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A recent theoretical breakthrough has brought a new tool, called the localization landscape, for
predicting the localization regions of vibration modes in complex or disordered systems. Here, we report on
the first experiment which measures the localization landscape and demonstrates its predictive power.
Holographic measurement of the static deformation under uniform load of a thin plate with complex
geometry provides direct access to the landscape function. When put in vibration, this system shows modes
precisely confined within the subregions delineated by the landscape function. Also the maxima of this
function match the measured eigenfrequencies, while the minima of the valley network gives the
frequencies at which modes become extended. This approach fully characterizes the low frequency
spectrum of a complex structure from a single static measurement. It paves the way for controlling and
engineering eigenmodes in any vibratory system, especially where a structural or microscopic description
is not accessible.
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One of the key features exhibited by stationary waves in
complex geometry or disordered systems is localization,
characterized by an unexpected concentration of energy
within a small portion of the system even in the absence of
any confining potential [1]. Localization of waves may
occur in the presence of structural or geometrical hetero-
geneities. A random potential, distributed scatterers, or
specific boundary geometry can induce mode confinement
under the right conditions [2]. Even the simplest geometry
can produce localization, as was recently observed for
mechanical vibrations in rigid plates with a single clamped
point [3]. More complex geometries have demonstrated an
efficient way to concentrate and dissipate energy in
acoustical cavities [4,5], to tailor electromagnetic anechoic
chambers [6], or to design musical instruments [7]. In
nanophotonics, controlling light confinement is also an
important challenge [8]. Indeed, the geometry of optical
cavities and photonic crystals [9], as well as disordered
structures [10], can be designed to optimize light trapping
[11], miniaturize lasers [12], improve absorption efficiency
of thin-film solar cells [13], store quantized bits of light
[14], or modify spontaneous emission in cavity quantum
electrodynamics [15,16]. Actually, in most cases, the
investigation of localization is either based on empirical
knowledge, numerical simulations, or optimization algo-
rithms [17,18].
Being able to systematically predict the spatial and

spectral characteristics of the confined modes—and to

address the question of where the modes will localize—
remains therefore a major challenge and often requires
solving for a given geometry the full eigenvalue problem.
In this Letter, we present a much simpler and more
universal approach, taking advantage of landscape theory
[19]. To this end, we design a test structure, a thin plate with
complex geometry which exhibits localization of flexural
waves. We show that the landscape function is a physical
quantity directly accessible to the measure. Using laser
holographic heterodyne technique, we measure the static
deformation of the plate under uniform load, as well as its
vibration modes. The “valley network” of the landscape
precisely corresponds to the localization regions of the
modes and the “hill peaks” give a good estimate of the
corresponding resonance frequencies. Finally, the opening
of the localization regions at higher frequencies is success-
fully predicted by the measured landscape as well and is
confirmed by the observation of the transition from con-
fined to extended modes. Because of the key information
it contains, the landscape opens new perspectives in
terms of measurements and the design of complex vibrating
systems.
The system that we investigate is shown in Fig. 1. It

consists of a 10 by 10 cm Duralumin square plate, 0.5 mm
thick, with edges and different regions clamped, including
an L-shape carved region, a segment, and two points. A
detailed description of how the system is designed is
provided in the Supplemental Material [20]. This geometry
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is inspired from the system studied in Ref. [19], where it
was shown that its modal spatial distribution is highly
nonintuitive, as it depends on the nature of the system
(e.g., a rigid plate or a membrane) and, respectively, the
associated canonical equation (bi-Laplacian or simple
Laplacian).
We assume that the vibrating plate is thin compared to

the wavelength, and that a local excitation results essen-
tially in the creation of steady-state resonances of zeroth-
order antisymmetric (A0) Lamb waves, also called flexural
waves in the low frequency regime. In that limit, the wave
motion in an isotropic thin plate is well approximated by
the Kirchhoff-Love equation [24]

∂2w
∂t2 þ Eh2

12ρð1 − ν2ÞΔ
2w ¼ 0; ð1Þ

where wðx; yÞ is the out-of-plane displacement, h ¼
0.5 mm is the plate thickness, and E ¼ 72.5 GPa,
ρ ¼ 2.79 g cm−3, and ν ¼ 0.33 are, respectively, the
Young’s modulus, the density, and the Poisson ratio of
the material (here, Duralumin). The harmonic solutions of
Eq. (1) take the form

wðx; y; tÞ ¼ Wðx; yÞ expðiωtÞ: ð2Þ
The Rayleigh-Lamb dispersion relation of the A0 mode in
the low frequency approximation [24] relates the acoustic
wave number k to the frequency ω:

k2 ¼ αω; with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ρð1 − ν2Þ

Eh2

r

: ð3Þ

The eigenmodes of vibrationWm at the angular frequencies
ωm therefore satisfy the steady-state equation of flexural
waves [25] derived from Eqs. (1), (2), and (3). The edges of
the plate are clamped to be motionless, which results in a
vanishing vibration amplitude and spatial derivative at the
boundaries. Calling, respectively, Ω and ∂Ω the plate and
its boundary, the mathematical formulation of the problem
finally can be written

LWm ¼ ω2
mWm on Ω;

Wm ¼ 0 on ∂Ω;
∂νWm ¼ 0 on ∂Ω;

ð4Þ

where L is the elliptic operator

L ¼ 1

α2
Δ2 ð5Þ

and ∂ν is the normal derivative. According to the new
localization theory proposed in Ref. [19], most of the
information on flexural wave localization can in fact be
retrieved from a mathematical object called the localization
landscape. This object is a positive function uðx; yÞ
defined as

uðx; yÞ ¼
Z

Ω
jGðx0; y0∶x; yÞjdx0dy0; ð6Þ

where G stands for the Green function of the associated
wave operator L. The landscape function controls the
amplitude of the localized waves in the entire domain,
which implies that the regions of low values of uðx; yÞ are
also the regions of small vibratory amplitude. In other
words, the curves where u is small (referred to as the
“valleys” hereafter) produce invisible barriers for waves.
The propensity of the landscape u to constrain the ampli-
tude of a steady-state vibration Wm emerges through the
following inequality [19]:

jWmðx; yÞj ≤ ω2
muðx; yÞ ∀ ðx; yÞ ∈ Ω; ð7Þ

where Wm is normalized so that the maximal amplitude is
equal to 1. Because of this specific choice of normalization,
Eq. (7) corresponds to an actual constraint on the mode
amplitude only at the points where ω2

muðx; yÞ < 1. In this
picture, the valleys of u delimit the confining subregions for
the localized eigenmodes. In summary, the partition of the
plate created by these lines enables us to predict the
subregions of the plate Ω where the vibrations will be
localized.
The definition of u given in Eq. (6) makes it, in general, a

complicated quantity to compute or to measure. However,
if one assumes that the Green functions are positive
everywhere (a property almost satisfied by the bi-
Laplacian operator that we will discuss later in the
Letter), then the absolute value can be removed in
Eq. (6). In this case, u becomes the solution of the
following Dirichlet problem:

FIG. 1. The localization landscape. (Top panel) Absolute static
deformation in μm of the 2D rigid thin plate under uniform
pressure obtained by measuring the holographic phase map
accumulated as pressure exerted on the plate is released (see
movie 1 in the Supplemental Material [20]). (Bottom panel)
Drawing of the 10 × 10 cm-large, 0.5 mm-thick metallic plate.
The blue regions represent schematically the clamped regions: the
edges, an L-shape carved region, a segment, and two points. The
actual design of the system is detailed in the Supplemental
Material [20]).
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Lu ¼ 1 on Ω;
u ¼ 0 on ∂Ω;
∂νu ¼ 0 on ∂Ω:

ð8Þ

In physical terms, the landscape u is thus the out-of-plane
static deformation ξ under uniform load, modulo a multi-
plicative constant, that is,

u ¼ ρh
P0

ξ; ð9Þ

where P0 is the applied pressure on the plate. This property
has a very important consequence: it indicates that, without
any computation or a priori knowledge of the system, the
direct static measurement of ξ brings geometrical informa-
tion about the localization subregions and quantitative
information about the threshold above which delocalization
will occur. This can prove particularly useful in disordered
or random systems where the microscopic and structural
information is lacking or unattainable.
To assess this conjecture, we measure the static defor-

mation of the plate under uniform pressure, P0 ¼ 4600 Pa
(as described in the Supplemental Material [20]) and we
obtain the localization landscape shown in Figs. 1(a) and
2(a) (see also movie 1 in the Supplemental Material [20]).
We can see the influence of the clamped regions on the
landscape, constraining the amplitude of the deformation to
remain smaller in their vicinity while other regions of
the plate sustain a larger stretching. From this direct
measurement, four local maxima are detected; hence, there
are four localization subregions.
This measurement is compared to a numerical simulation

of the landscape function solution of Eq. (8), computed

using the finite element method (FEM) [26] and assuming a
homogeneous medium [Fig. 2(b)]. The network of valleys
is almost identical to the one measured (see the
Supplemental Material [20]). It partitions the plate into
the same four domains.
Using narrow-band and wide-field imaging heterodyne

optical holography (see the Supplemental Material [20])
and scanning over frequency, we measure the spatial
distribution of the out-of-plane vibration at resonance.
The first eight modes are displayed in Fig. 3 and compared
to FEM numerical simulations. The amplitude distribution
of the measured eigenmodes appears very similar to the
calculated vibration pattern at resonance.
The valley lines of the landscape are superimposed on

each plot of Fig. 3. For a given frequency ω, only the
portion of these lines where ω2uðx; yÞ < 1 is plotted.
Because of the normalization of the mode amplitude in
Eq. (7), this subset of the valley lines is the only one
exerting actual control on the mode amplitude [see Eq. (7)].
We observe that the first eigenmodes are confined within

FIG. 2. Measured vs simulated landscape. (a) 2D representation
of the measured landscape uðx; yÞ, issued from the plate static
deformation shown in Fig. 1 after data processing (see the
Supplemental Material [20]) and applying Eq. (9). The white
lines are the watershed lines of steepest ascent or steepest descent
that form the valley network of the landscape. The black crosses
indicate the location of the local maxima of uðx; yÞ, from which
the frequencies of the lower-spectrum localized modes are
determined (see Fig. 4). (b) Calculated landscape using the finite
element method to solve Eq. (8) for the same rigid plate as in the
experiment.

Mode 1 f = 1790 Hz Mode 2 f = 2160 Hz

Mode 3 f = 2430 Hz Mode 4 f = 2580 Hz

Mode 5 f = 2820 Hz Mode 6 f = 3040 Hz

Mode 7 f = 3410 Hz Mode 8 f = 3850 Hz

FIG. 3. Vibration modes. Local amplitude of flexural waves at
the eight first resonances. Measurements (gray scale) using
heterodyne holographic interferometry are compared side by
side with a finite element method calculation (color scale) of the
full elastic problem. Experiments and numerics give the same
resonance frequencies up to mode 8. The superimposed white
lines represent a subset of the valley network where uð~xÞ ≤ ω2

and delimit the localization areas. As frequency increases, gaps
open in the valley network and the modal confinement constraint
is released.
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the localization subregions predicted by a static measure-
ment of the localization landscape. In fact, at low fre-
quency, each eigenmode is almost an eigenfunction of one
of the localization subregions.
Going further, the landscape provides not only spatial

but also spectral information. Indeed, the resonance fre-
quency of the fundamental mode in each subregion of the
valley network can be extracted directly from the local
maximum of the landscape function uðx; yÞ in that par-
ticular subregion. We show in Ref. [20] that, theoretically,
ωi ≃ 1.27=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxiðuÞ

p
, where ωi is the frequency of the

fundamental mode (one single peak) in subregion i, and
maxiðuÞ is the local maximum of u in the same region. This
relation is confirmed experimentally by plotting in Fig. 4
the measured resonance frequencies of modes 1, 2, 4, and 5
vs the local maxima of the landscape function in the
corresponding localization subregions. Remarkably, exper-
imental points fit the theory within the error bars except for
the first point (see the Supplemental Material [20]). A
frequency estimate for higher order modes with two or
more maxima is also possible, but it requires a more
involved analysis. This is currently a work in progress
[20]. The results presented here are the first step towards a
prediction of the entire spectrum of vibratory systems from
a simple static measurement.
As the frequency increases, the constraint expressed in

Eq. (7) loosens, and gaps open along the valley lines (see
movie 2 in the Supplemental Material [20]). As a result,
initially isolated subregions become connected, meaning
that modes can extend over larger domains. This is
illustrated in Fig. 3 where, e.g., mode 2 remains confined
while mode 3 brims over the small gap that is newly

opened. Total mode delocalization over two subregions that
were initially disconnected is observed, e.g., for mode 6.
As the gaps widen, larger localization regions are formed
and modes extend over the entire system. The frequency ω
at which a gap opens along a valley line Γ satisfies
ω2maxΓðuÞ ¼ 1, where the maximum of u is taken over
Γ. This maximum is directly retrieved from the measured
landscape function uðx; yÞ.
We saw earlier that the positivity of the Green functions

of the wave operator leads to Eq. (8)’s being satisfied by the
landscape function. One has to point out that, in all
generality, the bi-Laplacian with Dirichlet boundary con-
ditions (vanishing amplitude and vanishing normal
derivative) is not a positive operator. It means that the
solution to a Dirichlet problem with positive load may
change sign [27]. For example, it has been shown math-
ematically that the deformation of a square plate under
uniform load exhibits an infinite number of smaller and
smaller oscillations near the corners of the plate [28].
However, the amplitude of these alternating oscillations is
so tiny that it is not measurable in a practical experiment.
This is the case for most mechanical thin plates [29]. Thus,
in practice, the solution to problem (8), obtainable from one
static measurement only, is extremely close to the theo-
retical function defined in Eq. (6).
These results demonstrate experimentally the predictive

nature of the landscape in a physical situation. The general
behavior presented here shows that fundamental vibratory
properties of the system are encoded in the landscape
function, obtained from one static measurement. The
landscape predicts the shape and location of the confining
regions, as well as the frequencies of the localized low-
energy modes. It also gives access to the value of the
transition frequencies where the progressive coupling
between neighboring regions eventually leads to a hybridi-
zation of their steady-state vibrations [30]. This is a first
step in understanding the transition from a localized to an
extended mode regime.
These results can be generalized to any disordered or

structured system where the structural or microscopic
information is not accessible, and therefore where no
numerical solution of the localization landscape can be
computed. They establish a strong and rigorous relationship
between the static and dynamic properties of vibrating
systems, independently of their dimensions or the nature of
the vibrations. They further demonstrate how the landscape
function can grant the experimentalists predictive power on
the dynamical behavior of a system without having to force
it or to solve the full modal problem. In the next step, the
localization landscape should become a tool of choice
for addressing the inverse problem, i.e., building the
structure with desired spatial and frequency vibratory
properties [31].

The authors thank Dominique Clément for the plate
design and realization. P. S. is thankful for the Agence

FIG. 4. Predicting the low frequency spectrum. (Crosses)
Measured local maxima of the plate static deformation in each
localization subregion (shown by crosses in Fig. 2) vs measured
resonance frequencies of the first modes localized in the
corresponding regions (modes 1, 2, 4, and 5 of Fig. 3. The error
bars reproduce the uncertainty in the phase reference (see the
Supplemental Material [20]). (Open triangles) The same infor-
mation obtained from numerical simulations. (Dashed line)
Theoretical prediction (see the Supplemental Material [20]).
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