expressing strain, two distinct bands of lower molecular weights (~ 26-28 kDa) were detected, suggesting two different cleavage sites (Figure 4C). To precisely define these cleavage sites, M. marinum displaying the pVV16::PE-SGA-lipYΔ170 was treated with Genapol ® -X080. The supernatant containing the cell wall-associated proteins was then loaded onto a Ni 2+ NTA affinity column to purify the 6×His-tagged proteins. Using this approach, a single and pure band of approximately 28 kDa, highly reactive with the 6×HisProbe, was detected (Figure 4D). Despite several attempts, we, however, failed to co-purify the second band with a lower molecular weight. N-terminal sequencing by using Edman degradation on pure fractions containing the 28 kDa band identified a protein cleaved just after the S 148 GA 150 motif, thus leading to the sole lipase domain starting at the sequence E 171 THFA. Interestingly, this mature LipYΔ170 form lacking the linker region was able to bind the mycobacterial cell wall, demonstrating, for the first time, that if the linker domain does not seem to be essential for anchoring the protein to the mycomembrane, it remains crucial for full lipase activity (Figure 1F).

Concluding remarks

Understanding the physiological properties of lipid-rich persistent-like bacilli at both cellular and molecular levels, and more precisely how mycobacteria utilize host-derived lipids for building-up their own ILI is crucial. We show here that the secreted LipYΔ149 protein was not only more active than its full-length cytoplasmic form (Figure 5), but was also essential for intraphagosomal-TAG breakdown, thus leading to lipid-rich persistent-like mycobacterial phenotype within foamy macrophages. Our biochemical characterization of several truncated forms of LipY confirmed that the N-terminal PE domain negatively affects the TAG hydrolase activity of the protein by generating a steric hindrance in the vicinity of the active site. By combining biochemical and biophysical approaches, we also demonstrate that the PE domain affects also the lipid binding activity onto phospholipid monolayers and liposomes (Figure 5). Both FTIR spectroscopy and monomolecular film experiments emphasized the PE-mediated anchoring capacity of LipY within phospholipids.

Mycobacteria cell fractionation followed by immunoblotting strongly suggests that the linker region is dispensable for proper maturation and localization, but remains crucial for the enzymatic activity.

Altogether, we provide compelling evidence that the PE domain as well as the linker region impact on the enzymatic properties of LipY by distinct molecular mechanisms, which are directly linked to its physiological substrates either host-derived or intracellular TAG in the form of ILIs (Figure 5).

EXPERIMENTAL PROCEDURES

Bacterial strains and growth conditions E. coli DH10B cells (Life technologies, Saint Aubin, France) were grown at 37°C in Luria Bertani (LB) broth (Euromedex, Souffelweyersheim, France) or onto LB agar plates. Culture media were supplemented with 200 µg/mL hygromycin B or 50 µg/mL kanamycin (Euromedex, Souffelweyersheim, France). The M. smegmatis mc 2 155 groEL1ΔC strain [START_REF] Noens | Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1DeltaC expression strain[END_REF] was usually grown at 37°C under shaking (220 rpm) in complete Middlebrook 7H9 medium (BD-Difco) supplemented with 0.05% Tween 80 (v/v), 0.2% glycerol (v/v), 0.5% bovine serum albumin (BSA) (w/v), 0.2% glucose (w/v). The M. marinum M strain [START_REF] Stinear | Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis[END_REF] was grown at 32°C under shaking (220 rpm) in Middlebrook 7H9 medium supplemented with 0.05% Tween 80 (v/v), 0.2% glycerol (v/v) and 10% oleic acid, albumin, dextrose, catalase (OADC enrichment; BD-Difco). Transformants were selected on Middlebrook 7H9 agar containing either 50 µg/mL hygromycin B or 50 µg/mL kanamycin. Plates were incubated at 37°C for 3-5 days for M. smegmatis mc 2 155 groEL1ΔC and at 32°C for 10-15 days for M. marinum.

Construction of plasmids

For construction of pSD26::lipY and pSD26::lipY∆PE, M. tuberculosis H37Rv genomic DNA was used as template as previously described [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF]. The lipY gene was amplified by PCR using primers pSDlipY-F and pSDlipY-R and lipY∆PE was PCR-amplified using primers lipY∆PE-F and pSDlipY-R (Table 1). The corresponding amplicons harboring specific restrictions sites were digested with BamHI and cloned into pSD26 [START_REF] Daugelat | The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization[END_REF] under the control of the acetamidase inducible promoter and use to express and purify the recombinant proteins in M. smegmatis.

To construct pSD26::lipY∆149 and pSD26::lipY∆170, the lipY∆149 and lipY∆170 genes were amplified from pSD26::lipY using the primers pSDlipYΔ149-F/pSDlipYΔPE-R and pSDlipY∆170-F/pSDlipY-R respectively (Table 1). The pSD26::lipY G149D and pSD26::lipY E92A constructs were generated by site directed mutagenesis using primers G149D-F/R and E92A-F/R primers, respectively (Table 1).

To generate pSD26::PE-SGA-lipY∆149 and pSD26::PE-SGA-lipY∆170, a two-step cloning procedure was applied. Briefly, the PE domains for PE-SGA-lipY∆149 and PE-SGA-lipY∆170 genes were amplified from pSD26-lipY using primers pSDlipY-F/PE-149-R and pSDlipY-F/PE-170-R, respectively. In parallel, the lipY∆149 and lipY∆170 fragments were PCR-amplified from pSD26::lipY using primers PE-149-F/pSDlipY-R and PE-170-F/pSDlipY-R, respectively. The complete DNA fragments corresponding to PE-SGA-lipY∆149 and PE-SGA-lipY∆170 were obtained by overlapping PCR using primers pSDlipY-F and pSDlipY-R along with a mixture of the both DNA template (Table 1). The final PCR products were purified, digested with BamHI and cloned into BamHI-restricted pSD26, yielding pSD26::PE-SGA-lipY∆149 and the pSD26::PE-SGA-lipY∆170.

To produce the constitutive expression vectors, lipY, lipY E92A , lipY G149D , PE-SGA-lipY∆149 and PE-SGA-lipY∆170 were PCR-amplified from their respective pSD26 derivatives using primers pVV-lipY-F/pVV-lipY-R. The lipY∆149 gene was amplified using pSD26::lipY∆149 as template and primers pVV-lipY-F/pVV-lipYΔ149-R. All DNA fragments were further digested with NdeI and HindIII restrictions enzymes (Promega, Charbonnieres, France) and subsequently cloned within pVV16 in frame with a C-terminal 6×Histidine coding sequence. The resulting plasmids were introduced in E. coli DH10B, analyzed by DNA sequencing (GATC Biotech, Germany) and used to transform M. marinum, as previously described [START_REF] Goude | Electroporation of mycobacteria[END_REF].

Expression and purification of recombinant proteins

Expression and purification of recombinant proteins were performed as previously reported [START_REF] Brust | Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis[END_REF] with some modifications. Briefly, M. smegmatis mc 2 155 groEL1ΔC strain carrying pSD26-lipY or truncated forms of lipY or mutated lipY, were used to inoculate 20 mL of complete 7H9 Middlebrook medium containing 50 μg/mL hygromycin B during 3 days at 37°C under shaking (220 rpm). The preparation (OD600nm = 3.0-6.0) were used to inoculate 400 mL of culture medium (OD600nm = 0.1) for a large-scale production. Bacteria were grown at 37°C with shaking (220 rpm) until an OD600nm value between 2.5 and 3.0 was reached and protein expression was induced by adding acetamide (Sigma-Aldrich, Saint-Quentin Fallavier, France) to a final concentration of 0.2% (w/v) for 16 h. Bacteria were harvested, re-suspended in ice-cold buffer A (30 mL 10 mM Tris/HCl pH 8.0, 150 mM NaCl) containing 1% N-lauroylsarcosine and were broken using a French Pressure cell at 1,100 psi.

After centrifugation, the supernatant (S1) was recovered while the resulting pellet was re-suspended in buffer A (30 mL) and sonicated twice during 30 s with 30 s breaks between each cycle and stirred overnight at 4°C. After centrifugation, the new supernatant (S2) was pooled with S1 supernatant and both supernatants were loaded onto a Ni 2+ -NTA resin beforehand equilibrated with buffer A. The column was subsequently washed with buffer A without detergent prior to elution with increasing concentrations of imidazole. The eluted fractions were analyzed by performing on 12% SDS/PAGE as described by [START_REF] Laemmli | Cleavage of structural proteins during the assembly of the head of bacteriophage T4[END_REF]. Fractions containing pure proteins were pooled, purified by size exclusion chromatography with a Hiload 16/60 Superdex 200 gel filtration column using buffer A; then concentrated by ultrafiltration to a final concentration of 0.6 mg/mL and stored at -80°C. Theoretical physical properties (molecular mass, extinction coefficient at 280 nm and isoelectric point) of all proteins containing the 6×His-tag were obtained from the ProtParam tool (http://ca.expasy.org/tools/protparam.html).

Lipase activity

Enzymatic hydrolysis of TAG emulsions, namely tributyrin (TC4), trioctanoin (TC8) or olive oil (TC18), were monitored titrimetrically for 10 min at 37°C using a pH-stat (Metrohm 718 STAT Titrino; Metrohm Ltd., Switzerland). Assays were performed in 2.5 mM Tris-HCl buffer (pH 7.5) containing 300 mM NaCl and 3 mM NaTDC (Sodium taurodeoxycholate). Free fatty acids (FFA) released were automatically titrated with 0.1 N NaOH (0.01 N NaOH for titration the free fatty acids derived from olive oil) to maintain a fixed end-point pH value of 7.5. The specific activities of enzymes were expressed in units per mg of pure enzyme. One unit corresponds to the release of one µmole of fatty acid per minute.

Generation of ILI-positive cells, lipid extraction and analysis

M. smegmatis strains harboring plasmids pSD26, pSD26::lipY, pSD26::lipY∆PE, pSD26::lipY∆149 and pSD26::lipY∆170 were grown in 7H9 Middlebrook complete medium containing 50 μg/mL hygromycin B at 37°C under shaking 220 rpm until an OD600nm value between 1-1.5 was reached.

After centrifugation for 10 min at 5,000 g, pellets were then washed with sterile Phosphate Buffer Saline (PBS) buffer pH 7.4 containing 0.05% Tween-20 (PBS-T), with classic sterile PBS buffer and finally normalized and re-suspend at OD600nm = 10 in sterile PBS. Subsequently, solution of PBScontaining bacteria was used to inoculate with an initial OD600nm of 0.05 a fresh Minimal Mineral Salt Medium Nitrogen Limiting (MSM NL) (Na2HPO4 2 g/L, KH2PO4 1 g/L, NaCl 0.5 g/L, MgSO4 0.2 g/L and NH4Cl 0.05 g/L) containing 1 % glycerol as carbon source as previously described [START_REF] Santucci | Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria Scientific reports[END_REF]. Cells were grown for 48 h at 37°C and 220 rpm in the presence of 50 µg/mL hygromycin B and 0.02% (v/v) tyloxapol to avoid any clump formation. Induction of recombinant proteins was performed by adding 0.2% (w/v) acetamide. After 6 or 12 h of induction, the cells were collected by centrifugation during 15 min at 5,000 g. Cells were washed three times in distilled water, lyophilized overnight and weighed to calculate the exact mass of mycobacterial dry extract. Apolar lipids were extracted as previously described [START_REF] Besra | Preparation of cell-wall fractions from mycobacteria[END_REF].

Briefly, 2 mL of MeOH-0.3% NaCl (10:1, v/v) were added per 50 mg dry extract. The saline-MeOH solution containing the bacterial dry extract was mixed with 1 mL of petroleum ether in Pyrex ® tube and incubated at RT onto a tube rotator for at least 15 min. After centrifugation at 3,000 g during 5 min, the upper organic layer was transferred to a fresh tube. This step was repeated three times and a final centrifugation was done for 15 min at 3,000 g to remove residues carried over during the extraction. The upper organic layer containing apolar lipids was transferred to a fresh pre-weighted vial, and the solvent was evaporated to dryness under a stream of nitrogen. The obtained apolar lipids fraction containing TAG were then re-suspended in 300 µL dichloromethane and analyzed by Thin layer chromatography (TLC) using aluminum TLC plates (Silica Gel 60, Merck) using heptane/diethyl ether/formic acid mixture (55:45:1 v/v/v) as eluent. The spots were visualized by vaporization of a saturated copper acetate-85% orthophosphoric acid (1:1, v/v) and charring. Plates were then scanned using a Chemidoc TM MP Imaging System (Bio-Rad) and densitometric analyses done using the ImageLab TM software version 5.0 (Bio-Rad) to determine relative TAG content in each sample.

In silico protein modelling

All three-dimensional model structures were built with the automatic protein structure homology modeling server using the I-Tasser software program [START_REF] Roy | I-TASSER: a unified platform for automated protein structure and function prediction[END_REF][START_REF] Zhang | I-TASSER server for protein 3D structure prediction[END_REF]. LipY, LipYΔPE were generated using the 4Q3O PDB code [START_REF] Alcaide | Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats[END_REF] as structural template and were already published in [START_REF] Santucci | Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages[END_REF]. Regarding LipYΔ149 and LipYΔ170 their 3D-model structures were generated using the 4XVC PDB code [START_REF] Li | Interdomain Hydrophobic Interactions Modulate the Thermostability of Microbial Esterases from the Hormone-Sensitive Lipase Family[END_REF] as template. The final model structures of LipYΔ149 (93% coverage; normalized Z-score = 3.01; C-score=0.09) and LipYΔ170 (97% coverage; normalized Z-score = 3.03; C-score=0.13) were visualized using the PyMOL Molecular Graphics System (version 1.4, Schrӧdinger, LLC).

Enzyme adsorption kinetics onto DOPG monomolecular films

All experiments were performed at room temperature (RT) using home-made Teflon trough (volume, 9.4 mL; surface area, 8.5 cm 2 ) and the KSV5000 barostat equipment (KSV Nima, Helsinki, Finland) equipped with a Langmuir film balance to measure the surface pressure (Π), and monitored by the KSV Device Server Software v.3.50 as previously described [START_REF] Benarouche | New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique[END_REF][START_REF] Benarouche | Studying Gastric Lipase Adsorption Onto Phospholipid Monolayers by Surface Tensiometry[END_REF]. Before each experiment, the Teflon trough was cleaned with tap water, and then gently brushed in the presence of distilled ethanol, before being washed again with tap water and abundantly rinsed with Milli-Q water. The Teflon trough was filled with 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl, prepared with Milli-Q water and filtered through a 0.45 µm Millipore membrane. Residual surface-active impurities were removed before each experiment by simultaneous sweeping and suction of the surface. The monolayer was prepared by spreading a few microliters of a DOPG solution (1 mg/mL in chloroform) over the clean air/buffer interface of the cylindrical trough using a high precision Hamilton microsyringe until the desired initial surface pressure (Πi) was reached. The waiting time for the spreading solvent evaporation and for the film to reach equilibrium vary from 10 to 20 min depending on the volume spread and the initial surface pressure. After solvent evaporation and stabilization of the film, the lipase was injected into the aqueous subphase at a final concentration of 40 nM and the surface pressure increase due to the adsorption / penetration of the lipase onto the DOPG monomolecular film was continuously recorded until the equilibrium surface pressure (Πe) was reached [START_REF] De La Fournière | Surface behaviour of human pancreatic and gastric lipases[END_REF][START_REF] Benarouche | New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique[END_REF]. At this stage, data recording was maintained to ensure that a plateau value in terms of surface pressure had been well reached. The aqueous sub-phase was continuously stirred with a 1cm magnetic bar stirring at 250 rpm.

Fourier Transform infrared (FTIR) spectroscopy

Sample preparation

Multilamellar liposomes were obtained by hydrating 2% (w/v) DOPG powder with 100 mM phosphate buffer pH 8 containing 150 mM NaCl. Samples were vortexed extensively above and below the main phase transition temperature (Tm = -18°C), by using liquid nitrogen (N2). Three heating and cooling cycles were carried out. Protein lipid interaction was carried out by adding different protein sample concentrated to 1 mg/mL to the lipid mixture in order to reach a 1:10 (w/w) protein: lipid ratio. Control sample was made by adding the same volume of protein buffer to the lipid mixture.

FTIR measurement

IR spectra were recorded with a Jasco FT-IR 6100 equipped with a liquid N2 refrigerated Mercurycadmium-telluride detector, the spectrometer was continuously purged with dried air. Spectra were collected using samples solution placed between two CaF2 windows separated with 5 µm polyethylene terephthalate film spacers. Then, the FTIR cell was placed in a thermostated cell holder.

Temperature was controlled with a pike technologies temperature controller working with the Peltier effect. The sample was equilibrated for 5 min at the required temperature before beginning the recording. The FTIR measurements were recorded between 4,000 and 800 cm -1 . Each spectrum was obtained by averaging 88 scans recorded at a resolution of 0.5 cm -1 . In order to determine the symmetric υs(CH2) and antisymmetric υas(CH2) methylene stretching wave numbers, a polynomial baseline was subtracted (Jasco spectra analysis software) in order to overcome the water stretching vibration contribution. All the data were obtained in duplicate from independent samples.

Extraction of surface-exposed proteins and immunoblotting

Approximately 10 OD600 unit of bacterial cultures were harvested for 10 min at 4,000 g and the pellet washed twice in PBS containing 0.05% Tween-20. Surface-exposed proteins were then isolated by incubating the bacteria with PBS containing 0.5% Genapol ® -X080 (v/v) (Sigma-Aldrich, Saint-Quentin Fallavier, France) at RT, as previously reported [START_REF] Daleke | Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway[END_REF]. Control samples were treated with a PBS buffer devoid of Genapol ® -X080 detergent. After 30 min, supernatants were collected and precipitated with a final concentration of 12% trichloroacetic acid and proteins separated onto a 12% SDS-PAGE and transferred onto a nitrocellulose membrane using a Trans-Blot Turbo Transfer System (Bio-Rad). Immunoblotting of 6His-tagged proteins was performed using a HisProbe TM HRP conjugate (Thermo-Scientific). The exported MMAR_0427 (which shares 89% of identity with the M. tuberculosis monoglyceride lipase Rv0183 protein found to be exported to the mycobacterial cellwall and involved in mycobacterial cell-wall remodeling [START_REF] Dhouib | A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction[END_REF][START_REF] Cotes | Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids[END_REF]) was used as control for subcellular location. Immunoblotting was performed by cross reaction using rabbit polyclonal antibodies and horseradish peroxidase-conjugated anti-rabbit IgG (Sigma Aldrich). Detection was achieved using Pierce TM ECL Western Blotting substrate solution (Thermo-Scientific) and visualized with a ChemiDoc TM MP System (Bio-Rad).

N-terminal sequencing of surface-exposed PE-SGA-LipYΔ170

M. marinum harboring pVV16::PE-SGA-lipY∆170 was grown till the OD reaches 1-1.5 and collected by centrifugation 15 min 5,000 g at 4°C. The pellet was then washed twice with PBS and resuspended in PBS containing 0.5% Genapol ® -X080 and stirred for 1 h at RT. The supernatant was recovered and precipitated with a final concentration of 12% trichloroacetic acid. Proteins were solubilized in 1. Primers used in this study. Nucleotides of the primers that differ from the wild-type sequence are presented in bold and restriction sites incorporated into the primers are underlined and their name is indicated in parenthesis.

Primers

Sequence 5' → 3' Origin pSDlipY-F AAAGGATCCGTGTCTTATGTTGTTGCGTTG (BamHI) [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF] pSDlipY-R AAGGATCCGGCGATACCGAGTTGCTG (BamHI) [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF] pSDlipY∆PE-F AAAGGATCCTTCGCCAGCGGTATCGGGAACGG (BamHI) [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF] pSDlipY∆PE-R AAGGATCCGGCGATACCGAGTTGCTG (BamHI) [START_REF] Mishra | Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY[END_REF] pSDlipY∆149 C-D-E). SA determination of LipY and its mutant forms using TC4 (C), TC8 (D) and TC18 (E) as substrates. Experiments were carried out at 37°C in 15 mL of 2.5 mM Tris-HCl buffer (pH 7.5) containing 300 mM NaCl and 1 or 3 mM NaTDC for TC4 and TC8, respectively. Olive oil (TC18) was assayed in the same conditions without NaTDC and with 10% arabic gum. One international enzymatic unit corresponds to 1 µmole of fatty acid released per min.

Values are means of 3 independent experiments ± S.D. F) Representation of the relative activities of the LipY truncated forms using TC4, TC8 and TC18 as substrates in comparison to the full-length LipY. **, p-value < 0.01. *, p-value < 0.05. Statistical analysis was done using one-way ANOVA followed by a post hoc Tukey's Honest Significant Difference test. LipYΔ149 and LipYΔ170 3D-model structures were generated with the automatic protein structure homology modeling server using the I-Tasser software program [START_REF] Roy | I-TASSER: a unified platform for automated protein structure and function prediction[END_REF][START_REF] Zhang | I-TASSER server for protein 3D structure prediction[END_REF] and the 4XVC PDB code [START_REF] Li | Interdomain Hydrophobic Interactions Modulate the Thermostability of Microbial Esterases from the Hormone-Sensitive Lipase Family[END_REF] as template. The final model structures of LipY proteins were visualized using the PyMOL Molecular Graphics System (version 1.4, Schrӧdinger, LLC). The PE domain is highlighted in blue, the linker region before the Gly 149 maturation site is colored in green, the remaining linker region is colored in orange and the lipase domain is highlighted in grey. Specific point mutation (E92A and G149D) have been highlighted in red. B) Subcellular localization of cytoplasmic LipY E92A , LipYΔ149 proteins and the exported MMAR_0427 protein (which shares 89% of identity with the monoglyceride lipase M. tuberculosis Rv0183 protein) were used as controls.

Recombinant cells expressing 6×His-tagged LipY proteins were treated with buffer containing (+) or not (-) Genapol ® -X080 detergent. Pellet (P) and supernatant (S) fractions containing cytoplasmic and surface-exposed proteins, respectively, were separated by centrifugation. Samples were loaded onto 

  10 mM Tris/HCl pH 8.0, 150 mM NaCl buffer containing 8M urea and subjected to Ni2+ -NTA affinity chromatography. The eluted fractions were analyzed by 12% SDS/PAGE[START_REF] Laemmli | Cleavage of structural proteins during the assembly of the head of bacteriophage T4[END_REF] and those containing pure proteins were pooled and transferred onto polyvinylidene fluoride (PVDF) membrane. The membrane was stained with Ponceau Red and the corresponding band was excised from the gel, washed 3 times in ethanol/water (90:10) solution, dried and subjected to N-terminal Edman sequencing using a Shimadzu PPSQ 31B protein sequencer. 63. Gaussier, H., Lavoie, M. & Subirade, M. (2003) Conformational changes of pediocin in an aqueous medium monitored by fourier transform infrared spectroscopy: a biological implication, Int J Biol Macromol. 32, 1-9. 64. Lefevre, T. & Subirade, M. (2000) Interaction of beta-lactoglobulin with phospholipid bilayers: a molecular level elucidation as revealed by infrared spectroscopy, Int J Biol Macromol. 28, 59-67. 65. Paolorossi, M. & Montich, G. G. (2011) Conformational changes of beta2-human glycoprotein I and lipid order in lipid-protein complexes, Biochim Biophys Acta. 1808, 2167-77. 66. Cameron, D. G., Casal, H. L. & Mantsch, H. H. (1980) Characterization of the pretransition in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine by Fourier transform infrared spectroscopy, Biochemistry. 19, 3665-72. 67. Cameron, D. G., Casal, H. L., Mantsch, H. H., Boulanger, Y. & Smith, I. C. (1981) The thermotropic behavior of dipalmitoyl phosphatidylcholine bilayers. A Fourier transform infrared study of specifically labeled lipids, Biophys J. 35, 1-16. 68. Casal, H. L. & McElhaney, R. N. (1990) Quantitative determination of hydrocarbon chain conformational order in bilayers of saturated phosphatidylcholines of various chain lengths by Fourier transform infrared spectroscopy, Biochemistry. 29, 5423-7. 69. Findlay, E. J. & Barton, P. G. (1978) Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions, Biochemistry. 17, 2400-5. 70. Hinton, D. P. & Johnson, C. S. (1995) Diffusion Coefficients, Electrophoretic Mobilities, and Morphologies of Charged Phospholipid Vesicles by Pulsed Field Gradient NMR and Electron Microscopy, J Colloid Interface Sci. 173, 364-371. 71. Mendelsohn, R., Dluhy, R. A., Crawford, T. & Mantsch, H. H. (1984) Interaction of glycophorin with phosphatidylserine: a Fourier transform infrared investigation, Biochemistry. 23, 1498-504. 72. Mendelsohn, R., Brauner, J. W., Faines, L., Mantsch, H. H. & Dluhy, R. A. (1984) Calorimetric and Fourier transform infrared spectroscopic studies on the interaction of glycophorin with TABLES Table

Figure 1 :

 1 Figure 1: Biochemical characterization of LipY protein and its truncated forms. A) Schematic
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 2 Figure 2: Overexpression of lipY and its mutant forms within lipid-rich mycobacteria. A)
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 3 Figure 3: Interfacial physico-chemical properties of LipY domains. A) Adsorption of LipY,

Figure 4 :

 4 Figure 4: Investigation of LipY and its mutant form maturation processes through the Type

  12% SDS-PAGE and immunoblotted using HisProbe reagent. Grey arrows represented unprocessed forms whereas black arrows represented matured forms of the proteins. C) Subcellular localization of LipY, LipY G149D , PE-SGA-LipYΔ149 and PE-SGA-LipYΔ170 proteins in M. marinum by detergent extraction, as described above. D) Purification of the 6×His-tagged mature form of PE-SGA-LipYΔ170 proteins in M. marinum following detergent extraction and Ni-NTA affinity chromatography. Protein molecular weight and purity were assessed on 12% SDS-PAGE stained with Coomassie blue (CB) and further confirmed by western blotting (WB). Protein was loaded onto PVDF membrane, stained with Ponceau Red and N-terminal sequencing was performed. Analysis of LipY maturation process towards distinct recombinant forms of LipY. WT and PE-SGA-LipYΔ170 were confirmed by N-terminal sequencing whereas PE-SGA-LipYΔ149 cleavage site remains putative. The maturation site is underlined and the SGA motif essential for LipY export is highlighted in red.
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Table 2 . Binding parameters (Πc, synergy and ΔΠ0) of LipY, LipY∆149, LipY∆170 and LipY∆PE in the presence of a DOPG Monolayer a

 2 Data derived from Figure 3A. Experiments were carried out at 25°C in a cylindrical Teflon trough as described in Experimental Procedures. Buffer: 10 mM Tris-HCl (pH 7.5) containing 150 mM NaCl. Final enzyme concentration, 40 nM. Data are mean values of three independent assays. The uncertainty was calculated as previously described [59, 60].

		LipY	LipY∆149	LipY∆170	LipY∆PE
	Πc (mN.m -1 )	22.5 ± 1.2	16.4 ± 0.49	14.3 ± 0.25	17.2 ± 0.83
	synergy	+0.113 ± 0.010 -0.023 ± 0.001 -0.177 ± 0.0045 -0.564 ± 0.043
	ΔΠ0 (mN.m -1 )	20.0 ± 1.1	16.8 ± 0.50	16.9 ± 0.30	26.9 ± 1.3
	a				
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The authors have no conflict of interest to declare. 553 Upon infection the LipY protein is produced within the mycobacterial cytoplasm and possesses a dual localization. We proposed that during FFA acquisition, a weak portion of LipY remains in the cytoplasm in a full-length state, interacting either with the cytoplasmic membrane (1) or with the peripheral phospholipid layer of ILI [START_REF] Dutta | Latent tuberculosis infection: myths, models, and molecular mechanisms[END_REF] and that this interaction is mainly mediated by the PE domain (1-2). However, this N-terminal region also reduces the TAG-hydrolase activity of the lipase domain thus resulting in a slow breakdown of the neutral lipids contained within ILI (2). In the same time, the remainder of the protein is targeted to the ESX-5 machinery (3), and further recognized and maturated by the MycP5 protease (4). This results in the formation of a mature truncated form of LipY variant (LipYΔ149) that is anchored within the mycobacterial cell-wall [START_REF] Bloch | Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro[END_REF]. Deletion of the entire linker region did not affect this anchoring process suggesting that the lipase domain is responsible for the interaction within the mycomembrane [START_REF] Bloch | Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro[END_REF]. The truncated form LipYΔ149, devoid of the PE domain and the first 53 amino acids of the linker, possesses a greater activity than the fulllength protein [START_REF] Bloch | Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro[END_REF] and contributes to FFA acquisition by hydrolyzing host cell TAG within the phagosomal lumen of foamy macrophages [START_REF] Bloch | Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro[END_REF]. The red star corresponds to a schematic representation of the catalytic serine within the lipase domain. CM: cytoplasmic membrane; PG: peptidoglycan, AG: arabinogalactan; MA: mycolic acids; DAG: diacylglycerol; MAG: monoacylglycerol; TAG: triacylglycerol; FFA: free fatty acid.