
HAL Id: hal-02142769
https://amu.hal.science/hal-02142769

Preprint submitted on 16 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable elimination in binary CSPs
Martin Cooper, Achref El Mouelhi, Cyril Terrioux

To cite this version:
Martin Cooper, Achref El Mouelhi, Cyril Terrioux. Variable elimination in binary CSPs. 2019. �hal-
02142769�

https://amu.hal.science/hal-02142769
https://hal.archives-ouvertes.fr

Variable elimination in binary CSPs

Martin C. Cooper COOPER@IRIT.FR
IRIT, University of Toulouse III,
31062 Toulouse, France

Achref El Mouelhi ELMOUELHI.ACHREF@GMAIL.COM
H & H: Research and Training,
13015 Marseille, France

Cyril Terrioux CYRIL.TERRIOUX@LIS-LAB.FR

Aix Marseille Univ, Université de Toulon,
CNRS, LIS, Marseille, France

Abstract
We investigate rules which allow variable elimination in binary CSP (constraint satisfaction

problem) instances while conserving satisfiability. We study variable-elimination rules based on
the language of forbidden patterns enriched with counting and quantification over variables and
values. We propose new rules and compare them, both theoretically and experimentally. We give
optimised algorithms to apply these rules and show that each define a novel tractable class. Using
our variable-elimination rules in preprocessing allowed us to solve more benchmark problems than
without.

1. Introduction

Constraint satisfaction provides a generic model for many NP-hard problems encountered in fields
such as artificial intelligence, bioinformatics and operations research. In this paper, we study binary
CSP instances, in which each constraint concerns at most two variables. It is well known that all
CSP instances can be expressed as binary instances, via the dual encoding (Dechter & Pearl, 1989)
or the hidden variable encoding (Rossi, Petrie, & Dhar, 1990).

Since the binary CSP is NP-complete, it is of practical interest to find polynomial-time opera-
tions which reduce the size of the search space. One obvious way to reduce search space size is by
variable elimination.

Variable elimination is classic in those families of constraint problems in which variables can
be eliminated without changing the nature of the constraints: we can cite Gaussian elimination
in systems of linear equations over a field (Schrijver, 1999) or variable-elimination resolution in
boolean formulae in CNF (Subbarayan & Pradhan, 2004). Indeed, any variable xi can be eliminated
from a general-arity CSP instance by joining all constraints whose scope includes xi and projecting
the resulting relation R with scope Y onto the variables Y \{xi} (Dechter, 1999; Larrosa & Dechter,
2003). Call this relation R−xi . Unfortunately, this often introduces a high-arity constraint and this
can be counterproductive in terms of both memory and time. Under certain conditions, a binary CSP
instance will remain binary after this join-and-project variable elimination of xi. For example, this is
clearly the case if xi is constrained by only two other variables since, in this case, R−xi is binary. A
more interesting case is when all constraints with xi in their scope share a majority polymorphism
since, in this case, the relation R−xi is equivalent to the join of its binary projections (Jeavons,
Cohen, & Cooper, 1998). Fourier’s algorithm for variable elimination applied to a system of binary

1

ar
X

iv
:1

90
5.

04
20

9v
1

 [
cs

.D
S]

 1
0

M
ay

 2
01

9

linear inequalities (Koubarakis, 2006; Schrijver, 1999) can be viewed as just one example of this
general rule, since binary linear inequalities are all closed under the majority polymorphism median.
Another interesting case is when there is a functional constraint of the form xi = f(xj) (where f
is a function) for some other variable xj : the relation R−xi is then equivalent to the join of its
projections onto the pairs of variables (xj , xk) (k 6= i, j) (Zhang & Yap, 2011).

Unfortunately, the introduction of a large number of new constraints, even if they are still binary,
may again be counterproductive. Therefore, we concentrate in this paper on rules which do not
introduce new constraints when a variable is eliminated.

Various rules have been found which allow the elimination of a variable without introducing new
constraints and without changing the satisfiability of the instance (Cohen, Cooper, Escamocher, &
Zivny, 2015; Cooper, 2014; Cooper, Jeavons, & Salamon, 2010). Such rules were used, for exam-
ple, in the deep optimisation solution to the spectrum repacking problem (Newman, Fréchette, &
Leyton-Brown, 2018). Discovery of new variable-elimination rules may have not only practical but
also theoretical applications. For example, simple rules for variable or value elimination are used by
Beigel and Eppstein (Beigel & Eppstein, 1995) in their algorithms with low worst-case time bounds
for such NP-complete problems as 3-COLOURING and 3SAT: these simplification operations are
an essential first step before the use of decompositions into subproblems with smaller domains. In
the theory of fixed-parameter tractability, variable elimination is often an essential ingredient of
polynomial kernalisation algorithms. For example, in the Point Line Cover problem (find k straight
lines which cover n points), if at least k + 1 points lie on a line, then they can be effectively elim-
inated since they must be covered by this line (Kratsch, Philip, & Ray, 2016). A form of variable
elimination may also occur during the modelling phase. For example, in the modelling as a CSP of
the determination of the structure of a molecule from its chemical formula and other information
obtained from nuclear magnetic resonance spectroscopy, the position of hydrogen atoms are not
modelled since their positions are uniquely determined by the multigraph of connections between
the other atoms (Omrani & Naanaa, 2016).

We now define the notions that we will need in the rest of the paper.

Definition 1 A binary CSP instance I = 〈X,D, R〉 comprises

• a set X of n variables x1, . . . , xn,

• a domain D(xi) for each variable xi (i = 1, . . . , n), and

• a binary constraint relation Rij for each pair of distinct variables xi,xj (i,j∈{1, . . . , n}).

For notational convenience, we assume that there is exactly one binary relation Rij for each pair
of variables. Thus, in the absence of an explicit constraint between xi and xj , we define Rij to
be D(xi) × D(xj). Furthermore, Rji (viewed as a boolean matrix) is always the transpose of Rij .
We say that xi constrains xj if Rij is different from D(xi) × D(xj), and we use e to denote the
number of pairs of variables {xi, xj} such that xi constrains xj . An assignment 〈v1, . . . , vm〉 to
variables 〈xi1 , . . . , xim〉 is consistent if vj ∈ D(xij) (for j = 1, . . . ,m) and (vj , vk) ∈ Rij ,ik (for
all j, k such that 1 ≤ j < k ≤ m). A solution to I is a consistent assignment to all variables in X .
For notational convenience we can also view a solution as a mapping s from X to the union of the
variable domains such that 〈s(x1), . . . , s(xn)〉 is consistent.

It will sometimes be convenient to associate a binary CSP instance with its microstructure, a la-
belled graph whose vertices are the variable-value assignments and which has positive and negative

2

edges. If (vi, vj) ∈ Rij , we say that the assignments 〈xi, vi〉, 〈xj , vj〉 (or more simply vi, vj) are
compatible and that vivj is a positive edge, otherwise vi, vj are incompatible and vivj is a negative
edge. For simplicity of notation we can assume that variable domains are disjoint, so that using vi
as a shorthand for 〈xi, vi〉 is unambiguous. We say that vi ∈ D(xi) has a support at variable xj if
there exists vj ∈ D(xj) such that vivj is a positive edge. A binary CSP instance I is arc consistent
if for all pairs of distinct variables xi, xj , each vi ∈ D(xi) has a support at xj . Arc consistency is
ubiquitous in constraint solvers: it is applied both before and during search in binary CSPs since it
can be established in O(ed2) time, where e is the number of binary constraints and d the maximum
domain size (Bessière, Régin, Yap, & Zhang, 2005).

In Section 2 we introduce formally the notion of variable-elimination rule in binary CSPs and
give a known example (the ∃snake property) which we will compare theoretically and experimen-
tally with novel variable elimination rules defined in this paper. Then, in Section 3 we define a
stronger rule, called DE-snake, which subsumes the ∃snake rule. In Section 4 we give the defini-
tion of a simple variable elimination rule based on a triangle of variable-value assignments. It is
well known that the broken-triangle property (Cooper et al., 2010) is a variable-elimination rule.
In Section 5 we generalise broken triangles to broken polyhedra. In Section 6 we give a family of
variable-elimination rules based on broken polyhedra of dimension k. On a more practical level, in
Section 7 we define a variable-elimination rule, based on the absence of broken tetrahedra, which
can be applied with the same worst-case time complexity as the broken-triangle rule but is strictly
stronger. In Section 8 we show that most of the rules we have presented in this paper are the-
oretically incomparable. In Section 9 we present the results of our experimental trials on 3,557
benchmark instances. The variable-elimination rules allowed us to solve more instances when they
were applied in a preprocessing step, but we recommend more research to better target those vari-
ables that are likely to be eliminated before integrating these rules in a general-purpose solver. In
Section 10 we show that each of the variable-elimination rules presented in this paper allows us to
define a tractable class which can be recognised in polynomial-time.

2. Variable-elimination rules

We study conditions under which a variable xi can be eliminated from a binary CSP instance while
conserving satisfiability. A simple example of such a condition is that there exists a value vi ∈ D(xi)
which is compatible with all assignments to all other variables. Clearly any solution s to the instance
I ′ obtained by eliminating xi can be extended to a solution to the original instance I by setting
s(xi) = vi. Another simple example is that the variable xi has a singleton domain {vi}. This second
example demonstrates that when eliminating the variable xi we need to retain the projections onto
X \ {xi} of all constraints whose scope includes xi, since in this example we must first eliminate
from all domainsD(xj) (j 6= i) those values that are not compatible with 〈xi, vi〉. Thus, the instance
I ′ obtained by eliminating a variable xi from a binary CSP instance I is identical to I except that
(1) ∀j 6= i, we have deleted from D(xj) all values vj such that 〈xj , vj〉 has no support at xi in I ,
and (2) we have deleted the variable xi and all constraints with xi in their scope.

We require the following formal definition in order to study provably-correct variable-elimina-
tion rules (Cohen et al., 2015).

Definition 2 A satisfiability-conserving variable-elimination condition (or a var-elim condition) is
a polytime-computable property P (xi) of a variable xi in a binary CSP instance I such that when
P (xi) holds the instance I ′ obtained from I by eliminating xi is satisfiable if and only if I is

3

�
�

�
•
•

�
�

�
•

�
�

�
•((((((L

L
L
L
LL

xi

vi

xj

xk

vj

v′j

vk

Figure 1: The ∃snake property says that this snake pattern does not occur on value vi for variable xi (for any
variables xj , xk and any values vj , v′j , vk).

satisfiable. Such a property P (xi) is a solution-conserving variable-elimination condition (sol-var-
elim condition) if it is possible to construct a solution to I from any solution s′ to I ′ in polynomial
time.

A sol-var-elim condition not only allows us to eliminate variables while conserving satisfiability
but also allows the polynomial-time recovery of at least one solution to the original instance I from
a solution to the reduced instance I ′. All the var-elim properties given in this paper are also sol-var-
elim properties.

We end this section by giving an example of a known variable-elimination rule called the ∃snake
rule. It is based on forbidding a pattern of positive and negative edges (shown in Figure 1) on one
value vi for xi, the variable to be eliminated. In figures, broken lines represent negative edges
(incompatible pairs) and solid lines represent positive edges (compatible pairs). A pattern is a (gen-
erally small) binary CSP instance in which the compatibility of certain values (such as vi, vk in
Figure 1) may be left unspecified. A pattern P occurs in a CSP instance I if there is a homomor-
phism from P to I respecting variables and mapping positive edges to positive edges and negative
edges to negative edges (Cohen et al., 2015). The ∃snake rule is one of the four variable-elimination
rules based on forbidding an irreducible pattern on the variable to be eliminated (Cohen et al., 2015).
Out of these four rules, we chose ∃snake to compare with the new rules presented in this paper since,
among these four rules, it would appear to be the most promising in terms of time complexity and
eliminating power.

Definition 3 A variable xi satisfies the ∃snake property if ∃vi ∈ D(xi) such that ∀xj ∈ X \ {xi},
∀vj , v′j ∈ D(xj), ∀xk ∈ X \ {xi, xj} ∀vk ∈ D(xk), we do not have (vi, vj) /∈ Rij , (vi, v

′
j) ∈ Rij ,

(vj , vk) ∈ Rjk and (v′j , vk) /∈ Rjk.

The proof of the following proposition can be found in Appendix A where we give an optimised
algorithm, making use of appropriate data structures, to apply this variable-elimination rule until
convergence.

Proposition 1 Variable eliminations by the ∃snake property can be applied until convergence in
O(ed3) time and O(ed2) space.

As we will show in the rest of this paper, other variable-elimination rules can be found by enrich-
ing the language of forbidden patterns by allowing arbitrary quantification and counting. Previous
work only considered quantification on values for the variable to be eliminated (Cohen et al., 2015).

4

�
�

�
•
• �

�
�
•((((((

xi

vi

xj

vj

v′j
⇓

(1)

�
�

�
•
•

�
�

�
•

�
�

�
•((((((\

\
\
\
\

Z
Z
Z

Z

xi

vi

xj

xk

vj

v′j

vk(2)

⇓

Figure 2: The DE-snake property says that for some value vi ∈ D(xi), for each value vj incompatible with
vi, there is a value v′j such that (1) v′j is compatible with vi, and (2) v′j is compatible with all assignments vk
to a third variable xk which are compatible with vj .

3. Variable elimination by the DE-snake rule

We show in this section that the ∃snake rule is subsumed by a stronger rule that we call the DE-
snake (double-existential snake) rule. It is again based on forbidding the snake pattern shown in
Figure 1 but, compared to the ∃snake rule, has an existential (rather than universal) quantifier on the
value v′j .

Definition 4 A variable xi satisfies the DE-snake property if ∃vi ∈ D(xi) such that ∀xj ∈ X\{xi},
∀vj ∈ D(xj) with (vi, vj) /∈ Rij , ∃v′j ∈ D(xj) such that (1) (v′j , vi) ∈ Rji and (2) ∀xk ∈
X \ {xi, xj}, ∀vk ∈ D(xk), we do not have (vj , vk) ∈ Rjk and (v′j , vk) /∈ Rjk.

The DE-snake property is illustrated in Figure 2. The intuition behind this property is that any
solution to the instance obtained after elimination of xi can be extended to a solution to the original
instance by assigning vi to xi and changing those values vj which are incompatible with vi to some
other value v′j .

Theorem 1 The DE-snake property is a sol-var-elim condition in binary CSP instances.

Proof: Let I = 〈X,D, R〉 be a binary CSP instance satisfying the DE-snake property on xi. Let
I ′ be the instance obtained by eliminating variable xi from I . If there is no solution to I ′, then
obviously there is none to I . Now suppose that there is a solution s′ to I ′. We will show that I
has a solution s. Our proof is constructive and there is an obvious polynomial-time algorithm to
produce s from s′. Since xi satisfies the DE-snake property, ∃vi ∈ D(xi) such that ∀xj ∈ X \{xi},
∀vj ∈ D(xj) with (vi, vj) /∈ Rij , ∃uj(vj) ∈ D(xj) (i.e. there exists a value uj which is a function
of vj) such that (1) (uj(vj), vi) ∈ Rji and (2) ∀xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk), we do not have
(vj , vk) ∈ Rjk and (uj(vj), vk) /∈ Rjk.

Let Y be the set of variables xj ∈ X \ {xi} such that (s′(xj), vi) ∈ Rji and Y the set of
variables xj ∈ X \ {xi} such that (s′(xj), vi) /∈ Rji. For each xj ∈ Y , set s(xj) := s′(xj). For
each xj ∈ Y , set s(xj) := uj(s

′(xj)). Finally, set s(xi) := vi. By definition of s and uj(s
′(xj)), we

have (s(xj), s(xi)) ∈ Rji for each xj ∈ X \ {xi}. For pairs of variables xj , xk ∈ X \ {xi}, we
need to consider three cases:

1. If xj , xk ∈ Y , then clearly (s(xj), s(xk)) ∈ Rjk since s′ was a solution to I ′.

5

�
�

�
• �
�

�
•

�
�

�
•A

A
A
A

xixj

xk

vivj

vk

Figure 3: The open-triangle pattern. The variable xi can be eliminated by the triangle property if there is
some variable xj 6= xi such that for all vj ∈ D(xj), there exists vi ∈ D(xi) such that (vj , vi) ∈ Rji and this
open-triangle pattern does not occur on (vi, vj , vk) for any vk.

2. If xj ∈ Y and xk ∈ Y , then setting vj = s′(xj) and vk = s′(xk) in the definition of the DE-
snake property, from condition (2) in this definition, we must have (uj(s

′(xj)), s
′(xk)) ∈ Rjk

since (s′(xj), s
′(xk)) ∈ Rjk . Hence (s(xj), s(xk)) ∈ Rjk by definition of s.

3. If xj , xk ∈ Y , then for exactly the same reason as in case 2, we again must have (uj(s
′(xj)),

s′(xk)) ∈ Rjk. In other words, by definition of s, (s(xj), s
′(xk)) ∈ Rjk. Now we apply

again the definition of the DE-snake property but this time with the roles of the variables
xj ,xk reversed and with vj = s′(xk) and vk = s(xj): we can deduce that we must have
(uk(s′(xk)), s(xj)) ∈ Rkj . Thus, by definition of s, (s(xk), s(xj)) ∈ Rkj .

We have just shown that for all pairs of variables of I , s satisfies the binary constraint on this pair
of variables. Hence s is a solution to I .

The following proposition shows that the worst-case complexity of applying the DE-snake rule
is no worse than the complexity of applying the ∃snake rule given in Proposition 1. Its proof can
be found in Appendix B where we give an optimised algorithm, making use of appropriate data
structures, to apply the DE-snake variable-elimination rule until convergence.

Proposition 2 Variable eliminations by the DE-snake property can be applied until convergence in
O(ed3) time and O(ed2) space.

4. Variable elimination by the triangle property

The variable-elimination rule presented in this section says that xi can be eliminated if for some
variable xj 6= xi, for all assignments vj ∈ D(xj) to y, in I[〈xj , vj〉] (the reduced instance consisting
of the set of variable-value assignments compatible with 〈xj , vj〉) there is an assignment 〈xi, vi〉
compatible with all assignments to all variables xk ∈ X \ {xi, xj}. In other words, there is some
variable xj 6= xi such that for all vj ∈ D(xj), there exists vi ∈ D(xi) such that (vj , vi) ∈ Rji and
the open-triangle pattern shown in Figure 3 does not occur.

Definition 5 A variable xi satisfies the triangle property if ∃xj ∈ X \ {xi} such that ∀vj ∈ D(xj),
∃vi ∈ D(xi) with (vi, vj) ∈ Rij such that ∀xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk), (vj , vk) ∈ Rjk

implies that (vi, vk) ∈ Rik.

6

Although a variable satisfying the triangle property was originally known as ‘not Triangle-support-
ed’ (Cooper, 2014), we use the name ‘triangle property’ in this paper for simplicity of presentation.

Theorem 2 The triangle property is a sol-var-elim condition in binary CSP instances.

Proof: Let I be a binary CSP instance satisfying the triangle property on xi. Let s′ be a solution to
I ′, the instance obtained by eliminating variable xi from I . We will show that I has a solution s. Our
proof is constructive and there is an obvious polynomial-time algorithm to produce s from s′. Since
xi satisfies the triangle property, ∃xj ∈ X \{xi} such that ∀vj ∈ D(xj), ∃vi(vj) ∈ D(xi) (i.e. there
exists a value vi which is a function of vj) with (vi(vj), vj) ∈ Rij such that ∀xk ∈ X \ {xi, xj},
∀vk ∈ D(xk) with (vj , vk) ∈ Rjk, we have (vi(vj), vk) ∈ Rik. Define s as follows: s(xm) =
s′(xm) (xm ∈ X\{xi}) and s(xi) = vi(s

′(xj)). The assignment 〈xi, vi(s′(xj))〉 is compatible with
〈xj , s′(xj)〉 (by definition of vi(s′(xj))) and is compatible with all of the assignments 〈xm, s′(xm)〉
(xm ∈ X \ {xi}) again by definition of vi(s′(xj)) since (s′(xj), s

′(xm)) ∈ Rjm. Hence s is a
solution to I .

It is easily verified that this proof is valid even in the special case X = {xi, xj}.

The proof of the following proposition can be found in Appendix C where we give an optimised
algorithm, making use of appropriate data structures, to apply this variable-elimination rule until
convergence.

Proposition 3 Variable eliminations by the triangle property can be applied until convergence in
O(end3) time and O(end2) space.

5. From broken triangles to broken polyhedra

The broken-triangle property is a property of the microstructure of instances of the binary CSP (Con-
straint Satisfaction Problem) which when satisfied allows either value merging (Cooper, Duchein,
El Mouelhi, Escamocher, Terrioux, & Zanuttini, 2016a), variable elimination or the definition of a
tractable class (Cooper et al., 2010). In this section, we generalise the notion of broken triangle to
broken polyhedron, which allows us to define rules for variable elimination parameterised by the
dimension k of the polyhedron.

We begin by recalling the definition of the broken-triangle property (BTP) (Cooper et al., 2010).

Definition 6 Let I = 〈X,D, R〉 be a binary CSP instance. A pair of values v′k, v
′′
k ∈ D(xk) satisfies

BTP if for each pair of variables (xi, xj) (with i, j 6= k), ∀vi ∈ D(xi), ∀vj ∈ D(xj), if

• (vi, vj) ∈ Rij ,

• (vi, v
′
k) ∈ Rik and

• (vj , v
′′
k) ∈ Rjk,

then

• (vi, v
′′
k) ∈ Rik or

• (vj , v
′
k) ∈ Rjk.

7

A variable xk satisfies BTP if each pair of values of D(xk) satisfies BTP. If I is equipped with an
order < on its variables, then I satisfies BTP for the variable order < if each variable xk satisfies
BTP in the sub-instance of I restricted to the variables xi such that xi ≤ xk.

If (vi, vj) ∈ Rij ,(vi, v′k) ∈ Rik, (vj , v
′′
k) ∈ Rjk, (vi, v

′′
k) /∈ Rik and (vj , v

′
k) /∈ Rjk (as shown

in Figure 4 with solid/broken lines joining compatible/incompatible values), then the quadruple
(v′k, vi, vj , v

′′
k) constitutes a broken triangle on xk. I satisfies the BTP on xk if no broken triangles

occur on xk.

v′k

v′′k

vj

vi

xk

xj

xi

Figure 4: A broken triangle (v′k, vi, vj , v
′′
k).

Any pair of values v′k, v
′′
k that satisfy BTP can be merged without changing the satisfiability

of the instance (Cooper et al., 2016a), where the new merged value is compatible with all values
compatible with at least one of the two old values v′k, v

′′
k . Furthermore, in an arc-consistent in-

stance any variable that satisfies BTP can be eliminated without changing the satisfiability of the
instance (Cooper et al., 2010). As a direct consequence of this, if an arc-consistent instance I
satisfies BTP for some variable ordering, then I can be solved in polynomial time by successive
elimination of all variables: moreover viewed as a decision problem, I can, in fact, be solved by arc
consistency (Cooper et al., 2010) without knowledge of the variable ordering for which BTP holds.

Examples of the BTP var-elim rule include a variable xm which is only constrained by one
other variable in an arc-consistent instance or a variable xm with a domain of size at most two in
a path-consistent instance (Cooper et al., 2010). In this paper we consider generalisations of BTP
which allow the definition of stronger variable-elimination rules.

The presence of some broken triangles on a given variable does not preclude value-merging or
variable-elimination (while leaving satisfiability invariant): new solutions will not be introduced if
the broken triangles lack support on some set of other variables (Cooper, El Mouelhi, & Terrioux,
2016b; El Mouelhi, 2018; Naanaa, 2016). Unfortunately, the search for lack-of-support variables
for each broken triangle may render such techniques prohibitively expensive in terms of time com-
plexity (since, in the worst case, the number of broken triangles is Θ(n3d4)). Other generalisations
of BTP require levels of consistency, such as strong path consistency, which may change positive
edges into negative edges; this has the disadvantage of possibly introducing new broken triangles
besides the extra memory required to store new binary constraints (Cooper, Jégou, & Terrioux,
2015; Naanaa, 2013).

We now generalise the notion of broken triangle to broken polyhedron. In Section 6 we show
that this notion can be used to define variable elimination rules that are stronger than BTP. A broken
triangle is a broken polyhedron of dimension 2. We now define a broken k-dimensional polyhedron
for k ≥ 2.

8

u1

u2

u3

u4

v4

v3

v2

v1

xm
xi4

xi2

xi3

xi1

Figure 5: A broken 4-dimensional polyhedron on variable xm.

Definition 7 A broken k-dimensional polyhedron on xm consists of

• a consistent assignment 〈v1, . . . , vk〉 to distinct variables 〈xi1 , . . . , xik〉 (where each xij (j =
1, . . . , k) is distinct from xm),

• k distinct values u1, . . . , uk ∈ Dm,

such that

• ∀j ∈ {1, . . . , k}, (vj , uj) /∈ Rijm,

• ∀h, j ∈ {1, . . . , k}, if h 6= j then (vh, uj) ∈ Rijm,

The assignment 〈v1, . . . , vk〉 to variables 〈xi1 , . . . , xik〉 is known as the base of the broken polyhe-
dron, and each assignment 〈xm, uj〉 (j = 1, . . . , k) is an apex. Any edge between a base point and
an apex is a side of the broken tetrahedron.

A broken 4-dimensional polyhedron is shown in Figure 5. A broken triangle (Figure 4) is a
broken 2-dimensional polyhedra. In the following sections we show that broken k-dimensional
polyhedra allow us to define novel variable-elimination rules and tractable classes.

6. First-order rules for variable-elimination by broken polyhedra

The broken-triangle property (BTP) has been generalised to the ∀∃BTP rule for variable elimina-
tion which allows us to eliminate more variables (Cooper, 2014) than BTP. Eliminating a variable
satisfying the ∀∃BTP rule is strictly stronger than the BTP rule. This is demonstrated by the fact
that ∀∃BTP, but not BTP, subsumes the rule that allows us to eliminate a variable xm when an
assignment to xm is compatible with all assignments to all other variables. Another generic exam-
ple is when all occurrences of the broken-triangle pattern on variable xm occur on pairs of values
vm, v′m ∈ S ⊂ D(xm) and each assignment vi to each other variable xi 6= xm has a support at xm
in D(xm) \ S.

We first given the definition of the ∀∃ broken-triangle property, in order to generalise it to k
dimensions.

9

Definition 8 A binary CSP instance satisfies the ∀∃ broken-triangle property on variable xm if for
all i1 6= m, for all v1 ∈ D(xi1), there exists vm ∈ D(xm) such that

1. 〈v1, vm〉 is a consistent assignment to variables 〈xi1 , xm〉, and

2. for all i2 /∈ {i1,m}, for all v2 ∈ D(xi2), there is no broken triangle on xm with base the
assignment 〈v1, v2〉 to variables 〈xi1 , xi2〉 and with an apex 〈xm, vm〉.

We now generalise the ∀∃BTP rule for variable elimination to the case of broken polyhedra of
any dimension k ≥ 2. When k = 2 the following definition coincides with Definition 8 of the
∀∃BTP rule.

Definition 9 A binary CSP instance satisfies the ∀∃ broken k-dimensional polyhedron property on
variable xm if for all distinct i1, . . . , ik−1 6= m, for all consistent assignments 〈v1, . . . , vk−1〉 to
variables 〈xi1 , . . . , xik−1

〉, there exists vm ∈ D(xm) such that

1. 〈v1, . . . , vk−1, vm〉 is a consistent assignment to variables 〈xi1 , . . . , xik−1
, xm〉, and

2. for all ik /∈ {i1, . . . , ik−1,m}, for all vk ∈ D(xik), there is no broken k-dimensional poly-
hedron on xm with base the assignment 〈v1, . . . , vk〉 to variables 〈xi1 , . . . , xik〉 and with an
apex 〈xm, vm〉.

The first condition of Definition 9 is a k-consistency condition on variable xm with respect to
all other variables (Lecoutre, 2009). The second condition guarantees (as we will show below) that
this k-consistency condition is sufficient for any consistent assignment to the variables X \ {xm} to
be extendible to a consistent assignment to all variables.
Notation: Given a binary CSP instance I on variables X = {x1, . . . , xn}, we denote by I−m the
sub-instance of I on variables X \{xm}. Similarly, I−jm denotes the sub-instance of I on variables
X \ {xj , xm}.

We can observe that if I satisfies the ∀∃ broken k-dimensional polyhedron property on xm then
I−j also satisfies the ∀∃ broken k-dimensional polyhedron property on xm for any j 6= m.

Theorem 3 The ∀∃ broken k-dimensional polyhedron property is a sol-var-elim condition in binary
CSP instances I with at least k variables.

Proof: Let I be a binary CSP instance I on n ≥ k variables which satisfies the ∀∃ broken k-
dimensional polyhedron property on variable xm. It is sufficient to show that any solution s to I−m
can be extended to a solution to I . We will show this by induction on n. That a solution for I can
be generated in polynomial time will follow immediately since s does not need to be modified, just
extended by one of the at most d possible values for xm.

If n = k, then the fact that any solution to I−m can be extended to a solution to I follows
directly from the definition of the ∀∃ broken k-dimensional polyhedron property. So, to complete
the proof by induction, we suppose that any solution to I−m can be extended to a solution to I holds
for instances I with n = p ≥ k variables and we will show that this also holds for instances with
p + 1 variables.

For notational convenience and without loss of generality, we can assume that m = p + 1. Let
s := 〈v1, . . . , vp〉 be a solution to I−m. To complete the proof, it suffices to show that s can be ex-
tended to a solution to I . For each j = 1, . . . , p, consider the p-variable instance I−j . Clearly, sj :=

10

u′′
u′

u

vk

vi

vj

xj

xm

xk

xi

Figure 6: A broken tetrahedron.

〈v1, . . . , vj−1, vj+1, . . . , vp〉 is a solution to I−jm. Since I−j has p variables, by our inductive hy-
pothesis, each sj (j = 1, . . . , p) can be extended to a solution tj = 〈v1, . . . , vj−1, vj+1, . . . , vp, uj〉
to I−j . Note that tj assigns uj to xm. Suppose that for some j ∈ {1, . . . , p}, (vj , uj) ∈ Rjm. Then
〈v1, . . . , vp, uj〉 is a solution to I and we are done. So, we only need consider the case in which
∀j ∈ {1, . . . , p}, (vj , uj) /∈ Rjm. Note that the values uj (j = 1, . . . , p) must all be distinct.

Consider 〈v1, . . . , vk−1〉; this is a consistent assignment to variables 〈x1, . . . , xk−1〉. Thus, since
I satisfies the ∀∃ broken k-dimensional polyhedron property on variable xm, there exists vm ∈
D(xm) such that (1) 〈v1, . . . , vk−1, vm〉 is a consistent assignment to the variables 〈x1, . . . , xk−1,
xm〉 and (2) for all h ∈ {k, . . . , p}, there is no broken k-dimensional polyhedron on xm with base
the assignment 〈v1, . . . , vk−1, vh〉 to variables 〈x1, . . . , xk−1, xh〉 and with an apex 〈xm, vm〉. Note
that vh is the value assigned by s to xh. Observe that 〈v1, . . . , vk−1, vh〉 is a consistent assignment
to variables 〈x1, . . . , xk−1, xh〉 and that u1, . . ., uk−1, vm are distinct values (since ∀j ∈ {1, . . . , p},
(vj , uj) /∈ Rjm but (vj , vm) ∈ Rjm, and we have already seen above that the uj (j = 1, . . . , p) are
distinct). Furthermore, by the definition of the uj , we have (vh, uj) ∈ Rhm for j = 1, . . . , k − 1,
and (v`, uj) ∈ R`m if and only if ` 6= j for `, j ∈ {1, . . . , k−1}. By the definition of vm (condition
(1) above), we have (vj , vm) ∈ Rjm for j = 1, . . . , k − 1. Since there is no broken k-dimensional
polyhedron on xm with base the assignment 〈v1, . . . , vk−1, vh〉 to variables 〈x1, . . . , xk−1, xh〉 and
with apex 〈xm, vm〉, we must have (vh, vm) ∈ Rhm. Since this is true for all h ∈ {k, . . . , p}, it
follows that 〈v1, . . . , vp, vm〉 is a solution to I . This completes the proof by induction.

7. Faster variable-elimination based on broken polyhedra

The ∀∃ broken k-dimensional polyhedron property is interesting from a theoretical point of view.
However, from a practical point of view, the time complexity of detecting whether variables can be
eliminated is likely to be prohibitive. Indeed, for k = 3, a naive exhaustive search for broken tetra-
hedra (i.e. broken 3-dimensional polyhedra) has time complexity Θ(n4d6). Various intermediate
rules of varying strength and time complexity exist between ∀∃BTP and the ∀∃ broken tetrahe-
dron property; we choose to concentrate on rules which can be tested in the same worst-case time
complexity as ∀∃BTP but which are strictly stronger.

First, observe that a broken tetrahedron, as shown in Figure 6 with base the assignment 〈vi, vj ,
vk〉 to variables 〈xi, xj , xk〉 and apexes u, u′, u′′ ∈ D(xm), contains three broken triangles on xm:
(u′, vi, vj , u

′′), (u, vi, vk, u
′′) and (u, vj , vk, u

′). Thus, the incompatible pairs (shown as broken

11

lines in Figure 6) (vi, u
′′) and (vj , u

′) each occur in (at least) two broken triangles, while the com-
patible pairs (shown as solid lines in the figure) (vi, vj), (vi, u) and (vj , u) each occur in (at least)
one broken triangle.

Definition 10 Let I be a binary CSP instance with vi ∈ D(xi) and u ∈ D(xm). The broken-
triangle degree (BT degree) of the pair of assignments 〈vi, u〉 to 〈xi, xm〉 is the number of distinct
variables xj (j 6= i,m) such that ∃vj ∈ D(xj), ∃u′ ∈ D(xm) such that there is a broken triangle
with base the assignment 〈vi, vj〉 to 〈xi, xj〉 and apexes u, u′ ∈ D(xm).

For example, if I is exactly the instance shown in Figure 6, then the BT degree of (vi, u
′′) and of

(vj , u
′) is two, and the BT degree of (vi, u) and of (vj , u) is one. Although (vi, vj) is the base of a

broken triangle, its BT degree is zero according to Definition 10, since neither vi nor vj is the apex
of a broken triangle. Note that any edge, whether positive or negative, which links the base to an
apex of a broken triangle has BT degree at least one.

Definition 11 A consistent assignment 〈vi, vj〉 to variables 〈xi, xj〉 is 3-safe on variable xm if for
all broken triangles (u′, vi, vj , u

′′), the BT degree of (vi, u
′′) is one or the BT degree of (vj , u

′) is
one.

Note that 〈vi, vj〉 is trivially 3-safe on xm if there is no broken triangle on xm whose base is 〈vi, vj〉.
We can now define a new variable-elimination property.

Definition 12 A binary CSP instance satisfies the BT-degree property on variable xm if for all
distinct i, j 6= m, for all vi ∈ D(xi), vj ∈ D(xj) such that 〈vi, vj〉 is a consistent assignment to
variables 〈xi, xj〉, there exists vm ∈ D(xm) such that

1. 〈vi, vj , vm〉 is a consistent assignment to variables 〈xi, xj , xm〉, and

2. either (vi, vj) is 3-safe on xm or (vi, vm) has BT degree zero or (vj , vm) has BT degree zero.

The first condition in Definition 12 guarantees path consistency on variable xm with respect to
all other pairs of variables (Lecoutre, 2009), whereas the second condition guarantees the absence
of a broken 3-dimensional polyhedron with base points vi, vj and apex vm.

Theorem 4 The BT-degree property is a sol-var-elim condition in binary CSP instances I with at
least 3 variables.

Proof: It suffices, by Theorem 3, to show that a binary CSP instance I that satisfies the BT-degree
property on xm necessarily satisfies the ∀∃ broken 3-dimensional polyhedron property on xm. But
this is immediate by the discussion above since

1. pairs of assignments which are 3-safe on xm cannot be part of the base of a broken tetrahedron
on xm, by the remark before Definition 10,

2. pairs of assignments which have BT degree zero cannot be the side (i.e. edge between a base
point and an apex) of a broken tetrahedron.

12

Variable eliminations by the BT-degree property may propagate. In the instance I of Figure 7(a)
(where in this figure pairs of values not joined by a line are assumed to be incompatible), the
variables x1, x2, x3 cannot be eliminated by Theorem 4 since the consistent assignments (v3, v

′′
4),

(v′1, v
′
4) and (v′1, v

′′
4) have no support, respectively, at x1, x2 and x3. However, we can eliminate

x4 by Theorem 4, since v4 is a support at x4 of any consistent assignment (vi, vj) to any pair of
variables (xi, xj) (1≤ i < j ≤ 3) and in each case (vi, v4) has BT degree 0 (since v4 is consistent
with all assignments to all other variables). Eliminating x4 then produces an instance I ′ (shown in
Figure 7(b)) in which x1 can now be eliminated by Theorem 4 since the only consistent assignment
(v2, v3) to (x2, x3) can be extended to the consistent assignment (v2, v3, v1) to (x2, x3, x1) and
(v2, v1) has BT degree 0.

(a)

v′2

v2
v4

v′′4

v′4

v3v′3

v1v′1

x2 x4

x3

x1

(b)

v′2

v2

v3v′3

v1v′1

x2

x3

x1

Figure 7: (a) x1 cannot be eliminated (by the BT-degree property) in this instance I , (b) x1 can be eliminated
in this instance I ′ which results after elimination of x4 from I .

The proof of the following proposition can be found in Appendix D where we give an optimised
algorithm, using appropriate data structures, to apply this variable-elimination rule until conver-
gence.

Proposition 4 The BT-degree variable-elimination property can be applied until convergence in
O(end3) time and O(end2) space.

We can compare this with the ∀∃BTP property (Definition 9 with k = 2) which can also be ap-
plied until convergence in O(end3) time and O(end2) space, as shown in Appendix E. Eliminating
variables by the broken triangle property, which is subsumed by the ∀∃BTP property, also has time
complexity O(end3) (Cooper et al., 2010). Thus the BT-degree property is comparable with the
∀∃BTP property in terms of computational complexity. The following proposition shows that it is
at least as powerful in terms of number of variables eliminated.

Proposition 5 If a binary CSP instance satisfies ∀∃BTP on variable xm then it satisfies the BT-
degree property on variable xm.

Proof: The ∀∃BTP property says that for all i 6= m, for all vi ∈ D(xi), ∃d(vi) ∈ D(xm) (i.e.
there exists a value d which is a function of vi) such that (vi, d(vi)) ∈ Rim and the BT degree
of (vi, d(vi)) is zero. To show that this implies the BT-degree property on variable xm, consider
any pair of distinct variables xi, xj (i, j 6= m) and any values vi ∈ D(xi), vj ∈ D(xj) such that
(vi, vj) ∈ Rij . We need to show that there exists vm ∈ D(xm) such that

13

�

�

�

�•
•

�
�

�
�•

�

�

�

�•
•
•

HH
HHH

HHH
H

Q
Q
Q
Q
Q
Q
Q
Q
Q

B
B
B
B
B
B
B
B
BB

hhhhhhhhh
HH

HHH
HHH

H

A
A
A
A
A
A�
��

�
��

��
���

�

xi

xj

xm

vi

vm
vm1

vm2

vj1

vj2

Figure 8: An instances in which xm can be eliminated by the BT-degree property but not by the ∀∃BTP
property.

1. (vi, vm) ∈ Rim and (vj , vm) ∈ Rjm, and

2. (vi, vj) is 3-safe on xm or the BT degree of (vi, vm) is zero or the BT degree of (vj , vm) is
zero.

If (vj , d(vi)) ∈ Rjm, then vm = d(vi) satisfies the first condition and the BT degree of (vi, vm)
is zero. If (vi, d(vj)) ∈ Rim, then vm = d(vj) satisfies the first condition and the BT degree of
(vj , vm) is zero. It is not possible to have both (vj , d(vi)) /∈ Rjm and (vi, d(vj)) /∈ Rim since, in
this case, (d(vi), vi, vj , d(vj)) would be a broken triangle, contradicting the fact that the BT degree
of (vi, d(vi)) is zero. We can therefore conclude that in all cases, the BT-degree property is satisfied
on variable xm.

In fact, the BT-degree property strictly subsumes the ∀∃BTP property, as illustrated by the
instance in Figure 8. In this instance, xm cannot be eliminated by ∀∃BTP since for vi ∈ D(xi),
there is no v ∈ D(xm) with (vi, v) ∈ Rim and such that the BT degree of (vi, v) is zero (because
of the broken triangles (vm1 , vi, vj2 , vm) and (vm2 , vi, vj1 , vm)). On the other hand, xm can be
eliminated by the BT-degree property since for both of the assignments (vi, vjk) (k = 1, 2) to
(xi, xj), there is a value vmk

∈ D(xm) with (vi, vmk
) ∈ Rim, (vjk , vmk

) ∈ Rjm and such that the
BT degree of (vjk , vmk

) is zero.

8. Theoretical comparison between different variable-elimination rules

The notion of rank introduced by Naanaa (Naanaa, 2013) is closely related to the absence of broken
k-dimensional polyhedra. Indeed, in a binary CSP instance, a variable xm has rank k− 1 if there is
no broken k-dimensional polyhedron on xm. Naanaa showed that a variable xm with rank at most
k− 1 in a binary CSP instance which is directional strong k-consistent (Lecoutre, 2009) (according
to an order which places xm last) can be eliminated while leaving the satisfiability of the instance
invariant. This is subsumed by the ∀∃ broken k-dimensional polyhedron property (Definition 9)
since the latter does not require the absence of all broken k-dimensional polyhedra (Cooper &
Zivny, 2017).

14

Following an orthogonal approach, it has recently been shown that singleton arc consistency
(Lecoutre, 2009) solves instances that do not contain a pattern (known as Q1) made up of a subset
of the edges of a broken tetrahedron (Carbonnel, Cohen, Cooper, & Zivny, 2018).

Another family of variable-elimination rules is m-fBTP (El Mouelhi, 2018), for m ≥ 1, which
extends BTP by allowing broken triangles that do not have a support at some subset of variables of
size m.

Definition 13 Let I = 〈X,D, R〉 be a binary CSP instance. A pair of values v′k, v
′′
k ∈ D(xk)

satisfies 1-fBTP if for each broken triangle (v′k, vi, vj , v
′′
k) with vi ∈ D(xi), vj ∈ D(xj), there is at

least one variable x` ∈ X\{xi, xj , xk} such that ∀v` ∈ D(x`), if (vi, v`) ∈ Ri` then (vj , v`) /∈ Rj`.
In this case, we say that x` is a support variable for the broken triangle (v′k, vi, vj , v

′′
k). A variable

xk ∈ X satisfies 1-fBTP if each pair of values v′k, v
′′
k ∈ D(xk) satisfies 1-fBTP.

The variable xm of the instance shown in Figure 6 does not satisfy 1-fBTP because there is
no support variable for the broken triangle (u, vi, vk, u′′). The concept of support variable can be
extended to a set of m variables to obtain the definition of m-fBTP (El Mouelhi, 2018).

In the rest of the paper, we use the notation (∃, DE-)snake in the following sense: a statement is
true for (∃, DE-)snake property if it is true for both the ∃snake property and the DE-snake property.
We now compare theoretically the four variable-elimination rules: the (∃, DE-)snake property, the
triangle property, ∀∃BTP and 1-fBTP. Two variable-elimination rules are incomparable if neither is
subsumed by the other.

Proposition 6 The following four variable-elimination rules are all pairwise incomparable: the (∃,
DE-)snake property, the triangle property, ∀∃BTP and 1-fBTP.

Proof: Figure 9 shows four binary CSP instances. In this figure, compatible values are joined by
lines, and hence incompatibility is represented by the absence of a line. In the instance shown in
Figure 9(a), variable xi can be eliminated by the ∃snake property, the triangle property or ∀∃BTP,
but not by 1-fBTP. Indeed, a variable xi for which there exists v′′i ∈ D(xi) compatible with all
values for all other variables (as is the case for xi in Figure 9(a)) can always be eliminated by the
∃snake (and also the DE-snake) property, the triangle property or ∀∃BTP, but not necessarily by
1-fBTP. In this example, there is a broken triangle (v′i,vk,vj ,vi), shown in red, and (trivially) no
other variable on which this broken triangle does not have a support, so xi cannot be eliminated by
1-fBTP.

In the instance shown in Figure 9(b), there is no broken triangle on variable xi, so it can be
eliminated by ∀∃BTP or 1-fBTP, but not by the (∃, DE-)snake property nor the triangle property. It
is easily verified that the snake pattern (Figure 1) occurs on each value u ∈ D(xi) for some other
variable xm and for each positive edge uv with v ∈ D(xm) (the snake patterns are represented by
three different colours with the negative edges of the pattern shown as dashed lines).

In the instance shown in Figure 9(c), variable xi can be eliminated by the ∃snake property (and
hence also the DE-snake property which subsumes the ∃snake property), but none of the triangle
property, ∀∃BTP or 1-fBTP. The ∃snake property is satisfied since the snake pattern (Figure 1) does
not occur on vi ∈ D(xi). The triangle property is not satisfied on xi since the open-triangle pattern
shown in Figure 3 occurs on vj ∈ D(xj) and on vk ∈ D(xk). The broken triangles (vi,vj ,vk,v′i) and
(vi,v′k,v′j ,v

′
i), respectively shown in blue and red, prevent elimination of xi by ∀∃BTP or 1-fBTP.

15

vi

v′i

v′′i

vk

vj

xi

xk

xj

v′k

vk

vjv′j

v′′i v′i vi

v`

v′`

x`

xk

xj

xi

(a) (b)

vi

v′i

vk
v′k

vj
v′j

xi

xk

xj

v′k

vk

vjv′j

v′i vi

v`

v′`

x`

xk

xj

xi

(c) (d)

Figure 9: Examples of instances to demonstrate the incomparability of the different variable-elimination
rules.

In the instance shown in Figure 9(d), variable xi can be eliminated by the triangle property or
1-fBTP, but not by ∀∃BTP nor the (∃, DE-)snake property. The triangle property is satisfied on xi
since, for all v ∈ D(xj) no open-triangle pattern (illustrated in Figure 3) occurs on v. The broken
triangles (vi,v`,vk,v′i) and (v′i,v

′
`,v
′
k,vi), respectively shown in red and blue, prevent elimination of

xi by ∀∃BTP; but these broken triangles have a support variable xj which allows xi to be eliminated
by 1-fBTP.

It can easily be verified that all combinations are covered by these four examples: for any two
distinct rules, rule1 and rule2, among the (∃, DE-)snake property, the triangle property, ∀∃BTP and
1-fBTP, there is an example instance in Figure 9 such that rule1 eliminates xi but rule2 does not.

Proposition 5 tells us that the BT-degree property subsumes ∀∃BTP. On the other hand, as we
now show, it is incomparable with the three other properties.

Proposition 7 The BT-degree property is incomparable with each of the following variable elimi-
nation properties: the (∃, DE-)snake property, the triangle property and 1-fBTP.

16

Proof: The proof is identical to the proof of Proposition 6, since the instances shown in Figure 9
in which variable xi satisfies the BT-degree property are exactly the same instances in which xi
satisfies ∀∃BTP. In particular, xi does not satisfy the BT-degree property in Figure 9(c) (respectively
Figure 9(d)) since (vj , vk) (respectively (v`, vk)) cannot be extended to a consistent assignment
for xi. Proposition 5 tells us that xi can be eliminated by BT-degree property in the instances in
Figure 9(a) and Figure 9(b) since it can be eliminated by the weaker property ∀∃BTP.

Another important generic example is the case in which xi is constrained by a single other
variable xj . Such a variable xi can always be eliminated (remembering that eliminating a variable
means first deleting from D(xj) all values vj with no support at xi). In this case, variable xi can
be eliminated by any of the triangle property, ∀∃BTP or 1-fBTP, but not necessarily by the (∃,
DE-)snake property.

9. Experimental results

In this section, we study the practical interest of some variable elimination rules, namely the BT-
degree property, the ∃snake rule, the DE-snake rule and the triangle property. For each rule, we
assess its ability to eliminate variables and its impact on solving efficiency. First, we describe the
experimental protocol we used.

9.1 Experimental protocol

We considered all the binary instances from the 2008 International CP Competition1 and we dis-
carded those whose inconsistency is detected by enforcing arc-consistency. By so doing, we ob-
tained a benchmark of 3,557 CSP instances. These instances have between 3 and 5,000 variables
whose initial domains have between 2 and 10,000 values. The number of constraints varies from 3 to
124,750. Constraints are defined in extension or in intension. For example, among these instances,
we can find frequency allocation problems or graph colouring instances.

Regarding the variable elimination algorithms, for each rule, we first enforced arc-consistency
and then eliminated those variables having a singleton domain. Note that, in an arc-consistent
instance, singleton-domain variables would be eliminated by all four of the rules we are comparing.
Then we applied the considered elimination rule until convergence (i.e. a fixpoint is reached at
which no more eliminations are possible by this rule). To do this, we consider a set of variables
containing all the candidates for elimination. Initially, this set contains all the variables having
a non-singleton domain. For each candidate variable, we check whether the rule applies. If so,
the variable is eliminated and all its neighbours are added to the candidate set. Two variables
are neighbours if they constraint each other. Checking whether the rule applies is performed as
described in Section 7 for the BT-degree property, or by a naive approach for the ∃snake rule,
the DE-snake rule and the triangle property. We used more naive algorithms than those which
are optimised for worst-case time complexity. The algorithms in the Appendix (which use data
structures to reduce worst-case time complexity) are given for their theoretical rather than practical
interest, since our first concern in these experimental trials was to estimate and compare the number
of variable eliminations that can be achieved by each rule. In order to solve CSP instances, we
used the state-of-the-art algorithm MAC+RST+NG (Lecoutre, Sais, Tabary, & Vidal, 2007). We

1. http://www.cril.univ-artois.fr/CPAI08

17

Table 1: Number of instances for which the elimination process finishes, runs out of time or memory or is
able to eliminate at least one variable.

BT-degree ∃snake DE-snake triangle
Processed 2,056 3,449 3,371 3,420
Timeout 513 108 184 137
Memory-out 988 0 0 0
Elim. instances 507 786 836 1,313

exploit a geometric restart policy based on the number of allowed backtracks. Initially, the number
of allowed backtracks is set to 100 and the increasing factor to 1.1. The search was guided by the
dom/wdeg variable heuristic (Boussemart, Hemery, Lecoutre, & Sais, 2004). All the algorithms are
written in C++ in our own library.

The experiments were performed on Dell PowerEdge M620 blade servers with Intel Xeon E5-
2609 2.4 GHz processors. We allotted 30 minutes and 16 GB of memory for each elimination
process while, for the solving process, the timeout was set to one hour.

9.2 Ability to eliminate variables

In this part, we assess the practical behaviour of the considered elimination rules and their ability
to eliminate variables. Table 1 provides the number of instances for which the elimination process
finishes, runs out of time or memory or is able to eliminate at least one variable. Clearly, the
(∃,DE-)snake rules and the triangle property are able to process more instances than the BT-degree
property. Such a result was foreseeable since the algorithm we used for the latter property has
worse time and space complexities than the two others. These complexities also explain why the
elimination process based on the BT-degree property runs out of time or memory. However, despite
this, the BT-degree property still succeeds in processing about 58% of the instances. Moreover, as
we can see in Figure 10, which depicts the cumulative number of processed instances with respect
to elapsed time, it processes about 90% of the treated instances in less than one minute. This ratio is
close to the one obtained for the triangle property, while the ∃snake rule (respectively the DE-snake
rule) can be applied for more than 95% (resp. 92%) of the treated instances in the same time. An
obvious conclusion we can draw from Figure 10 is that a much shorter time-out would not have
greatly reduced the number of variable eliminations by any of the rules. Indeed, the fact that the
curves all flatten out fairly quickly indicates that more efficient algorithms would not have detected
a significantly larger number of variable eliminations within any given time-out period.

Now, if we investigate the ability to eliminate variables, the triangle property is the most in-
teresting rule in the sense that it is able to eliminate variables in more instances. The triangle rule
eliminates at least one variable in 1,313 instances. Figure 11 provides a comparison of the percent-
age of eliminated variables for each instance and for each pair of elimination rules. First, we can
remark that these comparisons are consistent with the theoretical results we provided previously. In
particular, they illustrate the fact that the DE-snake rule subsumes the ∃snake rule and any other
pair of elimination rules are incomparable. For example, if we compare the (∃,DE-)snake rules and
the BT-degree property, we clearly see that they are incomparable since there exist instances for
which some variables are eliminated by the first elimination rules and not by the second and con-
versely. Moreover, we can note that the number of the instances for which the (∃,DE-)snake rules

18

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000 1200 1400 1600 1800

#i
ns

ta
nc

es

runtime (s)

BT exist-snake DE-snake triangle

Figure 10: Cumulative number of processed instances with respect to elapsed time.

eliminate more variables is close to the respective number for the BT-degree property. In contrast, if
we compare the triangle property with the BT-degree property, the triangle property turns out to be
more effective for eliminating variables, even if the two rules are incomparable. Indeed, there exist
only a few instances for which the BT-degree property eliminates more variables than the triangle
property. Then, if we compare the triangle property with the ∃snake rule, we can draw the same
conclusion. Finally, the comparison between the triangle property and the DE-snake rule seems to
be more less clear. However, we can note that for a significant number of instances, the triangle
property is able to eliminate variables while the DE-snake rule eliminates none. So, it turns out that
the triangle property appears to be the best elimination rule with respect to the ability to eliminate
variables.

Further experiments would be needed to identify which type of variables are more likely to be
eliminated by each rule. If it turns out that such variables have some easily identifiable charac-
teristic, such as a small number of neighbours or a small domain, this will help us target specific
variables. It may even turn out that these variables are exactly those for which testing the variable-
elimination rules is less costly in computational resources. Our preliminary investigations we made
in this direction seem to show that this is the case. Indeed, they establish that the eliminated vari-
ables often have a small domain or a small number of neighbours as shown in Figures 12 and 13.
The two figures compare respectively the number of eliminated variables having a given domain size
or a given degree (i.e. number of neighbours) to the corresponding number in the original instances.
We focus our study on variables having a domain size or a degree at most 100. Above, the number
of eliminated variables is negligible (about one percent in the best cases). We can observe that in our
experiments the BT-degree property did not eliminate all variables with a singleton domain. This is
simply explained by the instances for which the elimination process runs out of memory.

9.3 Impact on solving efficiency

This subsection is devoted to the impact of elimination rules on the solving efficiency. So, we con-
sider the 1,337 instances for which at least one of the considered rules allows to eliminate some
variables. For each of them, we apply MAC+RST+NG on the original instance and on the instance
after (possibly) eliminating variables and we compare the observed runtime. In the latter case, the

19

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

ex
ist

-s
na

ke

BT

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

D
E-

sn
ak

e

BT

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

tri
an

gl
e

BT

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

D
E-

sn
ak

e

exist-snake

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

tri
an

gl
e

exist-snake

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

tri
an

gl
e

DE-snake

Figure 11: Comparison of the percentage of eliminated variables for each instance and for each pair of
elimination rules.

runtime includes both the solving runtime and the variable-elimination phase runtime. Figure 14
gives the cumulative number of instances solved by MAC+RST+NG after eliminating some vari-
ables or by considering the original instances. The “step” which appears after 30 minutes in the
BT curve is due to the fact that a large number of instances have just reached the time-out for the
variable-elimination phase and are then solved fairly quickly. To compare fairly the different algo-
rithms we have to observe the curves after this 30-minute mark. It appears that MAC+RST+NG
solves more instances when the instances are preprocessed with any of the considered elimination
rules. Moreover, the triangle property is again the most interesting elimination rule. Its use allows
MAC+RST+NG to solve 1,008 instances while it only solves 996 and 998 instances when the in-
stances are preprocessed respectively with the BT-degree property and ∃snake rule (1,000 instances
for DE-snake rule). Without any preprocessing, MAC+RST+NG performs worst by solving only

20

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100

va

ria
bl

es

Domain size

BT
exist-snake

DE-snake
triangle

original

Figure 12: Number of eliminated variables having a domain of a given size for each elimination rule and
number of such variables in the original instances.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100

va

ria
bl

es

Degree

BT
exist-snake

DE-snake
triangle

original

Figure 13: Number of eliminated variables having a given degree for each elimination rule and number of
such variables in the original instances.

991 instances. If we compare more finely the runtime of MAC+RST+NG applied on the origi-
nal instances and on the instances after eliminating some variables thanks to the triangle property
(see Figure 15), we observe that, depending on the instance, eliminating variables may or may
not improve solving efficiency. However, we can remark that there exist several instances which
MAC+RST+NG solves after the elimination of some variables but not without and above all that
the converse is false. So applying the triangle property for eliminating variables before solving
makes sense.

Since the computational complexity of our variable-elimination rules is comparable with strong
path consistency (SPC) (Lecoutre, 2009), it was natural to also test applying SPC. However, ap-
plying SPC in preprocessing allowed us to solve only 869 instances compared to 991 instances
using MAC+RST+NG alone (without any variable elimination) and hence proved to be counter-
productive. Applying SPC required the rewriting in extension of those relations that need to be
modified, whereas our variable-elimination rules allow us to keep these relations in their original
form.

21

 800

 850

 900

 950

 1000

 1050

 0 500 1000 1500 2000 2500 3000 3500

#i
ns

ta
nc

es

runtime (s)

BT
exist-snake

DE-snake
triangle

original

Figure 14: Cumulative number of instances solved by MAC+RST+NG after eliminating some variables or
by considering the original instances with respect to elapsed time.

1

10

100

1000

1 10 100 1000

tri
an

gl
e

original

Figure 15: Comparison of the runtime of MAC+RST+NG on the original instances and on the same instances
after eliminating variables thanks to the triangle property.

10. Variable-elimination rules and tractability

We investigate, in this section, the possibility of defining tractable classes based on our variable-
elimination rules. As is the case for BTP (Cooper et al., 2010), the rules we have presented in this
paper also define tractable classes that can be detected in polynomial time by successive elimination
of variables.

We also study the confluence of our variable-elimination rules which allows us to show the
tractability of maximising the number of eliminated variables.

Definition 14 For a variable-elimination property P , we say that a binary CSP instance I satisfies
P for the variable order < if for each variable xm, except for the first variable according to the
order <, I satisfies the property P on xm in the sub-instance of I restricted to the variables xi such
that xi ≤ xm.

22

Definition 15 We say that a property P of binary CSP instances is hereditary if for any instance I
with more than one variable, I satisfies P implies that I−m satisfies P , where I−m is the instance
obtained from I after elimination of the variable xm.

Theorem 5 Let P be an hereditary sol-var-elim property which can be tested in polynomial time.
The class of binary CSP instances I satisfying the property P (for a possibly unknown ordering of
its variables) can be detected and solved in polynomial time.

Proof: Let I be a binary CSP instance on n variables. Suppose that I satisfies the hereditary
variable-elimination property P for a variable ordering <. Then I satisfies property P on the last
variable of the ordering <. We can therefore find a variable xm on which I satisfies the property
P by exhaustive search over all n variables. Note that there may be more than one variable which
satisfies P . In this case, we make an arbitrary choice which variable to eliminate: the rest of
the proof does require that xm be the last variable according to the order <. Variable xm is then
eliminated to produce the sub-instance I−m which has the same satisfiability as I . Since P is
hereditary, the instance I−m also satisfies P . By successive elimination of variables we can reduce
I to an equivalent instance I ′ on a single variable in polynomial time. A single-variable instance
being trivial to solve, and since P is a sol-var-elim property, we can construct a solution to I in
polynomial time.

The following theorem is a direct consequence of Theorem 5 and the fact that the listed proper-
ties are hereditary.

Theorem 6 The class of binary CSP instances I satisfying any of the following properties (for a
possibly unknown ordering of its variables) can be detected and solved in polynomial time:

1. the ∀∃ broken k-dimensional polyhedron property (for any fixed k ≥ 2),

2. the ∃snake property,

3. the DE-snake property,

4. ∀∃BTP,

5. the BT-degree property.

At first sight, it might appear that we would not have an equivalent result for the triangle prop-
erty, since eliminating a variable xj might destroy the triangle property on another variable xi
(i 6= j). Recall that, in Definition 5, a variable xi can be eliminated by the triangle property only
if there is a variable xj which justifies this elimination, so the obvious question is whether xi can
still be eliminated after (its justifying variable) xj has been eliminated. It turns out that the answer
is yes, as we will now demonstrate.

Definition 16 In a binary CSP instance I , for distinct variable xi, xj , variable xj justifies the

elimination by the triangle property of variable xi (which we denote xj
I−→ xi) if for all vj ∈ D(xj),

there exists uji(vj) ∈ D(xi) satisfying the following conditions:

C1(i,j,vj): (uji(vj), vj) ∈ Rij ,

23

C2(i,j,vj): ∀xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk), (vj , vk) ∈ Rjk ⇒ (uji(vj), vk) ∈ Rik.

Lemma 1 If xp
I−→ xj and xj

I−→ xi, where p 6= i, then xp
I−j−−→ xi. In other words, if xp justifies

the elimination of xj and xj justifies the elimination of xi by the triangle property, then xp justifies
the elimination of xi in the instance I−j which is the result of the elimination of xj from I .

Proof: Suppose that xp
I−→ xj and xj

I−→ xi, where p 6= i. For vp ∈ D(xp), define

upi(vp) := uji(upj(vp)).

It suffices to show that upi(vp) ∈ D(xi) and that it satisfies the conditions of Definition 16 in I−j ,
namely:

C1(i,p,vp): (upi(vp), vp) ∈ Rip,

C2(i,p,vp): ∀xk ∈ X \ {xi, xp, xj}, ∀vk ∈ D(xk), (vp, vk) ∈ Rpk ⇒ (upi(vp), vk) ∈ Rik.

Since xp
I−→ xj , we have upj(vp) ∈ D(xj) and then, since xj

I−→ xi, we have upi(vp) ∈ D(xi) (with

upi(vp) = uji(upj(vp))). Since xp
I−→ xj , we also have from C1(j,p,vp) that (upj(vp), vp) ∈ Rjp.

Then, since xj
I−→ xi, we have C2(i,j,upj(vp)) and, in particular for k = p and vk = vp ∈ D(xp):

(upj(vp), vp) ∈ Rjp ⇒ (uji(upj(vp)), vp) ∈ Rip

Since upi(vp) = uji(upj(vp)), we can deduce that condition C1(i,p,vp) holds.

Now consider any xk ∈ X \ {xi, xp, xj} and any vk ∈ D(xk). Since xp
I−→ xj , we have from

C2(j,p,vp) that
(vp, vk) ∈ Rpk ⇒ (upj(vp), vk) ∈ Rjk.

Since xj
I−→ xi, we have from C2(i,j,upj(vp)):

(upj(vp), vk) ∈ Rjk ⇒ (uji(upj(vp)), vk) ∈ Rik.

Hence, we have
(vp, vk) ∈ Rpk ⇒ (uji(upj(vp)), vk) ∈ Rik.

Since upi(vp) = uji(upj(vp)), it follows that condition C2(i,p,vp) holds, which completes the proof.

To complete our study of the definition of a tractable class based on the triangle property, we
need to consider the one case not covered by Lemma 1, namely p = i. For this, we require the
notions of isomorphic instances and neighbourhood substitutability of values. Indeed, when xi

I−→
xj and xj

I−→ xi we have to choose which of xi or xj we eliminate by the triangle property. We
will show that modulo isomorphism (and provided we have applied neighbourhood substitution),
the resulting instances are identical and hence we can make an arbitrary choice between xi and xj .

Definition 17 Two binary CSP instances I = 〈XI ,DI , RI〉, J = 〈XJ ,DJ , RJ〉 are isomorphic if
there exist bijections f : XI → XJ and gi : DI(xi) → DJ(f(xi)) (for all xi ∈ XI) such that for
all pairs of distinct variables xi, xj ∈ XI , for all vi ∈ DI(xi) and for all vj ∈ DI(xj),

(vi, vj) ∈ RI
ij ⇔ (gi(vi), gj(vj)) ∈ RJ

f(i)f(j)

24

A neighbourhood-substitutable value can be eliminated from its domain without changing the
satisfiability of the instance (Freuder, 1991; Freuder & Wallace, 2017).

Definition 18 In a binary CSP instance I = 〈X,D, R〉, vi ∈ D(xi) is neighbourhood substitutable
by v′i ∈ D(xi) \ {vi} if for all xj ∈ X \ {xi}, for all vj ∈ D(xj),

(vi, vj) ∈ Rij ⇒ (v′i, vj) ∈ Rij

Two values vi and v′i are interchangeable if vi is neighbourhood substitutable by v′i and v′i is neigh-
bourhood substitutable by vi.

Given a binary CSP instance I , it is known that the result of eliminating neighbourhood-
substitutable values until convergence (i.e. no more eliminations are possible) is unique up to
isomorphism (Cooper, 1997). We assume that there is a program NS which performs value elimi-
nations by neighbourhood substitutability until convergence, and we denote by NS (I) the result of
applying NS to I .

Lemma 2 If xi
I−→ xj and xj

I−→ xi then NS (I−i) and NS (I−j) are isomorphic.

Proof: It follows from the definition of xi
I−→ xj that for all vi ∈ D(xi), we have uij(vi) ∈ D(xj)

such that for all xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk),

(vi, vk) ∈ Rik ⇒ (uij(vi), vk) ∈ Rjk (1)

Since xj
I−→ xi we then have uji(uij(vi)) ∈ D(xi) such that for all xk ∈ X\{xi, xj}, ∀vk ∈ D(xk),

(uij(vi), vk) ∈ Rjk ⇒ (uji(uij(vi)), vk) ∈ Rik (2)

For each xi ∈ X , define the function Fi : D(xi) → D(xi) by Fi(vi) = uji(uij(vi)) and consider
the sequence

vi, F (vi), F (F (vi)), . . . , F
r(vi), . . .

Since D(xi) is finite, this sequence must cycle at some point. Let r ∈ N be the first value for which
F r(vi) = F s(vi) for some s > r. Thus, the above sequence has a cycle of length s − r starting at
F r(vi).

From Equations 1 and 2, we know that for all xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk),

(vi, vk) ∈ Rik ⇒ (F (vi), vk) ∈ Rik

By a simple inductive argument, we can deduce that for any t ∈ N,

(F t(vi), vk) ∈ Rik ⇒ (F r(vi), vk) ∈ Rik (3)

and hence each F t(vi) 6= F r(vk) is neighbourhood substitutable by F r(vi) in I−j . Thus, modulo
isomorphism, we can assume that all values in the sequence vi, F (vi), F

2(vi), . . . have been elimi-
nated from D(xi) in NS (I−j) by neighbourhood substitution except for F r(vi) (Cooper, 1997). By
a similar argument, modulo isomorphism, we can assume that in NS (I−i) all values in the sequence
uij(vi), uij(F (vi)), uij(F

2(vi)), . . . have been eliminated by neighbourhood substitutability from

25

D(xj) except for uij(F r(vi)). Furthermore, combining Equations 1, 2 and 3, we can deduce that
for all xk ∈ X \ {xi, xj}, ∀vk ∈ D(xk),

(F r(vi), vk) ∈ Rik ⇔ (uij(F
r(vi)), vk) ∈ Rjk

Thus, for each value in D(xi) in NS (I−j), there is a corresponding value in D(xj) in NS (I−i)
which has the same compatibilities with all values for all other variables (and vice versa). Further-
more, no two values inD(xi) (respectively,D(xj)) can have the same compatibilities with all values
for all other variables, otherwise they would be interchangeable in NS (I−j) (respectively, NS (I−i))
which would contradict the definition of neighbourhood substitution. It follows that NS (I−i) and
NS (I−j) are isomorphic.

We require one final lemma.

Lemma 3 If xi
I−→ xj then xi

NS(I)−−−−→ xj .

Proof: Suppose that xi
I−→ xj . We can see from Definition 5 that no eliminations of values from

D(xi) orD(xk) (for xk ∈ X \{xi, xj}) can possibly invalidate the elimination of xj by the triangle
property. Suppose that vj ∈ D(xj) is eliminated in NS(I) since it is neighbourhood substitutable
by v′j ∈ D(xi). If vj = uij(vi) for some vi ∈ D(xi), it suffices to set the value of uij(vi) to
v′j instead of vj . It is easy to see that neighbourhood substitutability guarantees that conditions
C1(j,i,vi) and C2(j,i,vi) in Definition 16 hold with this new value of uij(vi).

We can now prove that the triangle property defines a tractable class which is detectable in
polynomial time.

Theorem 7 The class of binary CSP instances I satisfying the triangle property (for a possibly
unknown ordering of its variables) can be detected and solved in polynomial time.

Proof: Suppose that there exists a variable order < for which I satisfies the triangle property.
Let xm be the last variable according to this (unknown) order. We can find in O(end3), using the
algorithm in Appendix C the set T of variables which could be eliminated from I by (a first pass of)
the triangle property. We know that T 6= ∅ since xm ∈ T . We do not know which variable in T is the
last variable according to the order <, so we eliminate some arbitrary variable xi ∈ T from I . We
then perform neighbourhood-substitution eliminations until convergence to obtain I ′ = NS(I−i).
By Lemma 1, xm can be eliminated by the triangle property from I ′ except possibly in the case
that xi

I−→ xm and xm
I−→ xi. But, in this latter case, by Lemma 2, I ′ is isomorphic to NS(I−m)

and so it is as if we had eliminated xm instead of xi. Lemma 3 tells us that that eliminating values
by neighbourhood substitutability does not destroy the fact that an instance satisfies the triangle
property. We can deduce that the instance I ′ satisfies the triangle property and hence, by an easy
inductive argument, that we will reduce the instance to a single-variable instance by successive
eliminations of n− 1 variables. The theorem follows from Theorem 2.

When not all variables can be eliminated, we are interested in maximising the number of elim-
inated variables. As pointed out in the proof of Theorem 5, the elimination of a variable by a
hereditary rule cannot be invalidated by the elimination of another variable. The following theorem
is an immediate consequence of this and the fact that the listed properties are hereditary.

26

Theorem 8 Maximising the number of variables that can be eliminated by any of the following
rules can be achieved in polynomial time: the ∀∃ broken k-dimensional polyhedron property (for
any fixed k ≥ 2), the ∃snake property, the DE-snake property, ∀∃BTP and the BT-degree property.

We saw in the proof of Theorem 7 that the elimination of a variable xm by the triangle property
can only be invalidated by the elimination of another variable xi by the triangle property if NS(I−i)
is isomorphic to NS(I−m). It follows that the triangle property is confluent modulo isomorphism,
provided neighbourhood substitution is applied after every variable elimination. We thus have the
following theorem.

Theorem 9 Maximising the number of variable eliminations by combining the triangle property
and neighbourhood substitution can be achieved in polynomial time.

11. Discussion and conclusion

In this paper we have given novel satisfiability-conserving variable-elimination rules for binary
CSPs, two of which (namely DE-snake and BT-degree) strengthen previously-published rules. In
each case, if the instance is satisfiable, then a solution to the original instance can be recovered
in low-order polynomial time from a solution to the reduced instance. We have given optimised
algorithms for applying each rule until convergence. The DE-snake rule can be applied until con-
vergence in O(ed3) time, whereas the corresponding time complexity for the triangle rule and the
BT-degree rule is O(end3). However, it should be pointed out that the DE-snake rule inherits the
disadvantage of the ∃snake rule that the number of solutions may actually increase after elimination
of a variable (Cohen et al., 2015): for example, it allows us to eliminate the central variable in the
two-colouring of a star graph which increases the number of solutions from 2 to 2n−1.

Extensive experimental trials have confirmed that because of relatively high time complexity of
each of the variable-elimination rules, they may only be tested exhaustively during preprocessing.
Applying them in preprocessing allowed us to solve more benchmark instances than without, with
the triangle rule allowing us to eliminate more variables and hence solve more instances than the
other rules. From a practical viewpoint, it would be interesting to understand how to better target
the instances or the variables for which the proposed variable elimination rules are likely to be
profitable. As a first step in this direction we have seen that most variables eliminated by our rules
have small domain size and/or small degree. Future work is required to determine whether versions
of our rules targetting only certain variables may be a practical possibility during search.

We have, in particular, generalised the notion of broken triangle to broken polyhedron, which
may be of independent theoretical interest. The broken polyhedra property may lead to other pos-
sible theoretical advances (such as value-merging (Cooper et al., 2016a), value-elimination (Cohen
et al., 2015), and generalisations to the general-arity CSP (Cooper et al., 2016a; El Mouelhi, 2017)
or the Quantified CSP (Gao, Yin, & Zhou, 2011)), as was the case with the broken-triangle prop-
erty (Cooper et al., 2010).

We have also shown that each of the variable-elimination rules allows us to define a novel hybrid
tractable class by successive elimination of almost all variables. For each rule, this elimination order
can be found in polynomial time, which we found surprising in the case of the triangle property.

27

Acknowledgments

This work was funded by the Agence Nationale de la Recherche project ANR-16-C40-0028.

Appendix A. Algorithm for variable elimination by the ∃snake property

In this and the following appendices, we assume that we have implemented a set data structure
in such a way that we can perform the following operations in O(1) time: set membership, ad-
dition/deletion of an element and testing whether the set is empty. This can be achieved using a
boolean table together with a counter of the number of elements in the set, since in each case the set
is a subset of a fixed set, such as X the variables of the instance.

Below we give an algorithm for eliminating variables by the ∃snake property until convergence.
It uses the following data structures :

• SELIM is the set of variables to be eliminated.

• For vj , v′j∈D(xj), vars+−(j, vj , v
′
j) = {k | ∃vk∈D(xk) with (vj , vk)∈Rjk∧(v′j , vk) /∈Rjk}.

• For distinct i, j ∈ {1, . . . , n} such that xi constrains xj and vi ∈ D(xi), countPairs(i, vi, j)
is the number of pairs of values vj , v

′
j ∈ D(xj) such that for some k 6= i, j and some

vk ∈ D(xk), the snake pattern (as shown in Figure 1) occurs on 〈xi, vi〉, 〈xj , vj〉, 〈xj , v′j〉,
〈xk, vk〉. We calculate countPairs(i, vi, j) by noting that it is the number of pairs of values
vj , v

′
j ∈ D(xj) such that (v′j , vi) ∈ Rji ∧ (vj , vi) /∈ Rji∧ vars+−(j, vj , v

′
j) \ {i} 6= ∅.

• For vi ∈ D(xi), badVars(i, vi) is the set of j 6= i such that countPairs(i, vi, j) 6= 0. If
badVars(i, vi)= ∅, then variable xi is added to SELIM .

The algorithm first initialises the above data structures, then performs eliminations from X , the set
of variables (which is initially {x1, . . . , xn}). When performing an elimination, the data structures
are updated which may lead to more variable eliminations. Eliminations propagate until conver-
gence (i.e. until no more eliminations are possible). Updating the data structures, when a variable
xk is eliminated, means deleting k from each vars+−(j, vj , v

′
j) and each badVars(i, vi). When delet-

ing k from vars+−(j, vj , v
′
j), the value of countPairs(i, vi, j) needs to be decremented only in the case

that ((v′j , vi) ∈ Rji∧ (vj , vi) /∈ Rji) and vars+−(j, vj , v
′
j)\{i} becomes empty for the first time (i.e.

vars+−(j, vj , v
′
j) becomes {i} or it becomes empty and the k being deleted from it is not i).

*** Initialisation ***
SELIM := ∅ ;
for xj ∈ X :

for vj ∈ D(xj) :
for v′j ∈ D(xj) \ {vj} :

for xk ∈ X \ {xj} such that xk is constrained by xj :
if ∃vk ∈ D(xk) such that (vj , vk) ∈ Rjk ∧ (v′j , vk) /∈ Rjk

then add k to vars+−(j, vj , v
′
j) ;

28

for xi ∈ X :
for vi ∈ D(xi) : ..(1)

badVars(i, vi) := ∅ ;
for xj ∈ X \ {xi} such that xj is constrained by xi :

countPairs(i, vi, j) := 0 ;
for vj ∈ D(xj) :

for v′j ∈ D(xj) \ {vj} :
if (v′j , vi) ∈ Rji ∧ (vj , vi) /∈ Rji∧ vars+−(j, vj , v

′
j) \ {i} 6= ∅

then countPairs(i, vi, j) := countPairs(i, vi, j) +1 ;
badVars(i, vi) := badVars(i, vi) ∪ {j} ;

if badVars(i, vi) = ∅ then add xi to SELIM ; exit loop (1) ;

*** Elimination and propagation ***
while SELIM 6= ∅ :

delete some xk from SELIM ; X : = X \ {xk} ;
for xj ∈ X such that xj is constrained by xk :

for vj ∈ D(xj) :
for v′j ∈ D(xj) \ {vj} :

delete k from vars+−(j, vj , v
′
j) ;

if vars+−(j, vj , v
′
j) becomes a singleton {i} after deletion of k(2)

then for vi ∈ D(xi) :
if ((v′j , vi) ∈ Rji ∧ (vj , vi) /∈ Rji)

then countPairs(i, vi, j) := countPairs(i, vi, j) −1 ;
if countPairs(i, vi, j) = 0
then badVars(i, vi) := badVars(i, vi) \{j} ;

if badVars(i, vi) = ∅ then add xi to SELIM ;
if vars+−(j, vj , v

′
j) becomes ∅ after deletion of k(3)

then for xi ∈ X \ {xj , xk} such that xi is constrained by xj :
for vi ∈ D(xi) :

if ((v′j , vi) ∈ Rji ∧ (vj , vi) /∈ Rji)

then countPairs(i, vi, j) := countPairs(i, vi, j) −1 ;
if countPairs(i, vi, j) = 0
then badVars(i, vi) := badVars(i, vi) \{j} ;

if badVars(i, vi) = ∅ then add xi to SELIM ;
for i ∈ X such that xi is constrained by xk :

for vi ∈ D(xi) : ..(4)
badVars(i, vi) := badVars(i, vi) \ {k} ;
if badVars(i, vi) = ∅ then add xi to SELIM ; exit loop (4) ;

This algorithm requires O(ed3) time and O(ed2) space. To see the O(ed3) time bound, observe
that each of the tests (2) and (3) can only be True once for each triple (j, vj , v

′
j). The data structure

vars+−(j, vj , v
′
j) requires O(ed2) space.

29

Appendix B. Algorithm for variable elimination by the DE-snake property

Below we give an algorithm for eliminating variables by the DE-snake property until convergence.
It uses the following data structures :

• SELIM is the set of variables to be eliminated.

• For vj , v′j∈D(xj), vars+−(j, vj , v
′
j) = {k | ∃vk∈D(xk) with (vj , vk)∈Rjk∧(v′j , vk) /∈Rjk}.

• For vi ∈ D(xi), badAssts(i, vi) is the set of assignments 〈j, vj〉 such that (vi, vj) /∈ Rij and
@v′j ∈ D(xj) such that vars+−(j, vj , v

′
j) ⊆ {i} and (vi, v

′
j) ∈ Rij . If badAssts(i, vi)= ∅, then

variable xi is added to SELIM since it can be elminated by the DE-snake rule.

The algorithm first initialises the above data structures, then performs eliminations from X , the set
of variables (which is initially {x1, . . . , xn}). When performing an elimination, the data structures
are updated which may lead to more variable eliminations. Eliminations propagate until conver-
gence (i.e. until no more eliminations are possible). Updating the data structures, when a variable
xk is eliminated, means deleting k from each vars+−(j, vj , v

′
j) and deleting each assignment to xk

from each badAssts(i, vi). When deleting k from vars+−(j, vj , v
′
j), badAssts(i, vi) needs to be up-

dated for each variable xi for which vars+−(j, vj , v
′
j) \ {i} becomes empty for the first time (i.e.

vars+−(j, vj , v
′
j) becomes {i} or it becomes empty and the k being deleted from it is not i).

*** Initialisation ***
SELIM := ∅ ;
for xj ∈ X :

for vj ∈ D(xj) :
for v′j ∈ D(xj) \ {vj} :

for xk ∈ X \ {xj} such that xk is constrained by xj :
if ∃vk ∈ D(xk) such that (vj , vk) ∈ Rjk ∧ (v′j , vk) /∈ Rjk

then add k to vars+−(j, vj , v
′
j) ;

for xi ∈ X :
for vi ∈ D(xi) :

badAssts(i, vi) := ∅
for xj such that xj is constrained by xi :

for vj ∈ D(xj) :
if (vi, vj) /∈ Rij

then for v′j ∈ D(xj) \ {vj} :
if (vi, v

′
j) ∈ Rij and vars+−(j, vj , v

′
j) \ {i} = ∅

then add {〈j, vj〉} to badAssts(i, vi) ;
if badAssts(i, vi) = ∅ then add xi to SELIM ;

30

*** Elimination and propagation ***
while SELIM 6= ∅ :

delete some xk from SELIM ; X : = X \ {xk} ;
for xj ∈ X such that xj is constrained by xk :

for vj ∈ D(xj) :
for v′j ∈ D(xj) \ {vj} :

delete k from vars+−(j, vj , v
′
j) ;

if vars+−(j, vj , v
′
j) becomes a singleton {i} after deletion of k :(1)

then for vi ∈ D(xi) :
if ((v′j , vi) ∈ Rji ∧ (vj , vi) /∈ Rji)

then badAssts(i, vi) := badAssts(i, vi) \{〈j, vj〉} ;
if badAssts(i, vi) becomes ∅ then add xi to SELIM ;

if vars+−(j, vj , v
′
j) becomes ∅ after deletion of k :(2)

then for xi ∈ X \ {xj , xk} such that xi is constrained by xj :
for vi ∈ D(xi) :

if ((v′j , vi) ∈ Rji ∧ (vj , vi) /∈ Rji)

then badAssts(i, vi) := badAssts(i, vi) \{〈j, vj〉} ;
if badAssts(i, vi) becomes ∅ then add xi to SELIM ;

for i ∈ X such that xi is constrained by xk :
for vi ∈ D(xi) :

for vk ∈ D(xk) :
badAssts(i, vi) := badVars(i, vi) \ {〈k, vk〉} ;
if badVars(i, vi) becomes ∅ then add xi to SELIM ;

This algorithm requires O(ed3) time and O(ed2) space. To see the O(ed3) time bound, observe
that each of the tests (1) and (2) can only be True once for each triple (j, vj , v

′
j). The data structures

vars+−(j, vj , v
′
j) and badAssts(i, vi) both require O(ed2) space.

Appendix C. Algorithm for variable elimination by the triangle property

Below we give an algorithm for eliminating variables by the triangle property until convergence. It
uses the following data structures :

• SELIM is the set of variables to be eliminated.

• For vj ∈ D(xj), vi ∈ D(xi) such that (vj , vi) ∈ Rji, badVars(j, vj , i, vi) is the set of k 6= i, j
such that there exists vk ∈ D(xk) with (vj , vk) ∈ Rjk and (vi, vk) /∈ Rik.

• supported(j, vj , i) = True if there exists vi ∈ D(xi) such that badVars(j, vj , i, vi) = ∅.

• count(j, i) is the number of values vj ∈ D(xj) such that supported(j, vj , i) = False. If
count(j, i) = 0, for some j 6= i such that xj ∈ X \ SELIM then we can eliminate xi by
the triangle property.

The algorithm first initialises the above data structures, then performs eliminations. When perform-
ing an elimination, these data structures are updated which may lead to further variable eliminations.
The only delicate point in the algorithm is that once a variable is due to be eliminated it cannot be
used to justify the elimination of another variable; hence the test xj /∈ SELIM in lines (1) and (3).

31

*** Initialisation ***
SELIM := ∅ ;
for xi ∈ X :

for xj ∈ X \ {xi} such that xj /∈ SELIM : ..(1)
count(j, i) := 0 ;
for vj ∈ D(xj)

supported(j, vj , i) := False ;
for vi ∈ D(xi) such that (vj , vi) ∈ Rji : ..(2)

badVars(j, vj , i, vi) := ∅ ;
for xk ∈ X \ {xi, xj} such that xk is constrained by xi :

if ∃vk ∈ D(xk) such that (vj , vk) ∈ Rjk and (vi, vk) /∈ Rik

then add k to badVars(j, vj , i, vi) ;
if badVars(j, vj , i, vi) = ∅
then supported(j, vj , i) := True ; exit loop (2) ;

if supported(j, vj , i) = False then count(j, i) := count(j, i) +1 ;
if count(j, i) = 0
then add xi to SELIM ; exit loop (1) ;

*** Elimination and propagation ***
while SELIM 6= ∅ :

delete some xk from SELIM ; X : = X \ {xk} ;
for xi ∈ X such that xi is constrained by xk :

for xj ∈ X \ {xi} such that xj /∈ SELIM : ...(3)
for vj ∈ D(xj) such that supported(j, vj , i) = False :

for vi ∈ D(xi) : ..(4)
if k ∈ badVars(j, vj , i, vi)
then delete k from badVars(j, vj , i, vi)

if badVars(j, vj , i, vi) = ∅
then supported(j, vj , i) := True ;

count(j, i) := count(j, i) −1 ;
if count(j, i) = 0
then add xi to SELIM ; exit loop (3) ;
exit loop (4) ;

This algorithm requires O(end3) time and O(end2) space. Curiously, the propagation phase
requires less time than initialisation phase, since it requires only O(end2) time. This is because we
no longer need to look at individual values in the propagation phase.

Appendix D. Algorithm for variable elimination by the BT-degree property

Below we give an algorithm for eliminating variables by the BT-degree property until convergence.
It uses the following data structures :

• SELIM is the set of variables to be eliminated.

32

• N+
− (i, vi, j, vj ,m) = |{vm ∈ D(xm) | (vi, vm) ∈ Rim ∧ (vj , vm) /∈ Rjm}|, is the number

of values vm ∈ D(xm) which are linked by a positive edge to 〈xi, vi〉 and by a negative edge
to 〈xj , vj〉.

• For a pair of variables xi, xm linked by a constraint, for vi ∈ D(xi) and vm ∈ D(xm),
BTvars(i, vi,m, vm) is the set of j 6= i,m such that there is a broken triangle (vm, vi, vj , v

′
m)

or (vm, vj , vi, v
′
m) for some vj ∈ D(xj) and v′m ∈ D(xm).

• BTdegree(i, vi,m, vm) is the cardinality of the set BTvars(i, vi,m, vm).

• 3safe(i, vi, j, vj ,m) is True if (vi, vj) ∈ Rij is 3-safe on xm.

• M+
− (i, vi, j, vj ,m) is similar to N+

− (i, vi, j, vj ,m), except that the negative edge vjvm must
also have BT degree greater than 1.

• badBases(m) is the set of (i, vi, j, vj) such that i, j,m are distinct, vi ∈ D(xi), vj ∈ D(xj)
and @v′m ∈ D(xm) satisfying the conditions in the definition of the BT-degree property
(namely, (vi, v

′
m) ∈ Rim, (vj , v

′
m) ∈ Rjm and either (vi, vj) is 3-safe on xm or (vi, v

′
m)

has BT degree zero or (vj , v
′
m) has BT degree zero). Thus, if badBases(m) is the empty set,

then xm can be eliminated by the BT-degree property.

The algorithm first initialises the above data structures, then performs eliminations. Again, the set
of variables X is initially {x1, . . . , xn}. The data structure 3safe is calculated using the fact that
(vi, vj) ∈ Rij is 3-safe on xm if and only if M+

− (i, vi, j, vj ,m) = 0 or M+
− (j, vj , i, vi,m) = 0.

When performing an elimination, all data structures are updated which may provoke further variable
eliminations.

*** Initialisation ***
SELIM := ∅ ;
for xm ∈ X :

for xi ∈ X \ {xm} such that xi is constrained by xm:
for xj ∈ X \ {xi, xm} such that xj is constrained by xm :

for vi ∈ D(xi) :
for vj ∈ D(xj) such that (vi, vj) ∈ Rij :

N+
− (i, vi, j, vj ,m) := |{vm ∈ D(xm) | (vi, vm) ∈ Rim ∧ (vj , vm) /∈ Rjm}| ;

for xm ∈ X :
for xi ∈ X \ {xm} such that xi is constrained by xm:

for vi ∈ D(xi) :
for vm ∈ D(xm) :

BTvars(i, vi,m, vm) := {j 6= i,m | ∃vj ∈ D(xj) such that (vi, vj) ∈ Rij and
((vi, vm) /∈ Rim ∧ (vj , vm) ∈ Rjm ∧N+

− (i, vi, j, vj ,m) 6= 0)
or ((vi, vm) ∈ Rim ∧ (vj , vm) /∈ Rjm ∧N+

− (j, vj , i, vi,m) 6= 0) } ;
BTdegree(i, vi,m, vm) := |BTvars(i, vi,m, vm)| ;

for xm ∈ X :
badBases(m) := ∅ ;
for xi ∈ X \ {xm} such that xi is constrained by xm:

for xj ∈ X \ {xi, xm} such that xj is constrained by xm :

33

for vi ∈ D(xi) :
for vj ∈ D(xj) such that (vi, vj) ∈ Rij : ...(1)

M+
− (i, vi, j, vj ,m) := |{vm ∈ D(xm) | (vi, vm) ∈ Rim ∧ (vj , vm) /∈ Rjm

∧ BTdegree(j, vj ,m, vm) > 1}| ;
3safe(i, vi, j, vj ,m) := M+

− (i, vi, j, vj ,m) = 0 or M+
− (j, vj , i, vi,m) = 0 ;

if @v′m ∈ D(xm) such that (vi, v
′
m) ∈ Rim ∧ (vj , v

′
m) ∈ Rjm ∧

(3safe(i, vi, j, vj ,m) ∨ BTdegree(i, vi,m, v′m) = 0 ∨ BTdegree(j, vj ,m, v′m) = 0)
then add (i, vi, j, vj) to badBases(m) ; exit loop (1) ;

if badBases(m) = ∅ then add xm to SELIM ;

*** Elimination and propagation ***
while SELIM 6= ∅ :

delete some xj from SELIM ; X : = X \ {xj} ;
for xm ∈ X such that xm is constrained by xj :

for xi ∈ X \ {xm} such that xi is constrained by xm :
for vi ∈ D(xi) :

for vm ∈ D(xm) :
if j ∈ BTvars(i, vi,m, vm)
then delete j from BTvars(i, vi,m, vm) ;

BTdegree(i, vi,m, vm) := BTdegree(i, vi,m, vm) −1 ;
if BTdegree(i, vi,m, vm) = 1 ..(2)
then for xk ∈ X \ {xi, xm} such that xk is constrained by xm :

for vk ∈ D(xk) such that (vi, vk) ∈ Rik :
if (vk, vm) ∈ Rkm ∧ (vi, vm) /∈ Rim

then M+
− (k, vk, i, vi,m) := M+

− (k, vk, i, vi,m)− 1 ;
if (M+

− (i,vi,k,vk,m) = 0 ∨M+
− (k,vk,i,vi,m) = 0) becomes True

then 3safe(i, vi, k, vk,m) := True ;
for v′m ∈ D(xm) such that (vi,v

′
m) ∈ Rim ∧ (vk,v

′
m) ∈ Rkm :

badBases(m) := badBases(m) \{(i, vi, k, vk)} ;
if badBases(m) = ∅ then add xm to SELIM ;

if BTdegree(i, vi,m, vm) = 0 ..(3)
then for xk ∈ X \ {xi, xm} such that xk is constrained by xm ;

for vk ∈ D(xk) such that (vi, vk) ∈ Rik :
if (vi, vm) ∈ Rim and (vk, vm) ∈ Rkm

then badBases(m) := badBases(m) \{(i, vi, k, vk)} ;
if badBases(m) = ∅ then add xm to SELIM ;

This algorithm requires O(end3) time and O(end2 log d) space. To prove the O(end3) time
bound we have to use the fact that each of the tests (2) and (3) can only become True once for
each quadruple (i, vi,m, vm). The data structure badBases requires O(end2) space and the data
structures N+

− and M+
− require O(end2 log d) space, the log d factor being due to the fact that they

store integers up to d.

34

Appendix E. Algorithm for variable elimination by ∀∃BTP

Below we give an algorithm for eliminating variables by ∀∃BTP until convergence. It uses the
following data structures :

• SELIM is the set of variables to be eliminated.

• badVars(i) is the set of j 6= i such that there is some value vj ∈ D(xj) such that for all
values vi ∈ D(xi) there is a broken triangle (vi, vj , vk, v

′
i) on xi for some v′i, vk, k such that

v′i ∈ D(xi) and vk ∈ D(xk).

• countBadVals(j,i) is the number of values vj ∈ D(xj) such that for all values vi ∈ D(xi)
there is a broken triangle (vi, vj , vk, v

′
i) on xi for some v′i, vk, k such that v′i ∈ D(xi) and

vk ∈ D(xk).

• support(j,vj ,i) is the set of all values vi ∈ D(xi) such that there is no broken triangle
(vi, vj , vk, v

′
i) on xi for any v′i, vk, k with v′i ∈ D(xi) and vk ∈ D(xk).

• LBT (j, vj , i, vi) is the set of k such that there is a broken triangle (vi, vj , vk, v
′
i) on xi for

some v′i, vk, k such that v′i ∈ D(xi) and vk ∈ D(xk).

The algorithm first initialises the above data structures, then performs eliminations. When perform-
ing an elimination, these data structures are updated which may provoke further variable elimina-
tions.

*** Initialisation ***
SELIM := ∅ ;
for xi ∈ X :

badVars(i) := ∅ ;
for xj ∈ X \ {xi} such that xj is constrained by xi :

countBadVals(j,i) := 0 ;
for vj ∈ D(xj) :

support(j,vj ,i) := ∅ ; L := ∅ ;
for xk ∈ X \ {xi, xj} such that xk is constrained by xi :

for vk ∈ D(xk) such that (vj , vk) ∈ Rjk :
if ∃v′i ∈ D(xi) such that (vj , v

′
i) /∈ Rji and (v′i, vk) ∈ Rik

then add 〈k, vk〉 to L ;
for vi ∈ D(xi) such that (vj , vi) ∈ Rji :

LBT (j, vj , i, vi) := ∅ ;
for 〈k, vk〉 ∈ L :

if (vi, vk) /∈ Rik then LBT (j, vj , i, vi) := LBT (j, vj , i, vi) ∪ {k} ;
if LBT (j, vj , i, vi) = ∅ then add vi to support(j,vj ,i) ;

if support(j,vj ,i) = ∅
then countBadVals(j,i) := countBadVals(j,i) +1 ; badVars(i) := badVars(i) ∪ {j} ;

if badVars(i) = ∅ then add xi to SELIM ;

35

*** Elimination and propagation ***
while SELIM 6= ∅ :

delete some variable xk from SELIM ; X := X \ {xk} ;
for xi ∈ X such that xi is constrained by xk :

if k ∈ badVars(i) then delete k from badVars(i) ;
for xj ∈ X \ {xi, xk} such that xj is constrained by xi :

for vj ∈ D(xj) :
for vi ∈ D(xi) such that (vj , vi) ∈ Rji :

if k ∈ LBT (j, vj , i, vi)
then delete k from LBT (j, vj , i, vi) ;

if LBT (j, vj , i, vi) = ∅
then add vi to support(j,vj ,i) ;

if |support(j,vj ,i)| = 1
then countBadVals(j,i) := countBadVals(j,i) −1 ;

if countBadVals(j,i) = 0 then delete j from badVars(i) ;
if badVars(i) = ∅ then add xi to SELIM ;

This algorithm requires O(end3) time and O(end2) space. The data structure LBT requires
O(end2) space.

References

Bassiliades, N., Bikakis, A., Vrakas, D., Vlahavas, I. P., & Vouros, G. A. (Eds.). (2016). Proceedings
of the 9th Hellenic Conference on Artificial Intelligence, SETN 2016, Thessaloniki, Greece,
2016. ACM.

Beigel, R., & Eppstein, D. (1995). 3-Coloring in Time O(1.3446n): A No-MIS Algorithm. In 36th
Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, pp.
444–452. IEEE Computer Society.

Bessière, C., Régin, J., Yap, R. H. C., & Zhang, Y. (2005). An optimal coarse-grained arc consis-
tency algorithm. Artif. Intell., 165(2), 165–185.

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting Systematic Search by Weight-
ing Constraints. In Proceedings of the 16th Eureopean Conference on Artificial Intelligence,
ECAI 2004, pp. 146–150.

Carbonnel, C., Cohen, D. A., Cooper, M. C., & Zivny, S. (2018). On Singleton Arc Consistency for
CSPs Defined by Monotone Patterns. In Niedermeier, R., & Vallée, B. (Eds.), 35th Symposium
on Theoretical Aspects of Computer Science, STACS 2018, Caen, France, Vol. 96 of LIPIcs,
pp. 19:1–19:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Cohen, D. A., Cooper, M. C., Escamocher, G., & Zivny, S. (2015). Variable and value elimination in
binary constraint satisfaction via forbidden patterns. J. Comput. Syst. Sci., 81(7), 1127–1143.

Cooper, M. C. (1997). Fundamental properties of neighbourhood substitution in constraint satisfac-
tion problems. Artif. Intell., 90(1-2), 1–24.

Cooper, M. C. (2014). Beyond Consistency and Substitutability. In O’Sullivan, B. (Ed.), Principles
and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon,
France, Vol. 8656 of Lecture Notes in Computer Science, pp. 256–271. Springer.

36

Cooper, M. C., Duchein, A., El Mouelhi, A., Escamocher, G., Terrioux, C., & Zanuttini, B. (2016a).
Broken triangles: From value merging to a tractable class of general-arity constraint satisfac-
tion problems. Artif. Intell., 234, 196–218.

Cooper, M. C., El Mouelhi, A., & Terrioux, C. (2016b). Extending Broken Triangles and Enhanced
Value-Merging. In Rueher, M. (Ed.), Principles and Practice of Constraint Programming -
22nd International Conference, CP 2016, Toulouse, France, Vol. 9892 of Lecture Notes in
Computer Science, pp. 173–188. Springer.

Cooper, M. C., Jeavons, P. G., & Salamon, A. Z. (2010). Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination. Artif. Intell., 174(9-10), 570–584.

Cooper, M. C., Jégou, P., & Terrioux, C. (2015). A Microstructure-Based Family of Tractable
Classes for CSPs. In Pesant, G. (Ed.), Principles and Practice of Constraint Programming -
21st International Conference, CP 2015, Cork, Ireland, Vol. 9255 of Lecture Notes in Com-
puter Science, pp. 74–88. Springer.

Cooper, M. C., & Zivny, S. (2017). Hybrid Tractable Classes of Constraint Problems. In Krokhin,
A. A., & Zivny, S. (Eds.), The Constraint Satisfaction Problem: Complexity and Approxima-
bility, Vol. 7 of Dagstuhl Follow-Ups, pp. 113–135. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik.

Dechter, R. (1999). Bucket Elimination: A Unifying Framework for Reasoning. Artif. Intell., 113(1-
2), 41–85.

Dechter, R., & Pearl, J. (1989). Tree Clustering for Constraint Networks. Artif. Intell., 38(3), 353–
366.

El Mouelhi, A. (2017). Tractable classes for CSPs of arbitrary arity: From theory to practice.
Constraints, 22(1), 97–98.

El Mouelhi, A. (2018). On a new extension of BTP for binary CSPs. Constraints, 23(4), 355–382.

Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In
Dean, T. L., & McKeown, K. R. (Eds.), Proceedings of the 9th National Conference on Arti-
ficial Intelligence, Anaheim, CA, USA, 1991, Volume 1., pp. 227–233. AAAI Press / The MIT
Press.

Freuder, E. C., & Wallace, R. J. (2017). Replaceability and the substitutability hierarchy for con-
straint satisfaction problems. In Benzmüller, C., Lisetti, C. L., & Theobald, M. (Eds.), GCAI
2017, 3rd Global Conference on Artificial Intelligence, Miami, FL, USA, Vol. 50 of EPiC
Series in Computing, pp. 51–63. EasyChair.

Gao, J., Yin, M., & Zhou, J. (2011). Hybrid tractable classes of binary quantified constraint satis-
faction problems. In Burgard, W., & Roth, D. (Eds.), Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, USA. AAAI Press.

Jeavons, P., Cohen, D. A., & Cooper, M. C. (1998). Constraints, Consistency and Closure. Artif.
Intell., 101(1-2), 251–265.

Koubarakis, M. (2006). Temporal CSPs. In Rossi, F., van Beek, P., & Walsh, T. (Eds.), Handbook
of Constraint Programming, Vol. 2 of Foundations of Artificial Intelligence, pp. 665–697.
Elsevier.

37

Kratsch, S., Philip, G., & Ray, S. (2016). Point Line Cover: The Easy Kernel is Essentially Tight.
ACM Trans. Algorithms, 12(3), 40:1–40:16.

Larrosa, J., & Dechter, R. (2003). Boosting Search with Variable Elimination in Constraint Opti-
mization and Constraint Satisfaction Problems. Constraints, 8(3), 303–326.

Lecoutre, C. (2009). Constraint Networks Techniques and Algorithms. ISTE/Wiley.

Lecoutre, C., Sais, L., Tabary, S., & Vidal, V. (2007). Recording and Minimizing Nogoods from
Restarts. JSAT, 1(3-4), 147–167.

Naanaa, W. (2013). Unifying and extending hybrid tractable classes of CSPs. J. Exp. Theor. Artif.
Intell., 25(4), 407–424.

Naanaa, W. (2016). Extending the Broken Triangle Property tractable class of binary CSPs.. In
Bassiliades et al. (Bassiliades, Bikakis, Vrakas, Vlahavas, & Vouros, 2016), pp. 3:1–3:6.

Newman, N., Fréchette, A., & Leyton-Brown, K. (2018). Deep optimization for spectrum repacking.
Commun. ACM, 61(1), 97–104.

Omrani, M. A., & Naanaa, W. (2016). A constrained molecular graph generation with imposed and
forbidden fragments.. In Bassiliades et al. (Bassiliades et al., 2016), pp. 4:1–4:5.

Rossi, F., Petrie, C. J., & Dhar, V. (1990). On the Equivalence of Constraint Satisfaction Problems.
In ECAI, pp. 550–556.

Schrijver, A. (1999). Theory of Linear and Integer Programming. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley.

Subbarayan, S., & Pradhan, D. K. (2004). NiVER: Non-increasing Variable Elimination Resolution
for Preprocessing SAT instances. In SAT 2004 - The 7th International Conference on Theory
and Applications of Satisfiability Testing, Vancouver, Canada, Online Proceedings.

Zhang, Y., & Yap, R. H. C. (2011). Solving functional constraints by variable substitution. TPLP,
11(2-3), 297–322.

38

