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ABSTRACT 

The ever-increasing demands for clean and sustainable energy sources combined with rapid 

advances in bio-integrated portable or implantable electronic devices have stimulated 

intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable 

biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together 

with the capability of working at modest and biocompatible conditions, make EFCs promising 

as next generation alternative power sources. However, the main challenges (low energy 

density, relatively low power density, poor operational stability and limited voltage output) 

hinder future applications of EFCs. This review aims at exploring the underlying mechanism 

of EFCs and providing possible practical strategies, methodologies and insights to tackle of 

these issues. Firstly, this review summarizes approaches in achieving high energy densities in 

EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. 

Secondly, strategies for increasing power densities in EFCs, including increasing enzyme 

activities, facilitating electron transfers, employing nanomaterials, and designing more 

efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor 

combination is discussed. Thirdly, the review evaluates a range of strategies for improving the 

stability of EFCs, including the use of different enzyme immobilization approaches, tuning 

enzyme properties, designing protective matrixes, and using microbial surface displaying 

enzymes. Fourthly, approaches for the improvement of the cell voltage of EFCs are 

highlighted. Finally, future developments and a prospective on EFCs are envisioned. 
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1. Introduction 

1.1 Enzymatic (bio)fuel cells (EFCs), general considerations 

The uneven geographical distribution of fuels associated with the increasingly serious effects 

of environmental pollution provides the driving force for the pursuit of green and sustainable 

energy sources. To this end, fuel cells are considered environmentally friendly 

electrochemical devices to directly convert chemical energy into electrical energy without 

intermediate steps.
1
 In general, conventional fuel cells use noble metals (e.g. platinum, 

ruthenium, palladium, etc.) and/or their alloys as catalysts for the oxidation of pure fuels (e.g. 

hydrogen, methanol) at the anode and the reduction of the oxidant (e.g. oxygen) at the cathode, 

which work in optimized basic and/or acid electrolytes, resulting in a very high efficiency. 

However, noble metals are costly and, more importantly, are non-renewable resources only 

available in few countries in the world. The use of electrolytes at extremes of pH, 

accompanying with the requirement for expensive membranes to separate reactions into 

individual compartments, poses additional challenges. 

 

In addition to the need for clean and renewable energy, recent rapid advances in 

bio-integrated implantable or portable electronic devices underline the urgent need to develop 

technologies that can harvest energy from biological sources.
2
 A range of potential 

applications in microelectronic, biomedical, and sensor devices have inspired research in 

energy conversion systems utilizing sources such as body heat, muscle stretching, blood flow, 

walking or running, etc.
3
 However, low levels of biocompatibility and durability pose 

potential health and safety concerns, raising significant challenges in the successful 

development of such devices.  

 

EFCs are a subclass of fuel cells employing redox enzymes as catalysts
4-9

. The concept of an 

EFC was first described by Yahiro and co-workers in 1964.
10

 Depending on emerging 

possible applications, EFCs have been designed in various configurations that may be quite 
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different from the traditional fuel cell stacks. However, they all retain the same key 

components. Similar to other fuel cells, EFCs consist of a two-electrode cell separated by a 

proton conducting medium, which can also be an electrolyte (Figure 1): using appropriate 

redox enzymes, fuels are oxidized at the bioanode, electrons flow through the external electric 

circuit to the biocathode, where the oxidants, usually oxygen
11

 or peroxides
12

, are reduced to 

water. Using bioelectrocatalysts, EFCs have several advantages. Firstly, the catalyst is 

renewable. Redox enzymes can be extracted from a wide range of living organisms in a 

renewable manner. Secondly, fuels can be diverse. In principle, sugars
13

, alcohols
14

, organic 

acids
15

, hydrogen
16

, and mixtures of these materials that can be digested by living organisms, 

can be used as fuels for EFCs. Thirdly, the operational conditions are very mild and safe. The 

properties of enzymatic reactions enable EFCs to operate at physiological pH, room 

temperature and ambient pressure, although the recent use of stable extremophilic enzymes 

offers the possibility to work at temperatures of up to 85 °C or at a pH value as low as 2.
17,18

 

In addition, redox enzymes provide exceptional specificity towards their natural substrates, 

thus allowing the assembly of the bioanode and biocathode in a single membrane-less cell and 

the miniaturization of EFCs.
19

 Another consequence of high enzyme specificity is that EFCs 

can use fuels without the need for intensive purification steps. Finally, EFCs can be 

considered as disposable systems as the components can potentially be biologically degraded. 

These properties demonstrate the potential use of EFCs in next-generation green power source 

for a range of applications.  

 

Figure 1. Schematic drawing of a typical EFC consisting of a bioanode and a biocathode. 
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Bioelectrocatalysis, in which the electrons involved in an enzymatic reaction are collected at 

an electrode surface, is a key element of EFCs. Due to the size and structure of the enzymes, 

electron transfer (ET) within the enzyme and between the enzyme and the electrode is specific. 

In general, the electron transfer mechanisms between enzymes and electrodes are classified 

into two types: mediated electron transfer (MET) and direct electron transfer (DET)
8,20,21

. In a 

MET-type system, extrinsic redox-active compounds such as ferrocene
22

, methyl viologen, 

ABTS are used as redox mediators to shuttle electrons between the enzyme cofactor (for 

example, glucose oxidase (GOx) uses flavin adenine dinucleotide (FAD) as the cofactor) and 

the electrode
23

. In this case, the redox enzyme catalyzes the oxidation or reduction of the 

mediator as a co-substrate. The reverse transformation (regeneration) of the mediator occurs 

on the electrode surface. The use of small, low molecular weight electron mediators that 

require low overpotentials can be beneficial as they can enable rapid rates of electron transfer 

between an enzyme and an electrode with low power losses. However, the cost, stability, 

selectivity and ability to exchange electron in the immobilized state of such mediators must 

also be considered. In contrast, in a DET-type system, fast electron transfer to or from a solid 

electrode occurs through an intrinsic electron relay system in the protein
20

 (e.g. iron-sulfur 

clusters
24,25

, heme groups
26,27

 or copper sites
28,29

).  

1.2 Potential applications of EFCs 

The early development of EFCs focussed on obtaining electrical energy mainly through the 

oxidation of glucose or other organic fuels in living organisms, in order to drive implantable 

electronic devices. The power output of an average human body is approximately 100 W , and 

the constant presence and availability of the fuel from the body provides sufficient support for 

running EFCs
30

. The oxygen or other oxidant supply for the biocathode in such EFCs is 

important as EFCs are implanted in a relatively closed system. Since the first total surgical 

implantation of a EFC in a rat in 2010,
31

 several recent studies on implantable EFCs have 

been reported. In particular, biocathodes modified by chitosan implanted in a rat can exhibit a 

stability of up to 167 days 
32

. Cyborg lobsters with partially implanted EFCs were able to 
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power an electrical watch and a pacemaker 
33

, while a fully implanted EFC in rats can power 

a light-emitting diode (LED), or a digital thermometer 
34

. Mountable EFCs using trehalose in 

insect hemolymph were also successfully demonstrated 
35

. However, special attention should 

be focused on solving sterilization and biocompatibility issues, as well as their poor 

operational stabilities, before such implantable or mountable EFCs can become practical, 

especially when used in human patients 
36-40

. 

 

During the past decades, significant improvements in the power output and stability of EFCs 

have been achieved, paving the way for the use of EFCs to power portable electronic devices 

such as music players, cellphones, sensors, and even laptops. Many studies have demonstrated 

the use of EFCs as power sources for LEDs or for digital clocks 
41-43

. In 2007, Sony 

demonstrated that a music player could be powered by a stack of EFCs. Later, they 

demonstrated the operation of a toy car using a glucose-fueled EFC. However, there are 

considerable challenges to the development of these devices as cost effective power sources 

that can be manufactured on a large scale
44

. 

 

Another potential application of EFCs is emerging with the rapid development of wearable 

electronic devices that are shaping our life in healthcare, communication, entertainment, etc. 

Such wearable electronic devices can potentially be powered by EFCs operating using 

external fuels, or directly from fuel in the body 
45,46

. In contrast to implantable EFCs, 

non-invasive EFCs have attracted considerable interest 
47

. Several wearable EFCs have been 

constructed using lactate in sweat or in tears as the fuel and generate reasonable power 

outputs
48,49

. Such wearable EFCs need to be flexible in order to withstand frequently bending 

or folding. A number of layer-by-layer or printed EFCs have been developed that exhibit 

good flexibility, high performances, and a potential of low fabrication costs
50,51

. In the 

following sub-section, the main challenges of these EFCs will be discussed and the particular 

limitations of each application will be described. 



9 
 

 

Figure 2. Possible applications of EFCs activating implantable, portable and wearable 

devices. Reprinted with permission
34,35,50,52-54

 Copyright 2013, 2016, 2018 Elsevier; Copyright 

2009, 2017 Royal Society of Chemistry; Copyright 2013 Nature Publishing Group. 

 

1.3 Identification of main challenges in EFCs 

The development of EFCs faces four significant challenges: inability to completely oxidize 

fuels, low power density, poor operational stability, and limited voltage output. Although each 

of these challenges can be addressed from multiple aspects, some potential solutions are too 

complex to implement and may also be detrimental factors in terms of other aspects of cell 

performance. Due to the complexity of these challenges, a systematic analysis should be made 

to identify the key reasons behind each challenge and to then carefully evaluate multiple 

possible solutions 
55

. 
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Firstly, most EFCs employ one or two oxidoreductases. Depending on the fuel, complete 

oxidation cannot be achived, leading to low efficiency and energy density, critical parameters 

for all power sources. As one of the principle advantages of EFCs mentioned above, sugars or 

alcohols can store much higher energy per weight or volume than most secondary batteries 
56

. 

However, exploitation of such energy storage potential requires a series of cascade reactions 

that oxidize the fuel in a step by step manner. The use of one or two enzymes makes it 

impossible to implement the complete oxidation of a fuel. As a consequence, the cost of fuels, 

inhibition (by products or intermediates), the difficulties in reusing cells, and decreased power 

output pose significant obstacles to the successful development of EFCs.   

 

The issue of low power output of EFCs has been a major problem that constrains potential use 

to applications
57

. Compared with metal-catalyzed fuel cells or lithium-ion batteries, the power 

output produced from EFCs is significantly lower. The power densities of the majority of 

EFCs lie in the range of 1-1000 µW cm
-2

, with few surpassing 1 mW cm
-2
 (Table 1). A 

principal reason for this is that the active site of enzyme is buried inside a large insulating 

protein moiety. Typically, a 0.5 mg cm
-2

 Pt loading on the electrode of a metal-catalyzed fuel 

cell represents 2.5 µmol of catalyst cm
-2

, while the catalyst loading for a GOx or laccase 

(Lac)-immobilized electrode is only at the level of 10
-6
 to 10

-1
 µmol cm

-2
 

58,59
 in an EFC 

depending on the electrode of choice. The overall reaction rate per volume or area, in terms of 

power density, for enzyme biocatalysts is decreased by orders of magnitude. In addition, the 

availability of the fuel may become a limiting factor in power generation, especially for 

implantable EFCs, which may have limited oxidant supply
60

. Tackling this issue requires a 

combinatorial strategy of engineering electrode materials, enzymes, and their interfaces as 

well as smart configuration design
4
. 
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Table 1. Full EFCs with a maximum power density (Pmax) greater than 1 mW cm
-2

 

 Glucose/O2 EFCs 

No. Bioanode Biocathode Note Pmax  

(mW 

cm
-2

) 

OCV 

(V) 

Stability Ref. 

1 CF/GDH/DI/VK3/NADH (1.5 mm 

thick); 

MET; 

400 mM glucose 

 

CF/K3[Fe(CN)6]/BOD; 

MET; 

Air-breathing 

Two-compartm

ent; limited by 

anode 

1.45 0.8 Continuous 

operation over 2 

h 

52
 

2 CF/GDH/DI/ANQ/NADH; 

MET; 

400 mM glucose 

CF/K3[Fe(CN)6]/BOD; 

MET; 

Air-breathing 

Two-compartm

ent; limited by 

cathode 

3 0.8 n/a 
61

 

3 MWCNTs-PEDOT yarn/Os-complex 

modified polymer(I)/GOx; 

MET; 

60 mM glucose 

 

MWCNTs-PEDOT 

yarn/Os-complex modified 

polymer(II)/BOD; 

MET; 

O2-saturated 

One-compartm

ent; limited by 

cathode 

2.18 0.7 83% remaining 

after 24 h 

62
 

4 HPC/AQ2S/DI/NAD
+
/GDH; 

MET; 

800 mM glucose 

 

CF/K3[Fe(CN)6]/BOD; 

MET; 

Air-breathing 

Two-compartm

ent; limited by 

anode 

1 0.8 Can be used 

for > 10 cycles 

63
 

5 GCE/MWCNTs/NQ-4-LPEI/GDH; 

MET; 

CP/anthracene-MWCNTs/

BOD; 

One-compartm

ent; limited by 

2.3 0.86 Potential 

decreased from 

64
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Stirred 100 mM glucose 

 

MET; 

Air-equilibrated 

anode 0.86 to 0.71 V 

after 24 h 

operation 

6 MWCNTs/NQ/GOx/catalase; 

MET; 

50 mM glucose 

 

MWCNTs/Lac; 

DET; 

O2-saturated 

One-compartm

ent; limited by 

anode 

1.54 0.76 60% decrease 

over 7 days’ 

storage 

41
 

7 MWCNTs/GOx/catalase(3 mm 

thick); 

MET; 

50 mM glucose 

MWCNTs/Lac; 

DET 

One-compartm

ent 

 

1.3 0.95 Stable for 1 

month 

59
 

 H2/O2 EFCs 

 Bioanode Bio-/cathode Note Pmax  

(mW 

cm
-2

) 

OCV 

(V) 

Stability Ref. 

8 CNF/Aquifex aeolicus(Aa) [NiFe] 

hydrogenase; 

DET; 

H2-saturated 

 

CNF/Bacillus pumilus(Bp) 

BOD; 

DET; 

O2-saturated 

Two-compartm

ent; limited by 

cathode 

1.5 at 

60 °C 

1.06 Decreased by 

60% at 0.5 V 

after 24 h 

65
 

9 WPCC/KB/ Desulfovibrio 

vulgaris(Dv) [NiFe] hydrogenase; 

DET; 

H2 diffusion electrode 

WPCC/KB/Myrothecium 

verrucaria(Mv) BOD; 

DET; 

Air-breathing 

Dual 

gas-diffusion 

type; 

One-compartm

ent; limited by 

6.1 1.12 n/a 
16
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cathode 

 

10 CMC/E. coli hydrogenase-1; 

DET 

 

CMC/MvBOD; 

DET 

 

In a 78% 

H2–22% air 

mixture; 

One-compartm

ent; limited by 

cathode 

 

1.67 (per 

anode 

area) 

1.068 Retained 90% 

output after 

continuously 

working for 24 h 

66
 

11 CF/CNTs/Aa [NiFe] hydrogenase; 

DET; 

H2-saturated 

 

CF/CNTs/BpBOD; 

DET; 

O2-saturated 

Two-compartm

ent; limited by 

anode 

1.7 at 

50 °C 

1.02 5% loss after 17 

h operation 

67
 

12 WPCC/KB/Dv [NiFe] hydrogenase; 

DET; 

100% H2 

WPCC/KB/MvBOD; 

DET; 

100% O2 

Dual 

gas-diffusion; 

not a real EFC 

assembly 

 

8.4 1.14 n/a 
68

 

13 Carbon cloth/Dv [NiFe] 

hydrogenase/ 

P(N3MA-BA-GMA)-vio/ 

P(GMA-BA-PEGMA)-vio; 

MET; 

100% H2 

Carbon cloth/MvBOD; 

DET; 

100% O2 

Dual 

gas-diffusion; 

One-compartm

ent; limited by 

anode 

3.6 1.13 Retained 46% 

output after 24 h 

continuous 

operation 

69
 

 Fructose/O2 EFCs 
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 Bioanode Bio-/cathode Note Pmax  

(mW 

cm
-2

) 

OCV 

(V) 

Stability Ref. 

14 CP/CCG/FDH; 

DET; 

500 mM fructose 

CP/KB/MvBOD; 

DET; 

Air-breathing 

DET-type EFC; 

One-compartm

ent; limited by 

anode 

 

2.6 0.79 n/a 
70

 

15 CNTs/FDH; 

DET; 

200 mM fructose 

CNTs/Lac; 

DET; 

O2-saturated 

One-compartm

ent; limited by 

cathode 

1.8 0.77 Retained 84% 

output after 24 h 

continuous 

operation 

71
 

16 GCE/MWCNTs/CPPy/FDH; 

DET; 

100 mM fructose 

GCE/MWCNTs/CPPy/AB

TS/Lac; 

MET; 

O2-saturated 

One-compartm

ent; limited by 

cathode 

2.1 0.59 60% loss after 1 

week operation 

72
 

 Formate/O2 EFCs 

 Bioanode Bio-/cathode Note Pmax  

(mW 

cm
-2

) 

OCV 

(V) 

Stability Ref. 

17 NG/AuNPs/FoDH; 

5 mM NAD
+
 and 50 mM formic acid 

 

NG/AuNPs/Lac; 

MET; 

0.5 mM ABTS 

One-compartm

ent; limited by 

cathode 

 

1.96 0.95 Not directly 

measured 

73
 

18 WPCC/KB/viologen-functionalized WPCC/KB/Mv One-compartm 12 0.78 n/a 
15
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polymer/FoDH; 

MET; 

300 mM formate 

BOD/ABTS; 

MET; 

O2 diffusion electrode 

ent; 

Thick 

electrode; 

limited by 

anode 

 Sucrose/O2 EFCs 

 Bioanode Bio-/cathode Note Pmax  

(mW 

cm
-2

) 

OCV 

(V) 

Stability Ref. 

19 Carbon 

felt/CNTs/TTF/GOx/FDH/MUT/INV

; 

MET; 

50 mM sucrose 

Carbon 

felt/CNTs/ABTS/BOD; 

MET; 

O2-saturated 

Deep oxidation 

of sucrose 

2.9 0.69 Bioanode 

displayed good 

stability for 0.5 

h 

74
 

 Ethanol/O2 EFCs 

 Bioanode Bio-/cathode Note Pmax  

(mW 

cm
-2

) 

OCV 

(V) 

Stability Ref. 

20 MDB/AuNPs/gel/ADH; 

MET; 

1 mM NAD
+
 and 1 mM ethanol 

 

AuNPs/gel/Lac; 

DET; 

Air-equilibrated 

One-compartm

ent 

 

1.56 0.86 80% loss after 

36 days 

75
 

21 PAN 

nanofiber/Au/Super-P/ADH/NAD
+
/D

I//VK3; 

PAN 

nanofiber/Au/Super-P/Lac/

ABTS; 

Two-compartm

ent; limited by 

cathode 

1.6 0.99 Pronounced loss 

of NAD
+
 

76
 



16 
 

MET; 

~69 mM ethanol 

MET; 

O2-saturated 

Abbreviations: CF: Carbon fiber; GDH: glucose dehydrogenase; DI: diaphorase; VK3: vitamin K3; NADH: β-Nicotinamide adenine dinucleotide disodium 

salt (reduced form); BOD: bilirubin oxidase; ANQ: 2-amino- 1,4-naphthoquinone; Lac: laccase; MET: mediated electron transfer; MWCNTs: multi-walled 

carbon nanotubes; PEDOT: poly(3,4-ethylenedioxythiophene); Os-complex modified polymer(I): 

poly(N-vinylimidazole)-[Os(4,4′-dimethoxy-2,2′-bipyridine)2Cl])
+/2+

; Os-complex modified polymer(II): poly(acryl 

amide)-poly(N-vinylimidazole)-[Os(4,4′-dichloro-2,2′-bipyridine)2])
+/2+

; HPC: hierarchical porous carbon; AQ2S: anthraquinone-2-sulfonate; NQ-4-LPEI: 5 

naphthoquinone(NQ)-modified linear polyethyleneimine; CP: carbon paper; CNF: carbon nanofibers; WPCC: water proof carbon paper; KB: Ketjen black; 

CMC: compacted mesoporous carbon; P(N3MA-BA-GMA)-vio: poly(3-azido-propyl methacrylate-co-butyl acrylate-co-glycidyl methacrylate)-viologen; 

P(GMA-BA-PEGMA)-vio: poly(glycidyl methacrylate-co-butyl acrylate-co-poly(ethylene glycol) methacrylate)-viologen; CCG: carbon cryogel; CPPy: 

cellulose/polypyrrole composite; NG: nitrogen-doped graphene; FoDH: formate dehydogenase; ABTS: 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonate); 

CNTs: carbon nanotubes; TTF: tetrathiafulvalene; GOx: glucose oxidase; FDH: fructose dehydrogenase; MUT: mutarotase; INV: invertase; MDB: Meldola's 10 

blue; AuNPs: gold nanoparticles; PAN: polyacrylonitrile.
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Moreover, as a typical enzyme-catalyzed system, EFCs suffer from poor operational stability, 

resulting in short lifetimes and higher costs.
77,78

 Instability arises not just with the enzyme, but 

also arises from the use of cofactors such as nicotinamide adenine dinucleotide (NAD
+
), 

adenosine triphosphate (ATP), and coenzyme A (CoA), which are necessary for many redox 

enzymes, and of other components that include mediators. The complexity of biological 

systems can pose additional detrimental effects on the stability of EFCs, such as biofouling of 

the electrode in implantable EFCs, or enzyme inhibition by O2 for H2/O2 EFCs. In contrast to 

relatively stable proton exchange membrane fuel cells and metal-based batteries that can last 

for years, or microbial fuel cells (MFCs) utilising self-reproducing microorganisms that can 

be reused for months, the majority of EFCs can operate only for hours or days
79-81

.   

 

For almost all reported EFCs, the voltage at which usable power can be extracted is below the 

minimal requirement to power commercially available electronic devices. This drawback is 

inevitable as, from a thermodynamic point of view, the maximum redox potential gap 

between two electrodes in most biological fuel cells (e.g. ~1.18 V for glucose/O2 EFCs with 

two-electron oxidation of glucose) is much less than that of lithium-based batteries (e.g. ~4.2 

V)
36

. In many cases, the involvement of electron mediators leads to additional decreases in the 

voltage output of EFCs. In addition, the actual voltage output of EFCs is decreased by factors 

such as ohmic and concentration losses. Such losses can also depress the current output, and 

further reduce the overall power output. 

 

Significant developments in EFCs have occurred since the first report in 1964. A number of 

reviews on EFCs have recently been published
3,7,39,79,82-88

, the majority of which have focused 

on either the electrode materials
40,87-95

, enzyme immobilization
40,90,96-98

, 

bioelectrocatalysis
8,11,99-101

 or their applications
39,40,45,47,86,88,102

. Table 2 summarizes a list of 

the reviews reported since 2015 on bioelectrodes and EFCs. This review identifies the main 

scientific challenges hindering the development of EFCs, low energy and power densities, 
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poor operational stability as well as limited voltage output, and summarizes the corresponding 

approaches to solve them.  

  

Table 2. Reviews relevant to bioelectrodes and EFCs since 2015 

Topic Title Year and ref. 

Nanostructured materials   

 Wired Enzymes in Mesoporous Materials: A 

Benchmark for Fabricating Biofuel Cells 

2015
103

 

 Graphene Based Enzymatic Bioelectrodes and 

Biofuel Cells 

2015
93

 

 3D Graphene Biocatalysts for Development of 

Enzymatic Biofuel Cells: A Short Review 

2015
104

 

 Tailoring Biointerfaces for Electrocatalysis 2016
105

 

 Magneto-Switchable Electrodes and Electrochemical 

Systems 

2016
106

 

 Application of Carbon Fibers to Flexible Enzyme 

Electrodes 

2016
81

 

 Paper Electrodes for Bioelectrochemistry: 

Biosensors and Biofuel Cells 

2016
107

 

 An Overview of Dealloyed Nanoporous Gold in 

Bioelectrochemistry 

2016
108

 

 Enzymatic Biofuel Cells on Porous Nanostructures 2016
92

 

 Conformational Changes of Enzymes and Aptamers 

Immobilized on Electrodes 

2016
109

 

 Progress on Implantable Biofuel Cell: Nano-Carbon 

Functionalization for Enzyme Immobilization 

Enhancement 

2016
40

 

 Enzymatic Reactions in Confined Environments 2016
110
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 Biomimetic and Bioinspired Approaches for Wiring 

Enzymes to Electrode Interfaces 

2016
78

 

 Nanostructured Material-Based Biofuel Cells: 

Recent Advances and Future Prospects 

2017
87

 

 Nanostructured Inorganic Materials at Work in 

Electrochemical Sensing and Biofuel Cells 

2017
91

 

 Carbon Felt Based-Electrodes for Energy and 

Environmental Applications: A Review 

2017
111

 

 Advanced Materials for Printed Wearable 

Electrochemical Devices: A Review 

2017
112

 

 Recent Advance in Fabricating Monolithic 3D 

Porous Graphene and Their Applications in 

Biosensing and Biofuel Cells 

2017
95

 

 Enzyme Immobilization on Nanoporous Gold: A 

Review 

2017
113

 

 Recent Developments in High Surface Area 

Bioelectrodes for Enzymatic Fuel Cells 

2017
114

 

 Graphene and Graphene Oxide: Functionalization 

and Nano-Bio-Catalytic System for Enzyme 

Immobilization and Biotechnological Perspective 

2018
115

 

 Molecular Engineering of the Bio/Nano-Interface for 

Enzymatic Electrocatalysis in Fuel Cells 

2018
116

 

 Buckypaper Bioelectrodes: Emerging Materials for 

Implantable and Wearable Biofuel Cells 

2018
117

 

 Recent Applications of Bacteriophage-Based 

Electrodes: A Mini-Review 

2019
118

 

Redox polymers   

 Current Trends in Redox Polymers for Energy and 2016
119
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Medicine 

 Redox Polymers in Bioelectrochemistry: Common 

Playgrounds and Novel Concepts 

2017
120

 

Gas diffusion electrodes   

 Application of Gas Diffusion Electrodes in 

Bioelectrochemical Syntheses and Energy 

Conversion 

2016
121

 

 Gas Diffusion Bioelectrodes 2017
102

 

Enzyme engineering   

 The Use of Engineered Protein Materials in 

Electrochemical Devices 

2016
122

 

Enzyme cascades   

 Oxidative Bioelectrocatalysis: From Natural 

Metabolic Pathways to Synthetic Metabolons and 

Minimal Enzyme Cascades 

2016
123

 

 Enzyme Cascades in Biofuel Cells 2017
124

 

Electron transfer 

processes 

  

 Direct Enzymatic Bioelectrocatalysis: Differentiating 

Between Myth and Reality 

2017
125

 

 Mathematical Modeling of Nonlinear 

Reaction-Diffusion Processes in Enzymatic Biofuel 

Cells 

2017
126

 

 Protein Bioelectronics: A Review of What We Do 

and Do Not Know 

2018
127

 

 Controlling Redox Enzyme Orientation at Planar 

Electrodes 

2018
128

 

 Electrochemistry of Surface-Confined Enzymes: 2018
129
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Inspiration, Insight and Opportunity for Sustainable 

Biotechnology 

 Direct Electron Transfer of Enzymes Facilitated by 

Cytochromes 

2019
130

 

Sugar oxidation   

 Direct Electron Transfer (DET) Mechanism of FAD 

Dependent Dehydrogenase Complexes ∼From the 

Elucidation of Intra- and Inter-Molecular Electron 

Transfer Pathway to the Construction of Engineered 

DET Enzyme Complexes∼ 

2018
131

 

 Direct Electron Transfer of Dehydrogenases for 

Development of 3rd Generation Biosensors and 

Enzymatic Fuel Cells 

2018
132

 

Enzymatic oxidation of 

H2 

  

 Guiding Principles of Hydrogenase Catalysis 

Instigated and Clarified by Protein Film 

Electrochemistry 

2016
133

 

 New Perspectives in Hydrogenase Direct 

Electrochemistry 

2017
134

 

Enzymatic reduction of 

O2 

  

 Recent Progress in Oxygen-Reducing Laccase 

Biocathodes for Enzymatic Biofuel Cells 

2015
99

 

 Oxygen Electroreduction Versus 

Bioelectroreduction: Direct Electron Transfer 

Approach 

2016
135

 

 Laccase: A Multi-Purpose Biocatalyst at the 2017
136

 



22 
 

Forefront of Biotechnology 

 O2 Reduction in Enzymatic Biofuel Cells 2017
137

 

 Application of Eukaryotic and Prokaryotic Laccases 

in Biosensor and Biofuel Cells: Recent Advances 

and Electrochemical Aspects 

2018
138

 

Biocapacitor   

 Biocapacitor: A Novel Principle for Biosensors 2016
139

 

 Biosupercapacitors 2017
140

 

Microfluidic biofuel cells   

 Generating Electricity on Chips: Microfluidic 

Biofuel Cells in Perspective 

2018
141

 

Implantable enzymatic 

fuel cells 

  

 Tear Based Bioelectronics 2016
142

 

 Quo Vadis, Implanted Fuel Cell? 2017
60

 

 Challenges for Successful Implantation of Biofuel 

Cells 

2018
30

 

 Implantable Energy-Harvesting Devices 2018
143

 

Wearable enzymatic fuel 

cells 

  

 Wearable Biofuel Cells: A Review 2016
45

 

 Review-Wearable Biofuel Cells: Past, Present and 

Future 

2017
47

 

 Wearable Bioelectronics: Enzyme-Based 

Body-Worn Electronic Devices 

2018
144

 

 Biofuel Cells - Activation of Micro- and 

Macro-Electronic Devices 

2018
44

 

 Wearable Biofuel Cells Based on the Classification 2019
145
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of Enzyme for High Power Outputs and Lifetimes 

Self-powered system   

 Energy Harvesting from the Animal/Human Body 

for Self-Powered Electronics 

2017
146

 

 Recent Advances in the Construction of Biofuel 

Cells Based Self-Powered Electrochemical 

Biosensors: A Review 

2018
147

 

 Energy-Autonomous Biosensing Platform Using 

Supply-Sensing CMOS Integrated Sensor and 

Biofuel Cell for Next-Generation Healthcare Internet 

of Things 

2018
148

 

 Self-Powered Bioelectrochemical Devices 2018
149

 

 Enzymatic Fuel Cells: Towards Self-Powered 

Implantable and Wearable Diagnostics 

2018
150

 

 Self-Powered Biosensors 2018
151

 

Enzymatic fuel cells   

 Enzymatic Biofuel Cells: 30 Years of Critical 

Advancements 

2015
4
 

 Recent Advances on Enzymatic Glucose/Oxygen 

and Hydrogen/Oxygen Biofuel Cells: Achievements 

and Limitations 

2016
8
 

 H2/O2 Enzymatic Fuel Cells: From Proof-of-Concept 

to Powerful Devices 

2017
88

 

 Beyond the Hype Surrounding Biofuel Cells: What’s 

the Future of Enzymatic Fuel Cells? 

2018
9
 

 

  



24 
 

2. Strategies for achieving high energy density in EFCs 

Like other types of fuel cells, the available energy density of an EFC is dependent on the 

product of the chemical energy stored in the fuel and the faradaic efficiency. The faradaic 

efficiency is described by: 

ηF = ∫I×dt/(cfuel×V×n×F)         (1) 

where ηF = faradaic efficiency, I = current, t = reaction time, cfuel = concentration of fuel, V = 

reaction volume, n = number of electrons generated per fuel, and F = Faraday constant 

(96,485 C per mole). Clearly, it is desirable to combine high-energy-density fuels with high 

faradaic efficiencies to achieve high energy density EFCs. 

2.1 Range of fuels in EFCs 

EFCs harness power from living and renewable biological sources. Compared with traditional 

rare metal-catalyzed fuel cells that are predominantly powered by hydrogen or methanol, the 

fuel diversity of EFCs has been greatly broadened to many organic compounds which are 

common intermediates metabolized in living organisms or are the main components of 

biomass. Although a wide variety of fuels can be used for EFCs, their energy density, cost, 

availability, and toxicity all need to be considered. 

 

Hydrogen has one of the highest energy density values per mass and has been widely used in 

traditional fuel cells. As a clean fuel that can be produced from biomass or water splitting, it 

can also be used in an EFC catalyzed by hydrogenases.
16,88,152-154

 Storage and distribution of 

H2 have been the subject of intensive research, enabling the use of H2 in a safe manner. 

Alternatively, formic acid is a stable hydrogen carrier and has been used to power some EFCs 

due to its advantages of high volumetric capacity (53 g H2 L
-1
), low toxicity and flammability 

under ambient conditions. Methanol is another promising alternative to hydrogen as a fuel 

because it is accessible and easy to transport and store, although it is toxic for human beings if 

ingested. It has a nearly 3-fold higher volumetric energy density than that of formic acid. 
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Furthermore, the theoretical maximum voltage for a methanol/oxygen fuel cell (1.19 V) is 

close to that for a H2/O2 fuel cell (1.23 V)
155

. Although ethanol is rarely considered as a fuel 

source in fuel cells, it has some advantages, such as low cost, non-toxicity and wide 

availability. In addition, ethanol is a renewable energy source that can be generated through 

fermentation of agricultural products. As another prospective fuel, glycerol has many 

desirable qualities and is abundant since it is a by-product of biodiesel production. Properties 

such as low toxicity, low flammability, extremely low vapor pressure and high energy density 

make glycerol very appealing as an energy source 
156

. Pyruvate, a key intermediate from the 

glycolysis pathway, has also been used as a fuel in EFCs
157

. Finally, it is noteworthy that the 

most commonly used fuels are sugars as they are inexpensive, abundant, renewable, and safe 

to use. They can be derived from lignocellulosic biomass (ca. 1×10
11

 tons/year globally), 

which can be locally grown and are more evenly distributed than fossil fuels. Among various 

sugars, glucose is the most widely used fuel in EFCs, and glucose-based EFCs are particularly 

suited for implantable applications due to its presence in blood at reasonable concentrations 

(mM). Many other sugars including xylose, fructose, sucrose, and polysaccharides such as 

maltodextrin have also been used in EFCs
56,158,159

. 

 

Full exploitation of the energy stored in a substrate can provide high energy densities, a key 

advantage of EFCs compared with commonly available batteries. Theoretically, glucose 

possesses an energy density of 4,125 Wh L
-1

 releasing 24 electrons per glucose molecule to 

produce carbon dioxide and water. Hence, the complete enzymatic oxidation of the glucose 

units of a 15% maltodextrin solution indicates that the energy-storage density of the EFC can 

be as high as 596 Ah kg
-1

, which is an order of magnitude higher than that of lithium-ion 

batteries and primary batteries
42

. Glycerol has an even higher energy density (6,260 Wh L
-1

) 

compared to glucose, or to ethanol (5,442 Wh L
-1

), methanol (4,047 Wh L
-1
), making it a very 

attractive fuel. Notably, pyruvate also has a high energy density (4,594 Wh L
-1
), and requires 

fewer enzymes than glucose for complete oxidation.  
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2.2 Enzyme cascades for the deep/complete oxidation of fuels 

When building an EFC, maximizing both energy density and power density is of crucial 

importance. The majority of EFCs utilizes a single enzyme to perform partial oxidation of a 

fuel (i.e. glucose, lactate, pyruvate or ethanol), but the complete oxidation of the majority of 

fuels requires several enzymes to use the energy available in the fuel
82

. As a relevant example, 

when the degree of catalytic oxidation as well as the maximum allowable fuel concentration 

are taken into account, the energy density of an ethanol fuel cell based on 20% v/v ethanol 

with incomplete oxidation to acetic acid decreases from 5,442 to 363 Wh L
–1 156

. Therefore, 

one of the key issues in developing high-energy-density EFCs is the successful design of 

multi-enzyme systems that can completely oxidize the fuel in order to increase the overall 

energy efficiency. 

 

Living cells are able to completely oxidize complex fuels into carbon dioxide and water 

through the tricarboxylic acid (TCA) cycle, a crucial metabolic pathway 
160

. In the cycle, 

acetyl-CoA is oxidized to carbon dioxide and water, generating the reduced forms of 

nicotinamide-adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) and 

chemical energy in the form of ATP. Several fuels can be fed into the TCA cycle, and each 

requires different sets of enzyme cascades. One of these fuels is glucose, which can be 

oxidized through the glycolysis pathway to pyruvate, which is subsequently oxidized to 

acetyl-CoA by pyruvate dehydrogenase. Lactate can also enter into the TCA cycle after 

dehydrogenation by lactate dehydrogenase (LDH). Ethanol has also been used as a substrate 

by introducing alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AldDH), and 

S-acetyl CoA synthetase to oxidize ethanol into acetyl-CoA 
160

. By mimicking the natural 

TCA pathway, several EFCs have been developed that can completely oxidize glucose, 

ethanol, pyruvate, and lactate. For instance, in an ethanol/O2 EFC, dehydrogenases along with 

non-energy producing enzymes necessary for the cycle were immobilized in cascades onto a 

carbon electrode in a tetrabutylammonium bromide modified Nafion membrane, generating 

an 8.71-fold increase in power density compared to a single enzyme (ADH)-based ethanol/air 
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EFC 
161

. In another mitochondria-based fuel cell consisting of all the enzymes involved in the 

TCA cycle, pyruvate was converted to acetyl-CoA by a pyruvate dehydrogenase and further 

oxidized by the enzyme cascade. A 4.6-fold increase in power density was observed when 

using intact mitochondria as compared to that using an individual enzyme in the TCA cycle 

162
. It should be noted however that the increased power densities obtained in these systems 

161,162
 are still significantly lower than the theoretically expected values. 

 

In addition to mimic the natural pathways, in vitro synthetic pathways to completely oxidize 

fuels have been described. The first EFC based on enzyme cascades that can completely 

transform alcohols was demonstrated in 1998
155

, where three NAD-dependent 

dehydrogenases including ADH, AldDH and formate dehydrogenase (FoDH) were employed 

to fully oxidize methanol to carbon dioxide and water (Figure 3). Six electrons per methanol 

molecule were collected at the bioanode when NADH was re-oxidized into NAD
+
 with the 

assistance of redox mediators. However, this complete oxidation process relied on enzymes in 

solution rather than immobilized at the electrode surface. Later, Minteer et al. 
124

 conducted a 

series of studies of enzyme immobilization based on this pathway, including encapsulation 

within hydrophobically modified Nafion
163

 and self-assembled enzymatic hydrogel
164

. An 

EFC based on the two-step oxidation of ethanol to acetate mediated by ADH and AldDH was 

described
161

. 

 

Figure 3. The oxidation of methanol to CO2 is catalyzed by NAD-dependent alcohol-(ADH), 

aldehyde-(AldDH), and formate-dehydrogenases (FoDH) (shown within the box). 

Regeneration of NAD
+
 is accomplished electro-enzymatically with an enzyme coupled to the 

anode via a redox mediator. Reprinted with permission 
155

 with modification. Copyright 1998 

Elsevier. 
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Presently, the growth of the biodiesel industry has greatly increased the production of 

glycerol
165

. As already stated above, employing glycerol as a fuel for bioelectricity generation 

is a promising route. However, catalysts based on precious metals can only remove four 

electrons of a total of sixteen electrons available for the complete oxidation of glycerol 
156

, 

leading to a low energy density. In contrast, EFCs have the ability to exploit the energy of 

glycerol by employing an enzyme cascade to oxidize glycerol in a stepwise pathway. It has 

been demonstrated that a three-enzyme cascade containing pyrroloquinoline quinone 

(PQQ)-dependent ADH, AldDHs and oxalate oxidase immobilized within a Nafion 

membrane can accomplish the complete oxidation of glycerol, with a fuel utilization 

efficiency up to 98.9%
156

. More recently, a hybrid enzymatic and abiotic catalytic system that 

combined free oxalate oxidase and 4-amino-TEMPO was constructed to electrochemically 

oxidize glycerol at a carbon electrode, collecting as many as 16 electrons per molecule of 

glycerol 
166

. 
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Figure 4. Schematic diagram of the in vitro 15-enzyme pathway in the anode of the EFC that 

can completely oxidize sucrose, fructose, and glucose at the same time. Reprinted with 

permission 
167

. Copyright 2018 Elsevier. 

 

The majority of glucose-fed EFCs are based on one oxidoreductase (i.e., GOx or 

NAD-dependent glucose dehydrogenase (GDH)), generating only 2 of total 24 electrons per 

glucose
52,168

. In order to achieve more complete oxidation of glucose, Gorton et al. developed 

a highly efficient anode for glucose-based EFCs by combining pyranose dehydrogenase from 

Agaricus meleagris (AmPDH) and cellobiose dehydrogenase from Myriococcum 

thermophilum (MtCDH), resulting in up to six electrons being obtained by the oxidation of 

one glucose molecule
169

. Inspired by the metabolic pathways in living cells to fully oxidize 

glucose, Minteer et al. 
170

 proposed a six-enzyme system at a bioanode to oxidize glucose to 

CO2. It was however difficult to confirm that the complete oxidation of glucose had occurred 

because CO2 could be produced from intermediate reactions. Zhu et al.
171

 designed a novel 

synthetic pathway containing two NAD-dependent dehydrogenases (i.e. glucose-6-phosphate 

dehydrogenase and 6-phosphogluconate dehydrogenase) to perform the oxidation of glucose, 

generating four electrons per molecule of glucose. The same authors designed a synthetic 

enzymatic pathway that was comprised of 13 enzymes in an air-breathing enzymatic fuel cell 

to completely oxidize the glucose units of maltodextrin and generate nearly 24 electrons per 

glucose unit
42

. Three functional modules were assembled to oxidize the substrate, transfer 

electron, and regenerate the intermediate. First, glucose units in maltodextrin were converted 

to glucose 6-phosphate (G6P) by the enzymes glucan phosphorylase and phosphoglucomutase. 

Next, during the two-step oxidation of G6P by glucose 6-phosphoate dehydrogenase (G6PDH) 

and 6-phosphogluconate dehydrogenase (6PGDH), NAD
+
 was simultaneously reduced to 

NADH, which was subsequently re-oxidized by diaphorase (DI), producing two electrons per 

NADH. Other enzymes were used to convert the 5-carbon intermediate to the 6-carbon G6P. 

The oxidation and regeneration steps were repeated six times in order to fully oxidize G6P, 

releasing 24 electrons. As a result, an EFC containing a 15% (wt/v) maltodextrin solution had 
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an energy-storage density of 596 Ah kg
-1

 and a faradaic efficiency of 92.3%. Nevertheless, 

this pathway utilized polysaccharides, such as maltodextrin and starch, and cannot be applied 

directly to glucose. Later, based on a combination of glycolysis and the pentose phosphate 

pathway, an in vitro synthetic enzymatic pathway was demonstrated to generate close to the 

theoretically available yield of electrons from glucose. This pathway does not involve ATP, 

CoA, or membrane proteins. The reaction rate was enhanced after replacing several enzymatic 

building blocks and introducing a new enzyme, 6-phosphogluconolactonase. Using this new 

pathway, a high faradaic efficiency of 98.8% was obtained, with a maximum current density 

of 6.8 mA cm
-2

. Similarly, an in vitro 15-enzyme pathway that can co-utilize glucose, sucrose 

and fructose in EFCs was designed by incorporating the corresponding enzymes in the sugar 

conversion module. G6P was obtained after several sugar phosphorylation steps and then 

entered into the oxidation and regeneration modules as described above. The EFC achieved a 

faradaic efficiency of approximately 95% for these three sugars and yielded a maximum 

power density of 1.08 mW cm
-2 

(Figure 4) 
167

. This work was the first to demonstrate the use 

of sugar mixtures as the fuel in EFCs and the achievement of close to the theoretically 

available energy density. In addition to the hexose fuels mentioned above, xylose as the 

second largest mono-saccharide and the most abundant pentose in plant biomass, is also a 

promising sugar fuel. Recently, a reconstituted bacterial pentose phosphate pathway in vitro 

was confirmed to generate a nearly theoretical yield of electricity from xylose in EFCs for the 

first time
172

. The complete oxidation of xylose can pave the way for the co-utilization of 

hexose and pentose in biomass and is a promising method for the production of 

bioresource-derived electricity
172. 

 

However, the use of enzyme cascades introduces a number of challenges such as increased 

complexity. The overall stability of an EFC is limited by the enzyme that possesses the lowest 

stability (e.g., as low as several hours at room temperature). The operation of EFCs can be 

compromised since specific enzymes have various optimal temperatures and pHs
42

. The 

amount of each immobilized enzyme on the surface of electrodes is limited with a fixed 
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number of anchoring points to host the enzymes. Electrode fouling together with enzyme or 

cofactor degradation is an additional concern in such systems. Therefore, it makes sense to 

precisely localize enzymes in a sequential manner to increase the overall flux
173

. Enzyme 

complexes or in vitro metabolons, facilitating the transfer of intermediates between enzymatic 

steps, have been constructed as an efficient approach to accelerate cascade reactions
174

. Liu et 

al.
175

 synthesized an enzyme complex by covalently modifying hexokinase (HK) and G6PDH 

with a poly(Lys) bridge. The enzyme complex was synthetically cross-linked and able to 

facilitate electrostatic substrate channeling by shortening the lag time required to reach steady 

state. Another work reported the assembly of an ADH and AldDH enzyme cascade‐based 

bioanode via a protein purification‐free approach in a methanol biofuel cell. By using a 

designed DNA duplex sequence, substrate channeling between active sites of cascade 

enzymes was observed and the power density of the biofuel cell increased by 73%
176

. In 

addition, enzyme complex or metabolon based EFCs have also been considered as a 

promising alternative to obtain significantly improvement in faradaic efficiency and 

stability
177

. To understand the mechanisms involved in such cascade reactions, differential 

electrochemical mass spectrometry could be used to provide relevant information on the 

products formed at each step
178

. 

3. Strategies for increasing power density in EFCs 

3.1 Evaluation of different power output results 

The power output of EFCs is a vital criterion to determine which applications can actually be 

considered. In practice, the polarization curve (voltage-current profile) and the corresponding 

power output profile can be obtained using four methods
179

: i) discharge the EFC at specified 

resistances by connecting the EFC to a resistor and measuring a series of currents and voltages 

obtained on varying the resistance; ii) potentiodynamic discharge: record the response 

(voltage-current plots) at a relatively slow sweep rate (typically no more than 1 mV s
-1

); iii) 

potentiostatic discharge: apply various discharge voltages and record the currents generated; iv) 
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galvanostatic discharge: discharge the EFC at various currents and record the associated voltages. 

Accordingly, the operational stability of an EFC can also be monitored over time using these four 

methods. Methods i), iii) and iv) are most convenient and the most frequently used for long-term 

testing. 

 

One of the issues concerned with the evaluation of the performance of EFCs is the definition 

of their power output. The power output is generally reported as the power density, as is 

widely used with batteries and other fuel cells. However, arbitrary comparison between power 

densities reported in the literature can be misleading in EFCs due to significant variations in 

the type of electrode material, method of enzyme immobilization, enzyme loading, etc.). 

 

The majority of reports on power densities in the literature are based on the projected 

geometric surface area of the electrodes (Table 1)
11

. However, such reported power densities 

do not consider the morphology of the electrode materials nor the loading of immobilized 

biocatalysts. In the last decade, porous nanostructured materials with high conductivities have 

been employed as electrodes, due to their large hierarchical porosity, and high surface areas
92

. 

The power density of EFCs based on porous nanostructured materials increased from μW 

cm
–2

 to mW cm
–2

, calculated according to the geometric areas of the electrodes (Table 1) 

43,62,180,181
. Nonetheless, these values cannot accurately represent the real power densities as 

due to the high porosity of the electrodes, the real surface areas are much larger than the 

geometric areas. Just to give one example, a compressed multi-walled carbon nanotube 

(MWCNT)-based bioelectrode used in a glucose EFC exhibited an electroactive area of 52 

cm
2
 for an interfacial geometrical area of 1.3 cm

2
, which corresponds to 0.01% of its BET 

surface area
59

. Moreover, calculation of the power density is dependent on the method used to 

determine the electroactive surfaces area. The electroactive surface area based on capacitance 

measurements is more accurate than that obtained from voltametric response of redox 

molecule probes
126

. Additionally, in the case of an EFC utilizing a bioanode and a biocathode 

with different surface areas, the geometric surface area of the rate-limiting bioelectrode is 
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commonly used to calculate the power density. For example, a H2/O2 EFC requires a bilirubin 

oxidase (BOD)-modified cathode with an area of 6 cm
2
 to match the output of a 1.2 cm

2
 

hydrogenase (Hase)-modified anode
182

. Therefore, balancing of the catalytic performance of a 

cell requires consideration of the appropriate sizes of the electrodes. 

 

The weight or the volume of an EFC is another critical parameter in the evaluation of 

performance. The specific power can be determined in mW g
−1

 or mW cm
−3

, and is particularly 

suitable for three-dimension structured electrodes
9,183

. In terms of potential applications for 

portable power sources, the power density normalized to the overall weight is important, 

although few reports providing these values
59

. As a simple example, a net power of 10-20 W is 

required to power a laptop
184

, and a high-power-density-per-gram will help to reduce the weight. 

For an implantable EFC, the volumetric power density is the most important parameter (more 

detailed discussion is in Section 3.4). The power output of EFCs needs to be described in a 

manner that enables direct comparison between different systems
59,185

. The expression of power 

density in multiple forms is therefore recommended. For example, the power output of an EFC 

based on the naphthoquinone-mediated oxidation of glucose in a CNT 3D matrix was expressed 

in mW cm
–2

, mW mL
–1

 and mW g
–1

 simultaneously
41

. The same approach was used for a 

membrane- and mediator-free glucose/O2 EFC utilizing novel graphene/single-wall carbon 

nanotube co-gel electrodes
186

. Reporting the data in this format makes it feasible to compare 

results in an effective manner. 

 

The number of enzyme molecules involved in the biocatalytic process is an additional key factor 

for the evaluation and comparison of the performance of bioelectrodes. It is thus necessary to 

report enzyme loadings applied on the electrode and to estimate the amount of electroactive 

enzymes. However, this determination is not obvious, and relies on the determination of the 

non-catalytic signals of enzymes obtained under non-turn-over conditions. Although this 

information has often been reported for Lac
187,188

 or BOD
189,190

, it has only once been reported for 

hydrogenase
67

. Low enzyme coverage can render such a determination difficult. Even when 
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obtained, it is necessary to ensure that the species involved in the baseline signal appearance are 

identical to those involved in the catalytic measurements. This last condition is only rarely 

satisfied, however, leading to misleading values. The work from Mazurenko et al., should be 

noted where the authors rigorously followed the evolution of the non-catalytic signals related to 

the FeS clusters of the AaHase with the decrease of the catalytic signal for H2 oxidation, allowing 

the accurate determination of the amount of enzyme involved in the catalytic process
67

. In 

addition, it is essential to consider the fuel concentration when comparing the power density 

(Table 1). 

 

Besides the above-mentioned factors that influence power output, an analysis of the reaction 

occurring in each compartment of an EFC should be carefully made. A typical bioelectrocatalytic 

reaction is comprised of i) mass transport of the reactant from the bulk solution to the active site 

on the solid surface, ii) enzymatic reaction with the reactant, iii) electron transfer between active 

sites of the enzyme and the electrode, and iv) diffusion of the products into the solution from the 

solid-liquid interface (Figure 5)
77

. The identification and enhancement of the current density of 

the limiting bioelectrode in a given system with fixed electrode geometries, either the bioanode 

or biocathode with the lower net catalytic current density, are crucial
77,191

. In the following 

sections, we will discuss the general strategies to increase the current density of a single 

bioelectrode using fast rates of ET
80

, in addition to mass transport issues and cell configuration 

design.  
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Figure 5. Schematic drawing of a typical electrocatalysis reaction using enzymatic or inorganic 

catalysts highlighting key reaction steps. Reprinted with permission 
77

. Copyright 2018 Elsevier. 

3.2 Increasing intrinsic enzyme activities 

The catalytic response of enzymes in solution is generally characterized by the Michaelis-Menten 

equation
192

: 

  
       

      
                     

where V is the rate of reaction, Vmax the maximum rate of reaction, KM the Michaelis constant 

(the substrate concentration at which V is equal to Vmax/2). The turnover frequency, kcat is defined 

as: 

     
    

    
                        

where [E]o is the enzyme concentration. These kinetic parameters can be obtained by assaying 

the enzyme activity
193

. Enzyme activity is widely used as an indicator to compare the biocatalytic 

efficiency of a single enzyme using various substrates and of different enzymes for the same 

substrate 
194

. The ratio kcat/KM is independent of the concentration of enzyme and substrate. One 

international unit (U) of an enzyme is defined as the amount of enzyme that catalyzes the 

conversion of 1 μmol of reactant per min 
195

. Accordingly, specific enzyme activity (in U mg
-1

 or 

U g
-1

) represents the number of units of enzyme per mg or g of protein. Actual enzyme activity 

after long-term storage of enzymes should be reported. It should be noted that these activities are 

defined based on their optimal conditions that may not be the same as the condition of running a 

specific EFC. In EFCs, attention needs to focus on the enzyme activity at the electrode interface. 

In many cases involving enzyme immobilization, the actual activity of immobilized enzyme may 

be not as high as predicted due to enzyme deactivation and mass transfer barriers. It is necessary 

to consider the number of enzymes per electrode or per cell in order to appropriately compare the 

performance of different EFC systems.  

 

Naturally occurring enzymes may not possess sufficiently high activities that are required for 

EFCs. Therefore, substantial efforts have been made on enzyme engineering to improve the 
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catalytic activities and rates of electron transfer 
196

. Here, we focus on discussing the engineering 

on GOx, one of the most widely used enzymes in bioelectrodes, to demonstrate general strategies 

including direct and random site mutagenesis as well as enzyme de-glycosylation that can be 

used to improve the current density. Schwaneberg et al. employed directed protein evolution in 

Saccharomyces cerevisiae to screen libraries of mutants. They found a GOx mutant (I115V), 

close to the FAD centre, with 1.4-1.5 times higher activity for glucose oxidation 
197

. A similar 

approach led to a double mutant GOx (T30S and I94V) that displayed an increased kcat/KM 
198

. 

Altering expression strains is an additional route to altering the properties of enzymes. On 

replacing native GOx from Aspergillus niger with Penicillium pinophilum GOx at an 

Os-complex modified polymer “wired” bioanode, Mano et al. reported an EFC showing an 

increase in power density from 90 to 280 μW cm
-2
 

199
. This increase was induced by the lower 

KM (6.2 mM) of PpGOx compared to that of AnGOx (20 mM), resulting in a bioanode with 

higher catalytic current in the presence of only 5 mM glucose. A recombinant GOx from 

Penicillium amagasakiense has been overexpressed in a secreted active form displaying a kcat/KM 

in homogeneous glucose solution of 155 mM
-1
 s

-1
, which was much higher than that of a AnGOx 

(38 mM
-1
 s

-1
) 

200
. Using ferrocene-methanol as a mediator, the electrocatalytic current observed 

towards glucose oxidation was two-fold higher with the recombinant GOx than with a native one 

200
. De-glycosylated GOx in combination with an Os-polymer mediator showed an 18% increase 

in current density, which is likely a consequence of the shortened distance between the active site 

of the enzyme and the redox mediator, as well as improved mediator utilization due to the 

decreased molecular size after de-glycosylation 
201

. 

3.3 Facilitating electron transfer 

The rate of ET plays an important role in determining the power output of many EFCs. 

According to Marcus’s theory, the reorganization energy and the distance between the donor and 

the acceptor determine the rate of ET
202

, which decreases by an order of magnitude for every 2.3 

Å increase in distance
203

. An upper threshold of 15 Å is thus required for efficient direct electron 

transfer (DET) 
204

. The structure and conformation of the enzyme may present a cofactor in close 
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proximity to the electrode to maximize the rate of ET 
205

, so that the current density of the 

bioelectrode can be enhanced. However, many cofactors and active sites reside inside insulating 

protein shells, introducing barriers to effective rates of long distance ET. In this section, we start 

with introducing several important equations and theories of ET. A summary of the common 

DET-capable enzymes along with the brief description of their structural features is followed. We 

then discuss strategies, such as electode surface modification for suitable enzyme orientation and 

enzyme engineering, to bring the enzyme cofactor closer to the electrode surface to facilitate 

DET for high-current-density bioelectrodes. The difference between DET and MET- based 

bioelectrodes will be briefly discussed, while MET will be further detailed in Section 5.1 when 

discussing the EFC voltage. 

 

Protein film voltammetric techniques (PFV) can be used to characterise redox enzymes in 

detail
206,207

. It describes the noncatalytic situation of DET-capable enzymes that are in 

(sub-)/monolayer configuration displaying the cofactors based well-defined voltammetry on the 

electrode surface. The empirical Butler-Volmer equations reveal that interfacial ET rates 

exponentially increase with the activation potential (driving force)
208

. Convenient forms of the 

Butler-Volmer expression describing the electrochemical rate constants for a reversible redox 

reaction (kred and koxi) of a one-electron couple are: 

            
    

  
           (4) 

            
        

  
         (5) 

where k
0
 is the standard first-order electrochemical rate constant,  is the electron-transfer 

coefficient, η the activation potential, R the gas constant and T is the absolute temperature. k
0
 can 

be determined by Laviron’s method by plotting the voltammetric peak potential versus the 

logarithm of the scan rate
209

.  

 

Marcus theory describes the relationship between k
0
 and the tunnelling distance d, which is 

the distance between the electrode surface to the electron’s entry/leaving point in the 
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DET-capable enzyme
208

:  

                      (6) 

where β is a decay constant. A dispersion of tunneling distances (i.e. various enzyme 

orientations) leads to a dispersion of values of k
0
. The mathematic model developed by Léger 

et al. can describe the distribution of DET-capable enzyme orientations
208,210

. 

 

The surface coverage () of (sub-)/monolayered DET-active enzymes can be evaluated from the 

voltammetric peak current (Ip) obtained for the oxidation/reduction of the co-factor under 

non-turnover conditions, which is proportional to the enzyme concentration: 

   
      

   
             (7) 

where v is the scan rate of the voltammetric method and A is the surface area. 

 

 is equivalent to [E]o in eq. 3, assuming that all of the electrochemical-addressable enzymes are 

involved in the catalytic reaction. kcat can be obtained using the saturated electrocatalytic current 

(Icat
sat

)
211

: 

     
    

   

   
            (8) 

The electrochemical form of the Michaelis-Menten equation is
206

: 

     
          

      
          (9) 

When the bioelectrode is studied further using rotating-disc voltammetry (RDV), the limiting 

current (IL) of the bioelectrocatalytic current can be described by the Koutecky-Levich 

approximation: 

 

  
 

 

    
 

 

    
 

 

  
         (10) 

where Icat describes the intrinsic catalytic current of the enzyme, defined by eq.9; ILev which is 

described by the Levich equation, is dependent on the rate of rotation and is limited by substrate 

diffusion between the enzyme and bulk solution
206

; IE is determined by the Butler-Volmer 

equation (eq.4 and 5) describing the rate of interfacial electron transfer between the electrode and 

the enzyme. For a first order reaction,  
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                    (11) 

where kE is the heterogeneous electron transfer rate constant (i.e. either kred in eq.4 or koxi in eq.5). 

 

Detailed consideration of the 3D structure of a protein is essential to rationalize the electrode 

surface functionalization for a prefered DET
128

. X-ray crystallographic structures of many 

enzymes are available, and cryo-electron microscopy has the potential to significantly expand the 

number of structures and in particular of larger enzymes and enzyme complexes
212

. There has 

been much debate on considering ET via electronic relays within an enzyme subunit as a DET 

process
213

. As an illustration, electrons generated upon H2 oxidation at the NiFe active site 

located in the large subunit of an hydrogenase travel through three FeS clusters in the small 

subunit of the protein
24

. Another relevant example is CDH in which the heme domain acts as the 

electronic relay
132

. In this review, ET between the electrode and the catalytic center of an enzyme 

via a built-in redox relay is regarded as DET (Figure 6B) 
125

. These redox relays are present in a 

range of sugar oxidizing enzymes used at the bioanode. CDH is a flavocytochrome composed of 

a catalytically active flavodehydrogenase domain and a cytochrome domain acting as a built-in 

ET relay (Figure 6C) 
214,215

. Another relevant example is FDH, a flavohemoprotein with three 

subunits 
216,217

: subunit I with covalently bound FAD showing a pH-dependent formal redox 

potential, E
o
’, of -0.034 V vs. SHE at pH 5.5 for catalytic oxidation of D-fructose; subunit II 

containing three heme c moieties with E
o
’ of 0.135, 0.251 and 0.537 V at pH 5.5, the heme with 

the lowest E
o
’ suggested to be the exit site for ET pathway 

218
; and subunit III, whose function is 

still unclear and does not carry any redox centers. Bacterial derived, hetero-oligomeric 

FAD-dependent GDH (FAD-GDH) consisting of a FAD based catalytic subunit, a small 

chaperone subunit and a multi-haem ET subunit
219

, is also capable of DET. A [3Fe-4S] cluster 

has been identified in this FAD-GDH type, acting as a ET bridge between FAD and the 

multi-heme cytochrome c subunit
220

. Quinohaemoprotein-type PQQ-dependent enzymes (e.g. 

GDH
221,222

, ADH
223

 and LDH
224

) contain PQQ prosthetic group coordinated with the apoenzyme 

with Ca
2+

 and heme-c moieties performing as ET relay
225

. As demonstrated by Sode et al., 

enzyme fusion can be employed to promote DET by introducing a cytochrome domain to the 
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catalytic domain of non-quinohemoprotein-type PQQ-GDH
226

 and fungi-derived FAD-GDH
227

, 

suggesting a powerful strategy that can be expanded to a wide range of DET-capable fusion 

enzymes. The use of built-in redox relay is also the case with H2 oxidizing enzymes. 

[NiFe]-hydrogenases catalyzing H2 oxidation possess a [NiFe] catalytic site accompanied with 

Fe-S clusters distant less than 10 Å to facilitate intra- then intermolecular ET between the 

catalytic site and either c-type or the b-type cytochromes (Figure 6D) 
88,228,229

. On the cathodic 

side, the copper site T1 of multicopper oxidases (MCOs) is the site where the natural substrate 

binds. It is located near the shell of the enzyme allowing ET with the electrode surface. O2 is 

reduced to H2O with four electrons transferred over a short distance (13 Å) at the combined 

T2/T3 (binuclear) trinuclear cluster (TNC) (Figure 6A) 
11,230

. Immobilization of the enzyme with 

the electronic relay facing the electrode is necessary for efficient DET to occur. Suitable 

electrode surfaces are crucial for appropriate enzyme orientation to ensure favorable rates of 

DET 
21,154,231-235

. In this electrode-protein recognition for DET, electrostatic and hydrophobic 

interactions are mainly involved. In case of electrostatic driven orientation, the distribution of 

charges on the protein surfaces was proved to be essential for DET 
236

. The calculation of the 

protein dipole moment is thus highly informative in describing favorable enzyme orientations at 

a charged electrode surface
234,237

.  

 

Analysis of the shape of the electrochemical signal, especially using cyclic voltammetry, allows 

an estimation of the distribution of orientation of the enzymes on the electrode
208,236

. In situ 

surface techniques can provide additional information about any modification in enzyme 

orientation or conformation after immobilization on conductive supports. Furthermore, the 

support material (usually made of gold) used in these techniques can simultaneously act as the 

electrode and makes it possible to quantify any change of the enzyme conformation and 

orientation under turnover as a function of applied potential, concentration of substrate, 

temperature, time etc.
128,129

 Ellipsometry can be used to examine the dielectric properties of thin 

films, and can provide details of the thickness of the enzyme layer. In situ ellipsometry 

measurements emphasized that MCOs immobilized on bare gold tend to adopt a flattened 
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conformation explaining their deactivation
238

. The same technique showed that monolayers of 

MvBOD were formed irrespective of composition of the self-assembled-monolayer used for gold 

modification, although significantly different catalytic signals were recorded. Such a result is 

indicative of different orientations of the enzyme, which was confirmed by the electrochemical 

response.
239

 Surface plasmon resonance and quartz-crystal microbalance (QCM) can be used to 

quantify the total amount of enzyme immobilized on the electrode, and the variation of this 

quantity under turnover and as a function of the local environment
240

. Correlation with the 

electrochemical response can allow the determination of the proportion of DET-oriented 

enzymes
234

. QCM with dissipation (QCM-D) provides additional information on the 

viscoelasticity of the deposited element. Using QCM-D, loss of activity of MvBOD was 

demonstrated to be related to change in enzyme hydration rather than enzyme desorption
241

. 

ATR-Fourier-transform infrared (FTIR) spectroscopy is a powerful in situ method which has 

been used to study changes in the secondary structures of immobilized enzymes. In the case of 

BODs
239

, or hydrogenases
242

, the conservation of the intensity of the amide I and II bands, 

fingerprints of the polypeptide backbone, proved that the enzyme’s secondary structure was 

maintained upon immobilization. Alternatively, surface enhanced resonance Raman (SERR) and 

surface enhanced IR absorption (SEIRA) are sensitive methods to monitor enzyme orientation in 

the immobilized state. Using SERRS on Lac immobilized on gold nanoparticles, Shleev et al. 

demonstrated that ET occurred via a pathway through the trinuclear cluster instead of Cu T1
243

. 

Heidary et al. were able to correlate enzymatic oxidation of H2 to the orientation of a hydrogenase 

on SAMs
244

. Utilizing the surface selection rules, polarization modulation‐infrared 

reflection‐adsorption spectroscopy (PM‐IRRAS) was successfully used to differentiate 

hydrogenase orientation as a function of the hydrophobicity of the electrode
242

. Angles of 25° 

and 40° between the normal to the electrode surface and the -helix as a main component of the 

enzyme, were found on negatively charged and hydrophobic SAMs, respectively. Different 

enzyme orientation could be correlated with the rate of enzymatic oxidation of H2. A similar 

study was conducted on Lac
245,246

, demonstrating that the orientation of beta-sheet moieties 

controlled the rate of catalysis. Finally, in situ microscopies (atomic force microscopy (AFM), 
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scanning tunneling microscopy (STM)) can be used to indicate the location of an enzyme and to 

also provide conformational information. Studies carried out by Ulstrup’s group on nitrate 

reductase
247

 and De Lacey’s group on hydrogenases
248

 and ATP synthase
249

 are particulary 

relevant. For example, using in situ high-speed AFM, the dynamic motion of the 

dehydrogenase-cytochrome interdomain of CDH occurred only in the presence of the substrate, 

paving the way for improved understanding of the mechanism of catalysis
250

. 

 

This in-depth knowledge acquired thanks to structure examination and in situ coupled techniques 

guide further enzyme or electrode modifications for enhanced ET rate. Different strategies have 

been reported in the litterature. For example, a comprehensive study was reported for the 

immobilization of MvBOD and BpBOD on CNTs bearing different surface charges 
236

. The 

respective surface charges and dipole moments of both BODs were shown to determine the 

optimal electrostatic interactions between enzymes and CNT surfaces for efficient DET. Surface 

bearing polyaromatic hydrocarbons that mimics the natural substrates of MCOs (e.g. bilirubin for 

BOD 
70,251

) were able to orient the enzymes with the appropriate configuration minimizing the 

distance towards the T1 site 
252-254

. When bilirubin was adsorbed on a carbon black based 

electrode for BOD immobilization, the standard ET rate constant increased by a factor of 3 with a 

maximum current density of 5 mA cm
-2 70

. Coupled with a FDH based bioanode, the fructose/O2 

EFC exhibited a considerable maximal power density (Pmax) of 2.6 mW cm
-2
. After introduction 

of pyrenebutyric acid functional groups onto the electrode, the DET current density of a BOD 

electrode showed ca. 6-fold enhancement over randomly adsorbed system 
254

. Some other 

relevant examples include, electrode surfaces functionalized with 2-carboxy-6-naphtoyl and 

4-aminoaryl diazonium salt to favor DET of MvBOD and Trametes hirsuta Lac (ThLac), 

respectively, due to their different binding conditions surrounding Cu T1 pockets
255,256

. In 

particular, naphthoate-modified MWCNTs functionalized by electrografting induce favorable 

orientation of Magnaporthe orizae BOD (MoBOD) that can surpass MvBOD in terms of both 

current densities and minimal overpotentials.
256

 Otherwise, hydrophobic interactions have been 

widely used to enhance DET of Lac taking advantage of its hydrophobic pocket 
181,257,258

, 
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achieving excellent maximum current densities several (mA cm
-2

) towards oxygen reduction 

at pH 5. For example, the efficient immobilization and orientation of Trametes versicolor Lac 

(TvLac) on MWCNT electrodes using adamantane-pyrene derivative, confirmed by 

electrochemistry, theoretical calculations and quartz crystal microbalance experiments led to 

maximum current densities of 2.4 mA cm
-2

 .
259

 

 

Besides electrode surface functionalization, enzyme engineering faces a growing interest for 

specific enzyme wiring for enhanced ET. Trametes sp. Lac was designed with a single pyrene 

group close to the T1 Cu site 
260

. Specific interaction via π-stacking with CNT sidewalls and 

host-guest interaction with β-cyclodextrin, enabled a shortened ET route to the electrode, 

resulting in high catalytic current densities with a 4.2 fold increase over that obtained with 

unmodified Lac 
260

. One very recent strategy relies on the incorporation of noncanonical amino 

acids into designed sites of the target enzyme 
261,262

. The great advantage is the possibility to graft 

specific functions at a desired location on the protein. Click chemistry was employed to form a 

covalent linkage between the alkyne moiety and the electrode surface. The anchoring position 

on the enzyme and the linker length can be tuned to understand the mechanism of DET 
262

. 

Site-directed mutagenesis was used with CDH to enable highly site-specific immobilization via 

introduced cysteine residues on the protein surface and surface-grafted maleimide groups 
263

. 

Covalent binding of the variants close to the heme cofactor showed 60-80% higher DET current 

over the physical adsorption approach due to improved enzyme orientation
263

. Although not 

widely applied but of interest, deglycosylated enzymes permit DET due to their decreased 

molecular weight/size and thus shortened distances for ET
264

. Mano et al. reported a 

deglycosylated AnGOx which preserved its activity with the direct redox reaction of FAD 

occurring at -0.687 V vs. SHE
265

. PDH carries covalently bound FAD as the cofactor and its 

deglycosylated form undergoes DET on a graphite electrode
266

. 
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Figure 6. (A) Schematic drawing of the flow of electrons at the active site of MCOs. Reprinted 

with permission 
231

. Copyright 2018 Royal Society of Chemistry. (B) Schematic drawing shows a 

DET capable enzyme with multi-redox centres immobilized on an electrode surface. Reprinted 

with permission 
7
. Copyright 2018 American Chemical Society. (C) Schematic drawing of direct 

electron transfer from an aldose via CDH to an electrode surface. Reprinted with permission 
214

. 

Copyright 2018 Wiley. (D) 3D structure of a membrane-bound [NiFe]-hydrogenase showing the 

electron pathway involved during physiological DET. Reprinted with permission 
88

. Copyright 

2018 Royal Society of Chemistry. 

 

Many enzymes that have been identified for use in EFCs cannot be wired in an optimal manner, 

however, either because the structure is not known to a sufficiently high resolution so that the 

parameters for an orientation favouring DET are unknown, or because the active site is isolated 

from the surface by glycosylation or the presence of detergents in the case of membrane enzymes. 

It is noteworthy for example that native GOx cannot undergo DET at CNT or graphene based 

electrode 
267-269

, as it is heavily glycosylated with an FAD group that is too deeply buried (at least 

1.7 nm from the surface of the protein 
267

) to allow direct ET. Small redox molecules can serve as 

exogenous mediators to shuttle the electrons via MET 
79

. Redox mediators, which undergo 

reversible redox reaction, can be physiological redox partners such as cytochromes or ferredoxins, 

or artificial molecules including ferrocene derivatives, ferricyanide, conducting organic salts (for 

example, tetrathiafulvalene (TTF)
74

 and mixed-valence viologen salt
270

, etc.), quinone 
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compounds, transition-metal complexes, phenothiazine and phenoxazine compounds 
205

. To 

enable ET to occur, the redox potential of the mediator should be higher than that of the cofactor 

of the oxidizing enzyme (the opposite is true for the reducing enzyme) 
125

. The selected mediators 

should also be stable in both oxidized and reduced form, access the cofactor in an efficient 

manner and undergo fast and reversible redox reaction on the electrode surface. Enzyme 

orientation is not a primary issue for MET based bioelectrode construction. For membrane-less 

EFCs, mediators must be co-immobilized with enzymes together on the electrode. To attain this 

goal, polymers bearing redox molecules on their backbones 
120,271,272

 are widely used, however, 

raising performance-degrading 
273

 and possible toxicity issues due to the potential leakage of the 

polymer. The possible toxicity issue from the redox polymer leakage has not been well studied 

and comprehensively understood. Recent reports find that some Os complexes with finely-tuned 

chelating ligands show comprable cytotoxicity to the clinical drugs
274

. Moreover, most polymer 

backbones are biocompatible and is unlikely to harm the body even after leakage into the body. 

The advantages of redox polymers in acting as O2 scavengers will be further discussed in 

sub-section 5.1. Meanwhile, Gross et al. recently reported the use of freely diffusing redox-active 

carbohydrate nanoparticles as redox mediators for homogeneous electron transfer with enzymes 

in solution
275

. This concept was illustrated via a biocathode based on 

2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-nanoparticles and BOD. An 

example of this type of EFC avoiding the need for surface immobilization at the electrode was 

recently illustrated with GOx and BOD electrically wired by redox organic glyconanoparticles 

with entrapped quinone and thiazoline redox mediators, respectively.
276 

 

The comparison between the DET and MET currents for MCOs can be used to determine the 

percentage of enzymes with an orientation that is unfavorable for DET
236

. As illustrations, the 

addition of free ABTS as the redox mediator increased the current density by 20% and 24% for 

Lac and BOD modified electrodes, respectively, emphasizing the optimal control of the 

proximity of enzymes’ cofactor for facilitated DET
255

. In another study, only approximately 9% 

of BOD immobilized on hierarchical carbon felt modified with CNTs was electro-active
67

. It 
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should be noted that a freely-diffusing mediator was used in these examples, with potential issues 

for the rate of diffusion of the mediator itself making it potentially difficult to evaluate the 

portion of enzyme in an orientation suitable for DET. Furthermore, examination of the 

DET/MET ratio demonstrated that this poor electroactive proportion was linked to unsuccessful 

direct enzyme wiring. On the anode side, it has been shown that Os redox polymer encapsulating 

CDH permitted a higher MET current density than that of DET, which can arise from a lower 

ratio of DET active enzymes
277

.  

 

For DET-based bioelectrodes, the surface coverage of active enzymes is generally of a 

monolayer on the electrode. In such cases, modification of the electrode surface and the use of 

high-surface area electrodes is used to obtain significant currents
100

. In contrast, using mediators 

allows multilayered enzymes to be “electroactive”, resulting in high current densities. A direct 

proof of this is the successful concept of electrostatic layer-by-layer (LBL) assembly of enzymes 

with redox polymers 
278-280

. Electrostatic LBL assembly of redox enzymes and oppositely 

charged polyelectrolytes enables rapid ET, tuneable modification layers. However, the faradaic 

response of redox polymers themselves, alongside with the biocatalytic performance, does not 

increase linearly with increasing number of assembled layers, indicative of a limitation in the 

number of layers in order for the outermost layers to be electrochemically addressable, as well as 

limited mass transfer rates within a relatively thick polymer layer
280

.  

 

A recent report combined orientation and mediation strategies to enhance the performance of a 

Lac-based biocathode
281

. A molecular wire was synthesized, which contained an 

enzyme-orientation site (pyrene) to be plugged into the hydrophobic pocket of Lac, an electron 

redox mediator (ABTS) and a pyrrole monomer to be polymerized onto electrode surface. This 

combined approach resulted in the highest maximum current density (2.5 mA cm
-2

) in 

comparison to the optimal oriented (1.4 mA cm
-2
), mediated (2 mA cm

-2
) and physically 

adsorbed approaches (0.6 mA cm
-2

). Coupled with a Pt alloy/C based anode, the optimized 

hydroge/air fuel cell provided a Pmax of 7.9 mW cm
-2
 (limited by the cathode). 
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3.4 Employment of nanomaterials 

Implementation of high-specific-surface-area nanomaterials including porous gold and porous 

carbon electrodes as enzyme supports is a widely used strategy for enhancing current 

density
88,92,103

. Conductive materials with high surface-to-volume ratios enable high enzyme 

loading 
87

. For DET enzymes, even though they may be randomly distributed in the conductive 

matrix, 3D nanomaterials provide the opportunity for favourable enzyme wiring for DET 
282

. 

Moreover, the confinement effects of the porous electrodes are of advantage in the efficient 

coupling of enzymes
282,283

 and redox polymers modified surface
283

, in comparison to planar 

electrodes (Figure 7).  

 

 

Figure 7. Schematic drawing of the advantages of using nanomaterial-based electrodes for the 

application of EFC. Reprinted with permission 
114

. Copyright 2018 Elsevier. 

 

Porous gold electrodes featuring good electrical conductivity, chemical stability and 

biocompatibility can be fabricated by dealloying
282,284,285

, Au nanoparticle (AuNP) assembly 

75,286-289
, anodization

290
, or hard-

291-293
 and soft-

294
 template methods. Au electrodes can be easily 

modified with self-assembled monolayers (SAMs) of thiols
242,295

, diazonium grafting
283,296,297

 and 

electropolymerization
298,299

 for enzyme immobilization to achieve direct and mediated ET. A 

dealloyed porous gold (thickness: 100 nm, pore size: 30 nm, roughness factor: 9) based EFC 

utilizing electrodeposited Os-complex modified polymer with BOD and GDH, repectively, 

showed a Pmax of 1.3 µW cm
-2

 in the presence of 20 mM glucose, in contrast to 0.08 µW cm
-2 
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using planar Au electrodes
283

. When the same amounts of enzyme/Os-complex modified 

polymer were drop-cast onto electrodes
300

, the CDH/BOD based EFC in 5 mM lactose displayed 

41 and 13 µW cm
-2 

on dealloyed porous and planar gold electrodes, respectively. Such a 

difference arises from the larger surface area of the porous electrode. Highly ordered 

microporous gold electrodes assembled by AuNPs were utilized to immobilize GDH and Lac at a 

bioanode and biocathode respectively, and exhibited a Pmax of 178 µW cm
-2  

in 30 mM glucose, 

in comparison with 12.6 µW cm
-2 

on flat electrodes
301

. This increase in power density was mainly 

attributed to the higher enzyme loading in microporous gold. Coupling a MWCNT/GDH based 

bioanode with a 3D microporous gold/Lac biocathode displaying high DET current densities 

resulted in a Pmax of 56 µW cm
-2 

in 10 mM glucose, while 7 µW cm
-2 

was obtained when a planar 

Au/Lac biocathode was used
286

. These reports highlighted the enhancement of the power density 

observed with porous gold electrodes. The pore size, inversely proportional to the specific 

surface area 
282,302

, is an important factor for the performance of the bioelectrode. An optimal 

DET current for BOD was observed on porous gold electrodes with a pore size of ca. 20 nm 

which was large enough to accommodate the enzyme while providing a high surface area for 

sufficient enzyme loading 
283

.  

 

Examination of values of Pmax greater than 1 mW cm
-2 

(Table 1) indicates that the majority of 

high-power-density EFCs are based on carbon nanomaterials (CNMs)-based electrodes. CNMs 

including buckypaper 
46,117,303

, carbon felt 
74

, carbon cloth, carbon black 
16

, CNTs 
62,72,303-313

, 

carbon fiber 
65,273,314-318

, graphene 
73,93,255,319

, porous carbon 
11,63,66,320,321

, carbon nanodots 
322

, and 

their combinations thereof
15,35,185,323-327

 have been widely used for the preparation of bioelectrodes. 

They enjoy advantages including low cost, affordable industrial scalability, wide operating 

potential window, chemical stability, hierarchical micro/nanostructures and flexible structures. 

The high specific surface area of CNMs ensures high loadings of enzymes 
67

. For example, the 

modification of graphite electrode with hydrophobic carbon nanofibers (CNFs, BET surface area: 

131 m
2
 g

-1
) resulted in a 1500-fold increase in the active area, so that a high current density of 4.5 

mA cm
-2

 (100-fold increase) was obtained for enzymatic H2 oxidation 
328

. Graphene coated 3D 
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micropillar arrays were used to immobilize GOx and Lac, respectively, allowing an EFC with a 

Pmax of 136 µW cm
-2 

in 100 mM glucose, much higher than a bare carbon based cell (22 µW 

cm
-2

)
329

. As discussed previously in Section 3.3, varying the surface properties enables the 

electrostatic interactions between the enzyme and the electrode, resulting in the optimal preferred 

enzyme orientation for DET, and possible covalent attachment. CNMs are very attractive for that 

purpose. Versatile surface modification methods are based on diazonium salt reduction 
255,330-332

, 

electropolymerization 
333,334

 and pyrene based π-stacking interactions 
185,335-337

. One example is 

that a H2/air EFC showed a Pmax of 12 μW cm
-2 

when the hydrogenase and BOD were randomly 

adsorbed on pyrolytic graphite (PG) electrode, in contrast to 119 μW cm
-2 

using functionnalized 

pyrenyl MWCNTs 
254

. By replacing PG with SWCNT-COOH, 35 and 300 fold increases in the 

hydrogenase-bioanode and BOD-biocathode currents, repectively, have been reported 
338

. 

Accordingly, the Pmax of the resultant H2/O2 EFC attained to a value of 300 µW cm
-2
, much 

higher than that for the cell based on PG (1 µW cm
-2
)

338
. 

 

CNMs are versatile and can be used in various formats
81

, allowing the miniaturization of EFCs 

towards implantable applications with significant volumetric power densities. Pioneering work 

by Heller et al. demonstrated a glucose/O2 EFC consisting of two 7-µm diameter and 2-cm long 

carbon fibers, which delivered a maximum power density of 137 µW cm
-2

 (estimated to be 10 

µW cm
-3 

in volumetric power density normalized to the whole cell size) at 37 C
339

. The 

implantation of this miniaturized EFC into a grape containing more than 30 mM glucose 

registered a maximum power density of 240 µW cm
-2

 (ca. 18 µW cm
-3 

in volumetric power 

density) when the cathode fiber was near the grape skin
340

. A glucose/O2 EFC with a needle 

bioanode inserting into a rabbit ear using ketjenblack as the electrode material produced a 

volumetric power density of ca. 42 µW cm
-3 

(estimated by the volume of the sealing tip: 0.01 

cm
-3

)
341

. A functional and implantable glucose/O2 EFC in a freely moving rat based on graphite 

particles electrodes was reported in 2010, featuring a size of 0.13 cm
-3

 and a volumetric power 

density of ca. 24.4 µW cm
-3 

(excluding the volume of the encapsulating bag)
31

. Crespilho et al. 

constructed a miniaturize glucose/O2 EFC made with flexible carbon fiber microelectrodes 
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(length ca. 0.05 cm; diameter ca. 10 µm) modified with enzyme and mediator and implanted into 

the jugular vein of a living rat, yielding a maximum power density of 95 µW cm
-2 342

. 

 

Although allowing significantly improved current densities, two main challenges of using CNMs 

based high-surface-area electrodes need to be addressed. Firstly, the potential toxicity of CNMs 

343
 particularly in implantable applications, needs to be considered

344
. Since direct in vivo contact 

should be circumvented, biocompatible polymers can be used to avoid biofouling
341

. When used 

in portable devices, the possible dispersion of CNMs into the environment may cause chronic 

diseases with long-term exposure time
345

. Secondly, fuel diffusion limitations can arise at high 

enzyme loadings
67,346

. Open, hierarchical porous carbon materials with macropores for improved 

mass transport and mesopores with nanostructured surface for efficient enzyme-electrode 

communication are promising
320,321

. A study of the pore size effect of MgO-templated carbon on 

the performance of [NiFe]-hydrogenase showed that larger pores (150 nm) afforded enhanced 

current density than small pores (35 nm) due to the more favourable enzyme loading in the large 

pores
347

. 

3.5 Gas diffusion bioelectrode 

Mass transport plays a vital role in the power output of EFCs. For gaseous fuel-powered EFCs, 

gas diffusion bioelectrodes may overcome the substrate diffusion issue as the consumed substrate 

(e.g. H2 and O2) in the electrolyte will be compensated from the gas phase. The concentration of 

O2 available in aqueous solutions at room temperature is less than 1 mM, limiting power output 

to only a few mW cm
-2
 

79
 for EFCs based on oxygen-reducing cathodes. In the case of 

hydrogenase-based bioanodes, modeling of substrate diffusion showed that a thickness limited to 

100 µm of porous carbon material was catalytically active, mainly restricted because of fast 

substrate depletion in the inner layers
67

. Therefore, the gas diffusion bioelectrode (GDBE) is 

envisioned as a type of porous electrodes allowing the direct contact with gaseous substrates, 

eliminating the supply limitations due to the relatively low substrate solubility 
102

. The concept of 

GDBE emanates from developments in conventional fuel cells. A viable GDBE consists of 
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(Figure 8):
102

 i) a catalytic layer comprising enzymes, carbon additives for improved 

conductivity, binders for enhanced attachment and tuning the hydrophobicity/hydrophilicity 

balance and ET mediators if necessary; ii) a porous and conductive catalytic support layer such 

as carbon paper
348

, carbon cloth
349

, carbon felt
50

 etc.; iii) a protective layer that is gas permeable 

and prevents leakage of the liquid electrolyte, for example Nafion® 
350

 and 

polytetrafluoroethylene (PTFE)
351,352

. 

 

Figure 8. Schematic drawings of (A) bio-triple-phase boundary highlighting relevant properties 

including gas permeability, electrode conductivity and surface hydrophobicity/hydrophilicity 

balance; (B) structure and material candidates of a gas diffusion bioelectrode. Reprinted with 

permission 
102

 with modification. Copyright 2018 Elsevier. 

 

Initial attempts in using oxygen-reducing GDBEs were conducted by Tarasevich et al. in 2003 by 

immobilizing Lac at highly dispersed colloidal graphite or acetylene carbon black
353

. Additional 

reports using ferricyanide mediated O2 reduction by BOD in 2009 
52

, a GDBE using multi-copper 

oxidase undergoing DET in 2009 
348

, and Lac undergoing DET
350

 have been described. In 

pioneering work Atanassov’s lab described a range of GDBEs based on MvBOD
354

 and Lac
355-357

 

adsorbed on hydrophobized carbon black composite, and Lac on MWCNTs
358

. High catalytic 
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current densities were reported based on GDBE not only for O2 reduction but also for other 

gaseous substrate enzymatic transformation such as CO2  reduction
270

 or H2 oxidation
16,68,69

. The 

reduction of N2 into ammonia has been possible
153

, which could also be developed into a gas 

diffusion type electrode. Recent examples demonstrate steady-state catalytic current densities at 

water-repellent-treated porous carbon felt/MvBOD bioelectrode as high as 24 and 32 mA cm
-2

 

using air and oxygen, respectively
351

. A highly gas-permeable water-proof carbon cloth/hollow 

MWCNTs/MvBOD displayed a DET based catalytic current density of 32 mA cm
-2
 under 

atmospheric oxygen conditions
153

. On the anode side, the first use of GDBE for H2 oxidation was 

published in 2014 based on Hydrogenovibrio marinus [NiFe]-hydrogenase undergoing DET 
359

. 

A H2/O2 EFC based on DET and dual GDBEs delivered a Pmax of 8.4 mW cm
-2
 at 0.7 V under 

quiescent conditions, the highest value ever reported for such device
68

. More recently, a dual 

GDBE-based H2/O2 EFC was constructed based on O2-sensitive hydrogenase incorporated in 

redox polymers and BOD directly wired to carbon cloth
69

. A maximum power density of 3.6 mW 

cm
-2

 was obtained, one of the highest values ever reported for an EFC (Table 1)
69

. Beside EFC 

applications, GDBEs are also promising for applications in bioelectrosynthesis. The reduction of 

CO2 to formate using MET-type GDBEs with tungsten-containing FoDH showed a current 

density of 17 mA cm
-2

 
360

.  

 

Special care has been paid to the architecture of GDBEs allowing these high catalytic 

performances. Bio-triple-phase boundary (BTPB) is the interface between a gaseous fuel, liquid 

electrolyte (buffer solution) and solid electrode, at which the catalytic reaction occurs
102

. The 

active enzymes need to be hydrated to enable catalytic activity, highlighting the importance of 

tuning the surface hydrophobicity/hydrophilicity properties
102

. The reduction of O2 at the 

air-breathing biocathode nicely illustrates the main issues associated with GDBEs. Biocatalytic 

O2 reduction involves the following steps: i) O2 from the gas phase is dissolved in the thin liquid 

layer around the enzymes, ii) O2 and protons diffusing from the electrolyte meet at the active site 

of the enzyme with production of H2O, iii) excess water is repelled by the hydrophobic surface 

enabling the reaction to continue. An accumulation of water at the biocathode affects the final 
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performance of the GDBEs over time as the flow of gases is impeded. A subtle optimization of 

the hydration level at the BTPB is of importance to ensure the water content is sufficiently high 

for efficient proton transfer in the liquid phase, and sufficiently low to ensure adequate gas 

permeability at the interface. In practice, the hydrophobicity/hydrophilicity balance of GDBEs 

can be optimized by adjusting the hydrophilic binder/hydrophobic carbon additive ratio
68,348

. 

Besides biocathode flooding, local pH change at BTPB also resulted in decreased operational 

stability of GDBEs
102

, which can be alleviated by using concentrated buffer solutions
52

. 

Quantitative stability performance of various GDBEs has been described in a recent review
102

. 

The observed decay in the current density can be related to changes in 

hydrophobicity/hydrophilicity arising from increased water flooding and decreased gas 

permeability. Atanassov et al. combined oxygen-reducing GDBEs with paper based lateral-flow 

microfluidic systems by immobilizing enzymes with carbon based inks on nitrocellulose paper
361

, 

which broadened the range of applications of EFCs, such as microfluidic paper-EFC stacks
362-364

. 

 

It should be noted that GDBEs are not suitable for implantable EFCs since gaseous substrates are 

not substantially available in the body, but can be feasible in subcutaneous devices
341

. Future 

efforts should be devoted to optimizing the utilization levels of the immobilized enzyme, since 

the widely-used enzyme/binder/additive slurry casting method maybe not sufficient enough. New 

strategies to engineer the hydrophobicity/hydrophilicity balance of the gas permeability and 

porosity should be developed. For example, a gold coated porous anodic alumina (PAA), whose 

surface wettability can be tailored by the properties of self-assembled monolayers, has been 

recently used for GOx immobilization (Figure 9)
365

. It is found that O2 can participate to the 

enzymatic reaction directly from the gas phase through the channels, resulting in an 80-fold 

increase compared with that of an immersion type electrode. 
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Figure 9. Schematic drawing of the assembly of an Au/PAA based air diffusion bioelectrode and 

the testing setup. The surface wettablitiy of the Au electrode is tuned by using two different types 

of self-assembled monolayers of thiols. Reprinted with permission 
365

 with modification. 

Copyright 2018 American Chemical Society. 

3.6 Fluidic EFCs 

Fluidic configuration is one hydrodynamic strategy to overcome substrate depletion and thus 

increase the power density. EFCs in implanted medical devices use sugars and oxygen available 

under physiologically ambient conditions in soft tissue or blood vessels 
5
. The surrounding tissue 

leads to additional resistance for mass transport of reactants and waste products. In contrast, 

EFCs implanted in blood vessels can be regarded as flow-through devices with mass transport 

improved in the blood stream which has a flow velocity of 1-10 cm s
-1
 
5
. A wide range of recent 

studies has used a combination of enzymatic microfluidic devices to mimic the flow conditions 

in blood vessels
350,366

. Initial attempts focused on flowing enzyme
367-369

 and/or cofactor
370

 and/or 

mediator
371

 solutions into micro-channels, where enzyme immobilization is essential
350

. 

Immobilization methods such as electrostatic interaction 
76,372,373

, covalent bonding
294,371

 and 

cross-linking
374,375

 will be discussed further in Section 4.1.  

 

One interesting example is a hybrid microfluidic fuel cell based on a GOx bioanode and an 

air-exposed Pt/C cathode 
375

. At a flow rate of 0.5 mL h
-1
 (under laminar flow), the fuel cell 

exhibited a decrease in Pmax from 0.6 to 0.2 mW cm
-2

 when tested in buffer and human blood 

respectively. The decrease was proposed to be a consequences of higher viscosity and the 

adsorption of chemical species, including protein fragments, onto the electrode surface. A single 

compartment lactate/O2 EFC in a pH 5.6 buffer containing 40 mM lactate registered a Pmax of 

61.2 μW cm
-2
, which was increased to 305 μW cm

-2 
when operated at 3 mL h

-1
 in a microfluidic 

configuration 
376

. The power density increased further on raising the flow rate to 9 mL h
-1
, but 

levelled off at 12 mL h
-1
 indicating that the response is likely due to flow-induced instabilities in 

the enzyme immobilization, as explained by the authors 
376

. Porous carbon paper has been 

introduced into a co-laminar microfluidic ethanol/O2 EFC 
377

. In this case, a low flow rate (50 µL 
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min
-1
) generated higher power density than that from a higher flow rate (100 µL min

-1
), a result 

that can arise from the longer residence times in the enzyme layer at lower flow rates. 

 

Figure 10. The calculated dependence of power output on O2 concentration and blood flow rate 

in a channel mimicking a human blood vessel. Reprinted with permission 
378

. Copyright 2018 

Royal Society of Chemistry. 

 

Pankratov et al. prepared a tubular graphite electrode with inner and outer diameters of 1.00 and 

3.01 mm, respectively, sizes that resemble that of a vein 
378

. CDH and BOD were used to modify 

the inner tubular surface to form a bioanode and biocathode respectively. The tube was operated 

ex vivo with a laminar flow of blood from a human volunteer under homeostatic conditions. 

Experimental data, as well as theoretical calculations, showed that the power density of such an 

EFC was dependent on fuel concentration and blood flow rate (Figure 10). 

 

Detachment arising from hydrodynamic flow, however, hindered the long-term operation of the 

bioelectrode, highlighting the importance of robust anchoring of enzymes to electrode surfaces. 

Specifically, poly(ethylene glycol) diglycidyl ether (PEGDGE) cross-linked enzyme layers could 

be washed off by the fluid at a flow rate of 0.2 mL h
-1
 
371

. In contrast, covalently bound enzymes 

appeared to be much more resistant towards flow at 2 mL h
-1
 

371
. The response of a hybrid fuel 

cell using a GOx/MWCNTs anode and a Pt/carbon cathode was tested in human blood at a flow 

rate of 0.5 mL h
-1
, decreased by over 65% after 3 h of operation 

375
. Gonzalez-Guerrero et al. 
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described a pyrolyzed photoresist film (PPF) electrode based EFC employing a 

ferrocenium-based PEI linked GOx anode and MWCNTs/Lac cathode that displayed a decreased 

in power density of 50% after 24 h of operation at a flow rate of 4.2 mL h
-1
 in buffer solution

374
.  

 

The Reynolds number is a measurement of degree of convective mixing of co-laminar streams
350

. 

In microfluidic channels, the Reynolds number is low, and mixing of the adjacent flowing 

streams is limited to a very thin interfacial width. Careful adjustment of the dimensions of these 

microchannels can avoid the need for a physical barrier to separate the fuel and the oxidant. 

Ion-exchange membranes are typically used to avoid mixing of H2 and O2 and to limit exposure 

to O2 inactivation of hydrogenases
88

. A Y-shape microfluidic channel
369

 with co-laminar flows of 

H2 and O2 enriched solution could eliminate the need for separation membranes, while ensuring 

rapid rates of transport of the substrates. 

 

Other hydrodynamic environments introduced by magnetic stirring
273

, electrode rotation
230,287

 and 

flow cell
33,294

 are widely used to compensate for diffusion limitations in order to increase the 

power output of a EFC. However, the additional power, sometimes even greater than that 

generated by the EFC itself, is usually required, making these stirred and rotated EFCs 

impractical. 

3.7 Combined EFCs/(super)capacitor devices 

The energy generated in EFCs can be stored in energy storage devices in a ‘stationary’ mode. 

Rechargeable batteries and supercapacitors are the most widely studied energy storage devices, 

and can store and release electrical energy by electrochemical reactions 
379

. Supercapacitors, also 

known as electrochemical capacitors, utilize the electrical double layer capacitance (EDLC) via 

ion adsorption or pseudocapacitance attained during reversible faradaic reactions 
379

. Unlike 

EFCs suffering from low power density and stability, supercapacitors possess high specific 

power density and long lifetime. A range of reports have combined EFCs with 

(super)capacitors
140

. 
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Initial attempts focussed on the external connection of EFCs with capacitors or supercapacitors. 

The coupled capacitor element accumulates the charge generated by the EFCs in the circuit, 

which can be released by output pulses with much higher power densities than that possible by 

EFCs themselves. Skunik-Nuckowska et al. used MWCNT based supercapacitors in parallel as 

complementary power units coupled with a Lac cathode and zinc anode based biobattery. The 

biobattery alone delivered a power output of 1.3 µW, in comparison to 8.5 mW from the 

biobattery/supercapacitor hybrid system 
380

. Sode et al. developed the concept of a “BioCapacitor” 

by integrating an EFC with a charge pump/capacitor combination (Figure 11) 
139,381

. The 

capacitor was gradually charged and then discharged to power the electric device 
139

. The 

high-power levels generated resulted in very short discharge intervals. A similar setup was used 

to design a wireless sensor fed by a H2/O2 EFC 
382

. The concentration of fuel determines the rate 

of charge/discharge of the biocapacitor, which enables a self-powered biosensor to determine the 

concentration of the fuel via the rate of charge/discharge of the capacitor 
139

. Liu et al. coupled 

two series-connected glucose/O2 EFCs consisting of a buckypaper/MWCNT/FAD-GDH 

bioanode and a buckypaper/MWCNT/Lac biocathode with a flexible all-solid-state 

supercapacitor 
303

. The self-charged system achieved a Pmax of 608 μW cm
-2
 when the capacitor 

was discharged, 90% higher than the value for series-connected EFCs. 

 

 

Figure 11. Schematic drawing of the principle of a biocapacitor. A charge pump can scale up the 

voltage of the EFC and a capacitor is used to store the electrical energy. The stored electric 
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energy can be discharged from the capacitor to activate a device (e.g. a LED bulb) when the 

capacitor voltage attains to the set value. Reprinted with permission 
139

. Copyright 2018 Elsevier. 

 

Closer examination of the configuration of EFCs and supercapacitors indicate that i) two 

electrodes hosting active materials (namely the anode and cathode) connected to the external 

circuit; ii) an electrolyte solution with conducting ions; iii) a separator if necessary to prevent 

possible short-circuit. Carbon nanomaterials that are widely used for the preparation of 

bioelectrodes have significantly high EDLC. Agnès et al. developed an EFC consisting of a 

compressed porous CNT matrix modified GOx bioanode and a Lac based biocathode, delivering 

3 mA and 2 mW pulses with a short duration of 10 ms per 10 s for 5 days in the presence of 

glucose and O2 
383

. In this case, the electricity generated by the EFC was stored continuously in 

the EDLC of CNTs. In parallel, Pankratov et al. reported a hybrid device based on flat graphite 

foil electrodes, with one face bearing an EFC using an AuNPs-CDH bioanode and an 

AuNPs-BOD biocathode, and the other face configured with capacitive materials 

(CNT/polyaniline) 
384

. It displayed an initial power output of 1.2 mW cm
-2

 at a voltage of 0.38 V 

which is 170 times higher than that of the EFBC alone. 

 

It should be clarified that a biodevice simultaneously functionning as an EFC and a 

supercapacitor is different from systems based on the external connection of an EFC to a 

(super)capacitor. The former can be termed a hybrid EFC/supercapacitor device, which can be 

prepared from bifunctional electrodes
140,385

. The integration of such systems enables 

miniaturization. The self-powered capacitor functions in a sequence of charging and 

discharging
283,386

. Under charging conditions, the cell is at open-circuit, and the open-circuit 

potential (OCP) between the two electrodes gradually increases to the open-circuit voltage (OCV) 

of the EFC, as a result of the higher potential on the biocathode catalyzing oxygen reduction and 

the lower potential at the bioanode catalyzing the oxidation of fuels. Such a potential difference 

drives the polarization of the capacitive biocathode and bioanode. In other words, the capacitive 

cell is electrostatically charged by the biocatalytically induced potential difference. In the 

discharge step, the accumulated charge can be released at a fixed resistance
384

 or current 



59 
 

density
283

. Based on such a methodology, Kizling et al. reported a fructose/O2 

EFC/supercapacitor hybrid device composed of a cellulose/polypyrrole/FDH bioanode
387,388

 and 

a naphthylated CNTs/Lac biocathode
388

. Three biodevices in a series could generate pulses for 45 

s with potentials above 1 V. Villarrubia et al. prepared a buckypaper  based glucose/O2 

EFC/supercapacitor hybrid device
364

, which could be self-charged and discharged by a range of 

current densities as high as 4 mA cm
-2

 for 0.01 s with a Pmax of 0.87 mW cm
-2

 (absolute 

maximum power: 10.6 mW), 10 times higher than that of the EFC itself. 

 

In addition to carbon nanomaterials with high EDLC, the pseudocapacitance behavior of redox 

polymers has also been examined. Knoche et al. prepared a hybrid device consisting of a carbon 

felt/MWCNT/dimethylferrocene-modified linear poly(ethylenimine) (FcMe2-LPEI)/FAD-GDH 

bioanode and a biocathode based on a carbon felt/anthracene terminated MWCNT/BOD 
389

. The 

FcMe2-LPEI redox polymer served as mediator, enzyme immobilization matrix and as a 

supercapacitor whose pseudo-capacitance increased with polymer loading. The device generated 

1 mA pulses for 1 s with a power output of 1 mW energy. Pankratov et al. developed a capacitive 

EFC using the same Os-complex modified polymer on a GDH anode and a BOD cathode 
378

. 

The capacitance of the polymer was used for energy storage with an OCP up to 0.45 V, which 

could be discharged with 8-fold higher power output than that obtained in steady state 
378

. Xiao et 

al. doped an Os-complex modified polymer based FAD-GDH bioanode and a BOD cathode 

with poly(3,4-ethylenedioxythiophene) (PEDOT) that showed enhanced capacitance 
283

. The 

hybrid device was charged by the internal glucose/O2 EFC and discharged as a supercapacitor at 

various current densities up to 2 mA cm
-2
 registering a Pmax of 609 μW cm

-2
, a 468-fold increase 

when compared to that from the EFC itself. Connection of three devices in series produced 10 

μA for 0.5 ms at a frequency of 0.2 Hz, mimicking the power requirement of a cardiac 

pacemaker. Interestingly, Alsaoub et al. demonstrated that the pseudo-capacitance of 

Os-complex modified polymers can be used in a so-called “biosupercapacitor” which can be 

discharged 
390

. However, such a biodevice, comprised of a high-potential Os complex modified 
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polymer for glucose oxidation and a low one for oxygen reduction, is not an EFC as it cannot 

provide a usable OCV. 

 

To briefly summarize this section, unconventional configurations of EFCs enable additional 

functionalities. However, as already discussed, the output voltage is still limited by the OCV of 

the EFC. The arbitrary combination of EFC and supercapacitor may be problematic, as shared 

electrodes configuration may reduce the efficiency of EFCs due to diffusion limitation. Insulating 

biomolecules are unlikely to be very beneficial for high-performance supercapacitors, although 

there are some reports indicating that proteins could contribute additional capacitance
391

. 

Additional research is needed to understand the mechanism of operation
392,393

 and to develop 

practical applications
392

 of hybrid devices. 

 

4. Strategies for improving stability in EFCs 

4.1 Enzyme immobilization approaches 

The primary consideration of immobilization upon the bioelectrode’s operational stability is to 

avoid enzyme detachment and other co-factors from the electrode
76

. Once immobilized, enzymes 

usually exhibit extended lifetime compared to those in solution
394

. Rigidification of the structure 

of the enzyme can enhance enzyme stability
395

. In EFCs, enzymes can be immobilized onto solid 

electrode surfaces by a range of approaches that include physical adsorption, covalent binding, 

entrapment and cross-linking
6,40,90,96,396

 (Figure 12).  
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Figure 12. Scheme of various enzyme immobilization methods for bioelectrode fabrication. 

 

Physical adsorption is generally considered as the simplest and mildest technique for enzyme 

immobilization, whereby enzymes are adsorbed directly onto electrode surfaces. However, 

enzymes physically adsorbed onto bare metal electrode surfaces often suffer from reduced 

operating lifetimes.
238

 The self-assembly of a monolayer of thiols on the electrode surface may 

protect the enzymes from denaturation caused by metal-enzyme interactions
397

 or at the electrode 

solution interface
398

. On the contrary, in comparison with planar electrodes, bioelectrodes 

fabricated by adsorbing enzymes at nanomaterials often exhibit not only improved 

electrocatalytic activity but also improved operational stability.
399-401

 The improved activity and 

stability of nano-structure-based bioelectrode was ascribed to the 3D structure of the electrode, 

providing a mild microenvironment to effectively avoid enzyme desorption and denaturation.
402

 

A glucose/O2 EFC prepared by the physical adsorption of GOx and BOD onto hierarchical 

metal–oxide mesoporous electrodes showed only 10% loss in voltage output after 30-h 

continuous operation.
403

 Furthermore, the effect of pore size of porous electrodes on the stability 

of bioelectrode was investigated
321,347,404,405

. AaHase adsorbed onto MgO-templated carbon 

(MgOC) with pore size of 35 nm (larger than the size of AaHase ca. 17.7  1.3 nm), exhibited a 

half-time of 81 h at 50 C, much longer than that of AaHase in solution (7 h) (Figure 13).
347

 A 

dialysis membrane (cut-off-molecular-weight of 12-14 kDa) was placed on the electrodes to 

prevent enzyme leakage to the solution during the measurement. The enhanced stability was 

ascribed to interactions between the pore materials and enzymes which decreased the 

conformational flexibility of the enzymes.
347
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Figure 13. A) Field emission scanning electron microscopic images of MgOC35. B) Normalized 

response of AaHase-modified (red line) MgOC35 and (black line) MgOC150 at 50 C in pH 7 

phospahte buffer (0.1 M). MgOC35 and MgOC150 represent a MgO-tempted carbon with pore size 

(diameter) of ca. 35 and ca. 150 nm repectively. Reprinted with permission 
347

 with modification, 

Copyright 2018 Elsevier. 

 

The surface properties of electrodes, such as hydrophobicity, surface charge or functionalized 

groups, can influence the stability of bioelectrodes
406

. TvLac adsorbed onto 1-pyrenebutyric acid 

adamantyl amide functionalized MWCNTs (ADA-MWCNTs) remained 66% of the initial 

bioelectrocatalytic activity after 1 month
259

. However, TvLac on pristine MWCNT exihibited 

rapid decrease in catalytic currents to less than 5% of the initial value after 20 days (Figure 14). 

In this case, modifier with polycyclic aromatic structure can bind to the active center pocket of 

the enzymes, diminishing the desorption of the enzyme and reducing the conformational changes 

of enzymes
259,407,70,408

. A thermostable H2/O2 EFC was assembled with an AaHase-based 

bioanode and a BpBOD-based biocathode, which were fabricated by physically adsorbing 

AaHase or BpBOD onto 1-pyrenemethylamine hydrochloride functionalized CNT electrodes, 

retained 95% of the initial power after 17 h continuous operation
67

. These reports suggest that 

functionalized surfaces of electrodes are likely to improve the stability of bioelectrodes by 

enhancing intermolecular interaction between enzymes and electrodes as well as reducing the 

conformational disruption
70,181,257,409-411

. Conformational changes of the enzymes during operation 

of EFCs is an area that needs investigation. 
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Figure 14. A) Schematic of TvLac oriented adsorption on 1-pyrenebutyric acid adamantyl amide 

functionalized MWCNTs (ADA-MWCNT). B) Long-term stability of TvLAC at pristine 

MWCNTs (black) and ADA-MWCNTs (blue). Measurements were carried out by performing a 

daily 1 h discharge at 0.2 V in stirred oxygen-saturated Mc Ilvaine buffer pH 5. Reprinted with 

permission 
259

 with modification. Copyright 2016 American Chemical Society.  

 

Covalent binding is a typical and effective enzyme immobilization method. Peripheral amino or 

carboxylate groups on enzymes are feasible positions for covalent linkage. One common 

approach to anchor enzymes onto electrode surfaces is usually based on the formation of amide 

bonds between carboxylic groups and amino groups
230,234,253,286,412-414

, which are typically 

mediated by carboxylate activating reagents such as 

1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC). With the aid of EDC, the MvBOD 

covalently bound to 6-mercaptohexanoic acid functionalized Au electrode retained more than 80% 

of the intial current after 4000 s continued measurement, while only 20% of the intial current was 

remained at the MvBOD physically adsorbed 6-mercaptohexanoic acid functionalized Au 

electrode (without EDC in this case).
234

 (Figure 15A, B) The covalent binding between enzymes 

and electrodes is expected, for example, to prevent the enzyme orientation changes, which, 

however, affect the interfacial ET and then the lifetime of bioelectrodes. Besides, “click 

chemistry” is a convenient method to covalently bind redox enzymes to electrode surfaces.
263

 A 

thiol-maleimide click reaction between MoBOD variant S362C and maleimide-functionalized 

MWCNT was employed to construct a stable O2 bioanode, which retained ca. 95% of the initial 

current after 3 days storage, with ca. 30% of electrocatalytic current retained after 3 hours storage 
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for an electrode prepared by simply physical adsorption
415

. (Figure 15 C, D) Compared to 

physical adsorption, covalent binding provides stronger degrees of interaction between the 

enzymes and the electrode surface, leading to higher stability of the bioelectrodes
416,417

. However, 

it should be noted that the enzyme activity can decrease to certain extent upon immobilization 

416,418,419
.  

  

 

Figure 15. A) Scheme of electrode modification with MvBOD via an amide bond. B) 

Chronoamperometry of MvBOD at 6-mercaptohexanoic acid functionalized Au electrode with 

(blue) and without (black) the aid of EDC. C) Scheme of electrode modification with MoBOD 

variant S362C via maleimide/thiol bond; D) Maximum electrocatalytic activities of the 

maleimidemodified GC/MWCNT electrodes covalently modified with MoBOD variant S362C 

(black line) and adsorbed wild type BOD (red line) as a function of the length of storage. 

Reprinted with permission
234,415

 with modification. Copyright 2016, 2019 American Chemistry 

Society. 

 

It is a useful method to entrap enzymes into polymer matrices or inorganic frameworks on the 

electrode surface for enzyme immobilization, which can reduce the amount of leaching while 
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avoiding denaturation and conformational changes to the enzyme. Sol-gel based methods have 

been frequently reported to entrap enzymes with high activity and stability
420-424

. Entrapping 

redox enzymes into membrane-like matrices, such as lipid, agarose and DNA-hydrogel, which 

can mimic the natural environment of enzymes, retains enzymes in functionally active 

forms
425-428

. However, such matrices usually suffer from poor conductivity, and cannot be used 

directly for bioelectrocatalysis. As a result, materials with high conductivity such as CNTs, and 

redox mediators such as ferricyanide and ABTS, are usually co-encapsulated. A stable current 

response was obtained at a bioelectrode fabricated by coating a mixture of chitosan, Lac and 

MWCNT for over 60 days’ continuous measurement, with more than 70% of the initial current 

retained upon storage for six months.
429

  

 

On the other hand, by directly using conductive materials including CNTs as matrices for 

encapsulation of enzymes, stable bioelectrodes with high electroactivity can be realized.
59,71,430,431

 

Cosnier and coworkers reproted a glucose/O2 EFC by combining a GOx-based bioanode and 

Lac-based biocathode, prepared by mixing GOx or Lac with CNT, that showed only a slight 

(4%) decrease in the maximum power density after 30 days storage in buffer solution (Figure 

16)
59

. Recently, as novel matrices, metal organic frameworks (MOFs) have been reported to 

entrap enzymes with long lifetimes
432-436

. A stable O2 reduction enzyme electrode was 

prepared by mixing Lac with ABTS, mesoporous Fe(III) trimesate nanoparticle and carbon 

blacks
433

. With improved operating lifetimes, MOFs-based enzyme-electrodes are potentially 

of interest in the construction of EFCs. 
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Figure 16. A) Schematic of a glucose/O2 EFC by entrapping GOx and Lac into CNTs covered 

with cellulose film. B) Dependence of power density on operating voltage in 0.05 mol L
−1

 

glucose solution before (black) and after one month (red). Blue curve: dependence of power 

density on operating voltage in 5 × 10
−3

 mol L
−1

 glucose.C) Dependence of voltage on time for 

continuous discharge under 200 μA cm
−2

 in 0.05 mol L
−1

 glucose solution. Experiments carried 

out in air-saturated phosphate buffer 0.1 mol L
−1

, pH 7.0 (bioanode: catalase/GOx ratio 1:1, 

biocathode: 20% laccase). Reprinted with permission 
59

. Copyright 2011 Nature Publishing 

Group. 

 

Cross-linking is a simple and effective method to immobilize enzymes on electrode. High 

stability should be expected because the process is based on bi- or multi-functional reagent 

ligands, forming rigid enzymatic aggregation, reducing leaching of the enzyme and improving 

the stability.
437,438

 A stable peroxidase layer at ketjen black surface for DET-type 

bioelectrocatalysis has been reported by using glutaraldehyde as a cross-linker. In the absence of 
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glutaraldehyde, however, the catalytic current decreased with time and was lower than that in the 

presence of glutaraldehyde.
439

 On the other hand, considering that the enzyme and cross-linking 

agents can form covalent bonds , the stability of the resultant enzymatic bioelectrodes can be 

improved
288,440-442

. With the aid of PEGDGE, a MET-type EFC using covalently anchored GOx 

and BOD, respectively at amino group-derivatized bioanode and biocathode, retained 70% of the 

initial maximum power after 24 h, while just 10% retention was observed for the EFC based on 

underivatized graphite
442

. Furthermore, to avoid uncontrollable cross-linking reaction, 

Schuhmann’s group proposed an electrochemically induced cross-linking strategy to improve the 

operational stability of enzymatic bioelectrodes by locally entrapping enzymes into polymers on 

electrode surfaces
443-446

. With high stability, reusability as well as high volumetric activities, 

cross-linking represents an alternative to conventional immobilization approaches on solid 

surface.
447

 However, a heterogeneous enzyme orientation distribution may induce slower ET 

rates specially in case of the use of cross-linkers. 

4.2 Tuning enzyme properties 

4.2.1 Employing extremophile enzymes 

Biodiversity offers a large variety of microorganisms growing in extreme environments such as 

extreme pH
18

, high salinity
448

 or extreme temperatures. Exploiting enzymes from these 

microorganisms is still in its enfancy in the domain of EFCs, but may enhance the capabilities of 

EFCs to operate under broader operating conditions, while also potentially improving the 

stability of the enzymes. The discovery and use of thermostable enzymes from thermophilic 

microorganisms are of great importance to increase enzyme stability and potentially decrease 

enzyme production cost by simplifying enzyme purification process and extending enzyme 

duration in the area of biomanufacturing
449

. In EFCs, the same idea has been adopted to maintain 

the stability of the enzymatic catalysts and extend the lifetime of the fuel cells. Ohsaka et al. 

demonstrated the successful application of thermophilic GDH and laccase in EFCs that could be 

operated at elevated temperatures (76 
o
C)

450
. Lojou et al. constructed an EFC employing a 
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hyperthermophilic O2-tolerant hydrogenase and a thermostable BOD with a maximum power 

output of 2.3 mW at 50 
o
C. The device delivered 15.8 mW h of of power after 17 h of continuous 

operation
67

. An efficient membraneless air-breathing/H2 EFC was assembled by Cosnier’s group 

relying on the same thermostable enzymes
65,349

. Comparison of two bioanodes constructed with 

the hyperthermophilic Aquifex aeolicus and the mesophilic Ralstonia eutropha hydrogenases 

clearly demonstrated the higher stability of the former not only at elevated temperature but also at 

room temperature
335

. Another NiFe hydrogenase from the hyperthermophilic bacterium 

Pyroccocus furiosus showed a remaining activity at 80°C upon exposure to O2, highlighting 

combined resistances of these extremophile enzymes
451

. A Sulfolobus kodaii alcohol 

dehydrogenase was investigated for use as a biocatalyst for electrochemical applications by Ohno 

et al. The constructed bioanode can maintain a high current density at even 80 
o
C, with a 12-fold 

increase over that at room temperature
17

. Recently, Zhang’s group developed several synthetic 

enzymatic pathway-catalyzed EFCs comprised of multiple thermostable enzymes cloned from 

various thermophiles and capable of deeply or completely oxidizing sugar fuels. Such EFCs 

could be operated at 50 
o
C and exhibit an 8-fold increase in power density compared to those 

based on mesophilic enzymes
171,452

.   

4.2.2 Protein engineering for better stability  

As discussed in previous sections, protein engineering approaches are mainly used to improve 

rates of the ET between enzymes and electrodes
453

, tuning the substrate specificity of enzymes
454

, 

as well as creating scaffolds for enzyme immobilization
105

. General protein engineering strategies 

for biocatalysts in EFCs have been summarized in detail in two recent reviews
196,455

. More 

attention here will be paid on increasing the poor stability of EFCs. In detail, protein engineering 

can enable the stabilization of enzymes, by modifying the enzymes’ structures in order to 

introduce more strong bonds, remove unfavorable steric effects, and remove potential 

degradation sites
456

. For example, a homodimeric pyrrolquinoline quinone GDH from 

Acinetobacter calcoaceticus was engineered by changing a single amino acid to cysteine, so that 

the lifetime of the EFC was greatly extended to 152 h, more than 6-fold that of the EFC 
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employing the wild-type. Enhanced disulfide bond formation of the active enzyme dimer may 

explain this result 
457

. Additional work demonstrated that the thermal stability could be increased 

by introducing a hydrophobic interaction in the interface of the two subunits in this enzyme 

through two amino acid substitutions 
458

. Direct evolution has been applied to Saccharomyces 

cerevisiae Lac by introducing mutations in the second coordination sphere of T1 to increase the 

resistance to chloride ions, making it more suitable to be used for EFCs working in physiological 

fluids 
459

. It was also reported that protein oligomerisation is a potential means of increasing the 

stability of the bioelectrode
460

. 

 

In addition to increasing the stability of engineered enzymes, other studies have focused on 

replacing expensive nicotinamide-based cofactors (NAD
+
 or NADP

+
) required in MET-based 

EFCs with inexpensive and stable biomimics. In order to use these biomimetic cofactors, the 

cofactor preference of the respective oxidoreductase has to be altered. For example, Banta et al. 

engineered an alcohol dehydrogenase from Pyrococcus furiosus to utilize the biomimic cofactor 

nicotinamide mononucleotide (NMN) 
461

. Compared to natural cofactors, such biomimic 

cofactors are smaller with faster rates of diffusion. In addition to increases in stability, gains in 

the performance of the NMN-mediated EFC were observed possibly due to improved rates of 

cofactor diffusion, despite a decreased turnover rate of the engineered enzyme. Zhang et al. 

changed the cofactor specificity of 6-phosphogluconate dehydrogenase from its natural cofactor 

NADP to NAD through a rational design strategy. The best mutant exhibited a ~60,000-fold 

reversal of the cofactor selectivity from NADP to NAD, and the associated EFC possessed an 

increase in power density and enhanced stability at high temperature 
462

. Cofactor engineering not 

only can address the issue of unstable natural cofactors used in EFCs, but can also improve rates 

of mass transfer and the overall cost of EFCs.  
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4.3 Microbial surface displayed enzymes as biocatalysts to enhance EFCs’ stability 

4.3.1 Microbial surface display 

Microbial surface display refers to the biotechnology of introducing foreign peptides or 

proteins of interest on the surfaces of microbes by fusing them with appropriate anchoring 

protein motifs
463,464

, which is capable of maintaining their relatively independent spatial 

structure and biological activity. The microbial surface display system is usually composed of 

a passenger protein (target protein), an anchor protein (carrier protein) and host microbes 

(Figure 17). To date, varying anchor proteins such as ice nucleation protein (INP) 
465

, 

Lpp-OmpA
466

, EstA
467

, and OmpC
468

, OmpA
469

 have been used. Microbial surface display is 

classified into phage display, yeast display and bacterial display, which enables foreign 

peptides or proteins to directly interact with substrate without passing through the outer 

membrane by means of genetic engineering. Moreover, this strategy can help to improve the 

stability of displayed proteins due to the immobilization on the surface of biomaterial 

support
470,471

. So far, microbial surface display has been widely applied in live-vaccines
472

, 

peptide or protein library screening
473

, bioadsorbents
474

, whole-cell biocatalysts
475

 and 

biosensors 
158,476

.  
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Figure 17. A) Schematic representation of cell surface display system using INP, which is an 

example of the N-terminal fusion method. The INP is the most stable and useful carrier to 

express foreign proteins as large as 60 kDa. B) Cell-surface display system using E. coli outer 

membrane protein C, which is a representative example of sandwich fusion method. In this 

system, poly-histidine (poly-His) peptides of up to 162 amino acids could be inserted into the 

seventh external loop (L7) of OmpC and could be efficiently exposed on the E. coli cell 

surface. Reprinted with permission. 
463

 Copyright 2003 Elsevier.  

4.3.2. Efficient EFCs based on microbial surface displayed enzyme as biocatalysts  

As the entire microbe is used as the whole-cell biocatalyst, the enzymes expressed on the cell 

surface can exhibit improved stability when compared to that of free enzymes
472-475

. Thus, 

EFCs using whole-cell biocatalyst are expected to improve their performance, in particular in 
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long-term operational stability. Additionally, without the need for enzyme purification, the 

enzyme-expressing whole-cell based biocatalysts have also been used for the construction of 

EFCs
477-479

. Alfonta’s group displayed GOx on yeast cell surface using a-agglutinin as an 

anchor motif for EFC construction 
477

. The randomly distributed GOx showed interesting 

advantages over unmodified yeast or purified GOx. Under the same condition, the engineered 

yeast based EFC showed an increased OCV of ca. 0.88 V in comparison to ca. 0.73 V for 

purified GOx. The improved performance was probably derived from the synergistic effect of 

both the GOx on the yeast surface and the imobilization of the metabolic output of the yeast 

cells for power production. It should be mentioned here that the microbe mainly serves as a 

stabilizing element 
479

, different from MFCs which utilize an entire microorganism (also 

called electricigens) to convert the chemical energy of organic matter for electricity
480-482

. 

Recently, dehydrogenases have attracted significant attention as the reactions are not affected 

by the presence of oxygen. Liu et al. have described a number of reports on dehydrogenases, 

with xylose dehydrogenase (XDH)
483

, GDH
484,485

, glutamate dehydrogenase
486

 and FoDH
487

 

being successfully displayed on the surface of E. Coli. Biosensors
483,486,488-491

 and 

one-compartment biofuel cells
286,492,493

 have been prepared using these surface displayed 

dehydrogenases. Direct energy conversion from xylose was successfully achieved using XDH 

surface displayed E. coli (XDH-bacteria) based EFC, composed of XDH-bacteria 

immobilized on poly(brilliant cresyl blue)(PBCB)/MWCNTs modified glassy carbon 

electrode (GCE) (XDH-bacteria/PBCB/MWCNTs/GCE) based bioanode and a free BOD 

based biocathode
492

. Under optimized condition, a Pmax of 63 μW cm
-2

 at 0.44 V was obtained, 

60% higher than that of the free enzyme based EFC
492

 (Figure 18). It is noteworthy that this 

EFC could retain 85% of its maximal power after 12 h of continuous operation. A rationally 

designed XDH mutant NA-1 with improved thermostability was anchored on the bacterial 

surface
493

. After 12 h operation, 88% of its maximal power was retained
493

. In another report, 

a bacterial surface displayed GDH mutant (mutant-GDH-bacteria) was immobilized onto 

MWCNTs as bioanode
286

. This EFC showed a Pmax of 55.8 μW cm
-2
 at 0.45 V and an OCV of 

0.80 V in 10 mM glucose. The as-fabricated EFC retained 84% of Pmax even after continuous 
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operation for 55 h, benefitting from the high stability of the bacterial displayed GDH 

mutant
286

. 

 

 

Figure 18. A) Schematic illustration of a XDH-bacteria/PBCB/MWCNTs/GCE based 

bioanode. B) Dependence of the power density on the cell voltage of a free-XDH/ 

PBCB/MWCNTs/GCE bioanode based EFC in the absence (a) and the presence of 30 mM 

xylose solution (b); free-XDH/PBCB/MWCNTs/GCE bioanode based EFC in the absence (c), 

and the presence of 30 mM xylose solution (d); and XDH-bacteria/PBCB/MWCNTs/GCE 

bioanode based EFC in 0.1M PBS quiescent solution containing 30 mM xylose and 10 mM 

NAD
+
 under O2-saturated condition (e). Reprinted with permission 

492
. Copyright 2013 

Elsevier. 

 

Sequential enzymes refer to two or more enzymes involved in catalyzing cascade reactions 

sequentially and coordinately, for example, glucoamylase (GA)/GOx, ADH/FDH, and GOx/ 

horseradish peroxidase (HRP). Recently, EFCs based on sequential enzymes raised great 

interests. For instance, a membraneless starch/O2 EFC based on bioanode by co-immobilizing 

commercial GA and GOx 
494

 as well as white rice/O2 EFC based on the multi-immobilization 

of GOx, alpha amylase and GA on a carbon paste electrode 
495

, was developed. Nevertheless, 

it is complicated to co-immobilize two or three enzymes at the same time, as the spatial 

orientation of the enzymes cannot be controlled. Alfonta et al. displayed GA and GOx on 

yeast surface, respectively, to obtain GA-yeast and GOx-yeast, and then constructed a 

two-chamber EFC 
496

. However, the Pmax was only about 3 µW cm
-2

, probably due to the low 

catalytic efficiency arising from the spatial barrier between GA and GOx. The same group 
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further co-expressed ADH and formaldehyde dehydrogenase (FormDH) on yeast cells using 

cohesin-dockerin interactions
173

. Subsequently, an EFC was fabricated using the displayed 

ADH/FormDH cascade based bioanodes and copper oxidase based biocathodes, however, a 

low power density (< 3 µW cm
-2

) was achieved
173

 because the surface patterning of the 

enzymes together with their orientation were not considered. It should be mentioned here that, 

the controlled co-displayed cascade enzymes should be superior to randomly displayed 

cascade enzymes as the enzyme cascades assembled on the cell would enable reactants to 

transfer between active sites of the enzymes efficiently, which makes great sense in 

biocatalysis and bioelectro-synthesis. 

4.4 Strategies for enzyme protection against O2 and reactive oxygen species (ROS) 

While oxygen is the oxidant mainly used as the cathodic substrate in EFCs where it is reduced to 

water, it can seriously affect the performance of the anode in EFCs if operating in a single 

compartment configuration. Reactive oxygen species (ROS, such as O2
.-
), produced by the 

incomplete reduction of O2, can seriously affect the activity of enzymes. The majority of 

sugar/O2 based EFCs rely on flavoprotein oxidases (e.g. GOx and lactate oxidase (LOx)) 

carrying a flavin cofactor tethered in the protein that utilizes O2 as an electron acceptor, 

producing H2O2 in the process
497,498

. The response of biosensors
499

 that rely on DET or MET 

generally does not detect H2O2 which can have a deleterious effect on the enzymes in the system 

500,501
. Scodeller et al. found that exogenous peroxide reduced the electrocatalytic O2 reduction 

current at an Os-complex modified polymer mediated Trametes trogii Lac biocathode by ca. 20% 

502
. H2O2 irreversibly inhibited the activity of a biocathode with immobilized Myrothecium sp. 

BOD, whereas a reversible deleterious effect was found with TvLac 
503

. The underling 

mechanism of inhibition is still unclear.  

 

In the case of implantable EFCs, the generation of H2O2 is also undesirable as it is toxic to the 

surrounding tissue 
3
. Removal of H2O2 can be achieved via catalytic decomposition by catalase 

31,34,41,383
 on the bioanode. It should be noted that there are EFCs based on H2O2-reducing 
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biocathodes 
504-507

. For example, GOx can catalyze the oxidation of glucose producing H2O2, 

which is electroenzymatically reduced into water by immobilized peroxidases 
333

.  

 

Re-engineering of oxygen-sensitive flavoprotein oxidases reduces the effect of oxygen
508

. The 

conversion of O2 into H2O2 involves two electrons and two protons transferred from the reduced 

flavin 
509

. The active site binding pocket of AnGOx contains Glu412, His516, His559, and FAD 

510
. His516 in the active site of native GOx is protonated and positively charged and is likely 

responsible for the electrostatic stabilization of the transition state for stepwise single-electron 

transfer between FADH
-
 and O2 

511
. The replacement of His516 by alanine by site-directed 

mutagenesis resulted in a 217-fold decrease in kcat/KM(O2) at pH 5 
511

. Gutierrez et al. identified 

four oxygen/mediator (quinone diimine) activity related positions in AnGOx, which were close to 

the FAD domain and situated at the oxygen entry 
512

. Simultaneous site saturation at the four 

positions by two rounds of directed evolution and ultra high-throughput screening resulted in a 

37-fold decreased oxygen dependency, while retaining the catalytic efficiency for redox 

mediators and thermostability 
512

. Sode et al. analyzed an oxygen-binding structural model of 

PaGOx and predicted that eight functional residues were involved in the oxidative half reaction 

513
. Mutagenesis analysis by alanine substitution of these residues and subsequent activity assays 

indicated that the Ser114Ala mutant possessed the highest dehydrogenase performance with a 31 % 

decrease in oxidase activity 
513

. Bimutation at Ser114 and Phe334 in mutated PaGOx resulted in 

a 11-fold decrease in activity towards oxygen in comparison with the wild-type counterpart 
514

. 

To simultaneously decrease the O2 sensitivity and maintain high activity towards glucose with 

artificial mediators, a double mutation was performed upon Val564, which is a nonpolar site to 

guide oxygen binding, and Lys424 
515

, which allows enhancement of the electron transfer rate 

between Os redox polymer and PaGOx 
516

. The methodology to predict the oxygen access 

pathway to screen for mutants has been employed with other flavoprotein oxidases. For example, 

Aerococcus viridans lactate oxidase bearing a A96L mutant showed a significant decrease in 

oxidase activity using molecular oxygen as the electron acceptor, accompanied with a slight 

increase in activity using ferricyanide as the mediator 
517

.  



76 
 

Alternatively, oxygen-insensitive dehydrogenase modified bioanodes can avoid the undesirable 

issues arising by H2O2 
84

. NAD-dependent GDH has been widely used for biosensors and EFCs 

based on the successful reduction of the overpotential for the regeneration of NAD
+
. However, 

the cofactor is not tightly bound to the enzyme limiting its application for implantable devices. 

The utilization of NAD
+
 as a cofactor is also constrained by the complicated electrochemical 

regeneration of NAD
+
 as the cofactor itself undergoes irreversible oxidation 

518
. GDH using PQQ 

as the bound cofactor holds promise for use in an EFC 
221,499,519-522

. DET of PQQ-GDH can be 

achieved by means of suitable enzyme immobilization 
221,520,523

. FAD-dependent GDH 

(FAD-GDH) has been widely utilized in EFCs 
283,524-533

. Milton et al. found that a GOx based 

membrane-less EFC initially had a higher power density than a FAD-GDH based EFC, while the 

FAD-GDH based EFC possessed better operating stability (after 24 h continuous operation)
525

. 

This confirms the negative effects of GOx bioanodes producing H2O2 on BOD
525

 and Lac
530

 

biocathodes. PDH
266,306,534-537

 and CDH are other options for oxygen-inert bioanodes. CDH can 

catalyze several carbohydrates (glucose, lactose and cellobiose), and is promising as a versatile 

bioanode catalyst to simultaneously oxidize various fuels 
277

. PDH shows a broad substrate 

specificity including glucose, xylose, galactose etc., and can catalyze the oxidation of sugar 

anomers at the C-2 and C-3 carbons of the sugar 
538

. 

 

Other enzymes are highly sensitive to O2 themselves, which is the case of most hydrogenases 

which are inactivated in the presence of O2, limiting the large-scale development of H2/O2 EFCs 

to replace Pt based catalysts suffering from scarcity and inhibition 
88

. [NiFe] hydrogenases are 

the most efficient hydrogenases for H2 oxidation. Many studies have been made to produce 

O2-tolerant mutants, but none of these mutants are sufficiently resistant to be used as bioanodes 

88,134,228
. One strategy is to purify oxygen tolerant hydrogenases, such as the membrane-bound 

[NiFe]-hydrogenases isolated from the bacteria Ralstonia eutropha, E. coli or Aquifex aeolicus 

65,67,338
. The tolerance of these hydrogenases has been mainly ascribed to a [4Fe-3S] cluster in 

close proximity to the active site different from the cluster found in the sensitive hydrogenases, 

and able to provide the extra electrons required to reduce O2 into water as soon as it attacks the 
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active site. However, even when using these O2-tolerant hydrogenases, inactivation by O2 occurs, 

although this is a reversible and fast process. A strategy to refill electrons to deactivated 

hydrogenase was proposed by Armstrong and coworkers, using an additional bioanode 
539

. 

Nevertheless, a membrane separator was necessary to avoid cross diffusion of O2, and 

inactivation of the hydrogenases. Effectively, ROSs formed due to oxygen reduction at the 

carbon surface held at low potentials were found however to deactivate hydrogenase 

irreversibly
335

. Upper layers of 3D porous carbon matrix are believed to help to scavenge ROSs 

before they reach enzymes inside the pores 
67

. It found that the hydrogenase encapsulated inside a 

3D porous matrix displays 4-6 times more stability against ROS than that on a 2D electrode. 

 

To prevent the oxygen-induced damage on O2 sensitive hydrogenases, the employment of a 

“redox hydrogel shield” has been recently proposed by Schuhmann and Lubitz et al. (Figure 19) 

540
. A specifically designed viologen-based redox polymer with a low potential catalyzes oxygen 

reduction at the polymer surface, thus preventing the inner enzyme modification layer from O2 

damage and high-potential deactivation. Further, detailed characterization and numerical 

simulation were applied to reveal the underlying protection mechanism 
379

. Protection has been 

successfully achieved for [NiFe] 
540,541

, [FeFe] 
542

 and [NiFeSe] 
444,543

 hydrogenases. However, 

the effect of byproducts such as superoxide and hydrogen peroxide that are derived from partial 

oxygen reduction should be taken into account
542

. Similar methodologies can be extended to 

develop a double layered lactose biosensor comprised of an inner CDH and outer GOx layer 

separately
544

. The outer GOx layer can remove a high concentration of glucose up to 140 mM, 

that is also the substrate of CDH, enabling the system to operate as a reliable lactose sensor. 
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Figure 19. Schematic drawing of the double protection of hydrogenases by a viologen based 

redox hydrogel shield. Active and inactive hydrogenases are indicted by open and filled circles, 

respectively. Assumed steady-state concentration curves of reduced viologen (blue solid line), H2 

(green dash line) and O2 (red dash line) are shown. Reprinted with permission 
540

. Copyright 

2014 Nature Publishing Group.  

 

4.5 Anti-biofouling of implantable glucose/O2 EFCs 

Implantable glucose/O2 EFCs in blood suffer from biofouling process involving adsorption of 

layers of proteins and whole cells etc. that can impair the rate of diffusion of glucose and thus 

reduce the power output. Electrodes can be chemically modified with anti-biofouling layers that 

are hydrophilic (such as ethylene oxide functioning groups) or zwitterionics 
545,546

. A range of 

coating membranes including Nafion®, cellulose acetate, chitosan, fibronectin and 

poly(styrene-sulphonate)/poly(l-lysine) have been evaluated for their ability to reduce levels of 

biofouling, using albumin in solution 
547

. Fibronectin showed the best anti-biofouling effects with 

no significant differences in the voltammetric waves of [Ru(NH3)6]
3+

 after exposing to albumin. 

The use of an anti-biofouling conductive polymer, poly(sulfobetaine-3,4-ethylenedioxythiophene) 
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(PSBEDOT) which can be used to immobilize GOx is of interest 
548

. PSBEDOT bears 

zwitterionic sulfobetaine side chains, resulting in a significant anti-biofouling electrode with only 

8.4% protein adsorption in 100% human blood plasma compared to a control electrode without 

zwitterionic side chains (PEDOT). The electrochemical response to glucose in human blood 

plasma at a PSBEDOT-GOx based electrode was twice of a PEDOT-GOx electrode. It should be 

noted that modifications with anti-biofouling polymers may hinder the rate of ET and the 

diffusion of the substrate. Alternatively, nanoporous structured electrodes with similar pore sizes 

to the macromolecules (such as albumin) can repel proteins 
549

, leaving the inner pores available 

for small molecules (such as redox mediators and fuels). 

 

Blood clotting, occurring when placing foreign EFCs in the blood circulation, causes significant 

disturbance for the glucose transport. It requires the bioelectrodes to be biocompatible causing no 

inflammatory reactions when implanted in extra-cellular fluids between organs 
39

. It’s more 

challenging to make a hemocompatible surface to be implanted in the blood avoiding to destruct 

blood components 
39

. Cosnier’s group utilized dialysis bags to wrap carbon-based electrodes to 

prevent the leakage of immobilized species which were then placed in a Dacron® sleeve to 

improve biocompatibility 
31,34

. However, the employment of dialysis bags requires a large 

volume EFC. The coating of biocompatible polymer layers, e.g. chitosan 
550

 and collagen, etc. is 

another route 
8
. Miyake et al. introduced a 2-methacryloyloxyethyl phosphorylcholine 

(MPC)-polymer coating to make carbon electrodes biocompatible 
341

, without which obvious 

blood clotting was observed after 2 h immersion in blood. A needle-type glucose/O2 EFC in a 

rabbit vein displayed a power output of 0.42 μW at 0.56 V, while the cell without a MPC coating 

had ca. 40% lower in power 
341

. The decreased performance was likely attributed to the presence 

of blood clots. 

 

Cadet et al. tested Os-complex modified polymer mediated glucose/O2 EFCs in 30 anonymized 

and disease-free whole blood samples 
273

. A cellulose dialysis bag was placed on the EFCs. 

Comparison of the faradaic signal from the Os complexes in buffer and in blood showed that 
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both possessed well-defined redox waves, with a 27 mV larger peak separation in blood. This 

was explained by interferences caused by endogenous human blood constituents, a reversible 

process as the electrochemical waves were recovered by transferring the electrodes from blood to 

buffer. The lower catalytic response of the bioelectrodes in blood was mainly attributed to mass 

transport limitation as both currents increased with stirring rate. Ascorbate interference 
551

 upon 

the biocathode was not observed 
273

, which may be explained by the high selectivity of the 

bioelectrode with the Os-complex modified polymer. Over the course of 6 h continuous 

operation in blood 
273

, the dialysis bag protected both enzymes, retaining twice the response of 

the unprotected system. 

 

Non-invasive EFCs (Figure 20) operating in saliva
552-554

, sweat
48

 and tear
142,506

 are of interest 

as activators for wearable medical devices. Unlike implantable EFCs, non-invasive devices do 

not come into contact with blood and do not involve skin piercing, tissue damage or cause 

pain. Such biodevices are typically not exposed to the immune system so that tissue 

inflammatory responses can be avoided. They are also called “wearable EFCs” 
47

, can be 

easily discarded and replaced and generally are flexible structures, with adequate oxygen 

supply. An interesting example is a contact lens supported microelectronic systems for 

glucose concentration monitoring in tears that was proposed in 2013 
555

. Xiao et al. reported a 

flexible lactate/O2 EFC on nanoporous gold electrodes that was mounted onto commercially 

available contact lenses and produced electricity for more than 5.5 h in a solution of artificial 

tears
556

. Other examples are tattoo
48

 and textile
49

 based EFCs producing electricity from 

human sweat based lactate. However, this approach is still not an effective solution for 

powering implantable medical devices. Another emerging group of skin borne EFCs are those 

using solid-state hydrogel electrolytes with preloaded sugars, which can generate biopower 

when the human subject is not perspiring 
50,557-560

. 
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Figure 20. Various wearable lactate EFCs that are possible to be fueled with lactate in tears 

or sweats. Reprinted with permission
49,54,556

. Copyright 2014, 2017 Royal Society of Chemistry; 

Copyright 2018 American Chemical Society. 

 

5. Approaches for the improvement of EFCs’ cell voltage 

An additional critical challenge of EFCs is that their output voltages are generally incompatible 

with the values required to operate commercially available microelectronic devices (1-3 V 
143,561

), 

although transistors requiring an operating voltage of 0.5 V and even lower have been developed 

562-564
. The OCV of a biofuel cell is limited by the thermodynamic values for the species used as 

fuel and oxidant. In the standard state, the relationship between the standard Gibbs free energy 

change ∆G
0
 (kJ mol

-1
) and E

o
 (V) can be expressed by the equation 

565
: 

                                    

|∆G
0
| of biochemical reactants have been summarized by Alberty et al. 

566
 For example, a 

glucose/O2 EFC using GOx or GDH as bioanode catalysts undergoes an overall reaction: 

β                      
 

 
                                                 

As |∆G
0
|
 
for eq. 13 is 227.23 kJ mol

-1
 at 25

 o
C, pH 7 and 0.1 M glucose, n = 2, the value of E

o
cell  

is 1.18 V.  
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The typical polarization curve of an EFC (Figure 21B) presents a wide range of information such 

as the experimental OCV and maximum cell current/current density. In practice, the registered 

OCV of an EFC is much lower than E
o
 due to the presence of three types of potential losses, 

namely kinetic (ηact), ohmic losses (I∑R) and mass transport losses (ηdiff), in the system. The 

relationship between registered OCV and E
o
 can be determined by

11
: 

                                               

where ηact is the overpotential required to overcome energy barriers on the electrode-electrolyte 

interfaces; ηact= ηact,a+ ηact,c, where the subscripts a and c indicate the anodic and cathodic 

reactions, respectively; ∑R is the sum of all resistances associated with current I that flows 

through the electrodes, electrolyte and various interconnections; ηdiff is the mass transport based 

overpotential due to reactant diffusion limitations. Three characteristic regions, distinguished by 

the different governing overpotentials (ηact, I∑R and ηdiff), can be found in a typical polarization 

curve (Figure 21B)
7
.  

 

In region a) governed by ηact where the reactants (fuels and oxidants) are abundant and the 

current is low, the rate of reaction is solely controlled by the rate of heterogenous ET. The current 

I can be expressed using the Butler-Volmer equation
567

: 

           
         

  
      

             

  
             (15) 

Where i0 is the exchange current density.  

 

In the high overpotential region (>118/n mV), the Butler-Volmer equation can be simplified to 

the Tafel equation
567

: 

            
 

  
             (16) 

where i is the current density; b is the Tafel slope (mV dec
-1
). Eq. 16 allows the determination of 

i0 and b
568

. Further, the rate of electron transfer rate (ket) can be obtained from: 

                          (17) 
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Visually, the measured OCV can be read from the power density profile or the polarization curve 

(Figure 21), which is consistent with the difference between the onset potential for the oxidation 

of the fuel and the reduction of the oxidant, respectively
7
. Although the term “onset potential” is 

quite fuzzy due to the difficulties in defining the exact starting points for electrochemical 

oxidation or reduction
11

, it can be obtained, in practice, by comparing the potential-current 

profiles of bioelectrodes in the presence and absence of the substrate (Figure 21A)
11,569

. Thus, the 

measured OCV can also be expressed as
80

: 

      
        

                                      

                                       

 

where Re is the resistance, Ec
onset 

and Ea
onset

 are the observed onset potentials for the cathode and 

anode, Ec and Ea are the thermodynamic onset potentials at the cathode and anode, respectively, 

ηb and ηa are the overpotentials for cathode and anode, respectively. Eqs. 18 and 19 suggest the 

strategies to maximize OCV of a single EFC via bring the starting potentials of both bioanode 

and biocathode closer to those of the enzymes/cofactors
4
.  

 

For biocathodes, MCOs based bioelectrodes undergoing DET with low overpotentials are widely 

adopted. Fungal Lac possesses a much higher redox potential (up to 0.78 V vs. SHE 
29

) for the 

T1 Cu site than that of BOD (ca. 0.67 V vs. SHE 
21

). BOD exhibits higher activity at 

physiological conditions (i.e. neutral pH) and is less sensitive to chloride ions at neutral pH, 

making it a better candidate for implantable EFCs. Lac is usually inhibited by chloride ions and is 

active in the pH range 4-5, making it a suitable choice for non-implantable applications. On the 

bioanode side, NAD-dependent dehydrogenase can present a low onset potential due to the low 

formal potential of NAD
+
 (E

o’
NADH/NAD+: -0.33 V vs. SHE 

570
). FAD-dependent dehydrogenases 

(E
o
’FADH2/FAD: -0.18 V 

571
) are preferred over PQQ (E

o’
PQQH2/PQQ: 0.12 V vs. SHE 

572
) due to the 

lower redox potential. While O2-sensitive [NiFe] hydrogenases present a very low overpotential 

for H2 oxidation, the O2-tolerant membrane ones oxidize H2 at potentials around 150 mV higher. 
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Nevertheless, H2/O2 EFCs based on O2-tolerant hydrogenases and BOD possess OCV greater 

than 1.1 V 
88

. 

 

 

Figure 21. (A) Polarisation curves of a bioanode and biocathode. (B) Voltage-current profile (B) 

and power density-voltage profile of an EFC. Key parameters of an EFC are highlighted. 

Reprinted with permission 
7
. Copyright 2018 American Chemical Society. 

5.1 Mediator optimization 

EFCs based on DET bioelectrocatalysis on both the anode and cathode without the involvement 

of mediators are promising as they avoid any possible toxicity effects of the mediator, in 

particular in the use of implantable EFCs 
125,573

. They generally display a higher OCV than those 

based on MET. However, the following examples show that MET can generate higher OCVs. In 

an example of a FDH modified electrode, the presence of ubiquinone as the mediator with a 

redox potential in between those of FAD (-0.034 V vs. SHE at pH 5.5) and heme (0.135 V vs. 

SHE at pH 5.5) enables transfer of electrons directly from FAD directly rather than via the heme 

218
. In other words, due to the lower energy barrier to be overcome, the external 

low-redox-potential mediators substitute the role of the “built-in mediator” (heme) in 

communicating with FAD catalytic center, leading to lower overpotentials. Similarly, when using 

an Os redox polymer with a lower potential than that of heme 
277

, MtCDH modified electrode had 
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a 150 mV lower onset potential for MET than that of DET. These examples emphasize the 

importance of engineering the redox potential of mediators for enzymes undergoing MET. 

 

ET between the enzyme and the mediator is driven by the mediator-induced overpotential (∆Eet), 

i.e. the difference between the redox potential of the enzyme catalytic active center and the 

mediator 
574

. According to Marcus theory, the rate constant (ket) between an enzyme and 

mediator is given by 
325

 

           
          

 

    
                         

 

where Z is the frequency factor, λ is the molecular reorganization free energy, R is the gas 

constant, T is the absolute temperature. Mathematically, the relationship between ket and ∆Eet 

displays a quadratic behaviour, with a region where ket increases with ∆Eet (normal region) and an 

inverted region where ket decreases with increasing ∆Eet. Typically, the inverted region is not 

observed, which is likely due to the fact that at high ∆Eet the biocatalytic reaction becomes 

mass-transport limited 
574

. ∆Eet should be as high as possible to enhance the current density, but 

that can result in higher overpotentials, lowering the OCV. Improvements in the OCV and power 

density of a mediated EFC are mutually exclusive 
64

, thus, the value of ∆Eet should be optimised 

to yield both a high current density and a high OCV.  

 

In practice, an efficient combination of redox mediator and enzyme requires optimization 

experiments 
325,575

. The co-immobilization of redox mediator and enzyme is essential for 

implantable EFCs using MET based bioelectrodes to avoid leakage. Redox polymers introduced 

by Heller et al. 
271,576,577

 are the most important group of mediators for the construction of EFCs 

578
. Redox polymers also act as the host matrix to immobilize enzymes via electrostatic 

interaction, entrapment and/or chemically cross-linking, resulting in a catalytic film permeable to 

the fuels and necessary ions 
271

. Polymer backbones bearing organometallic groups (e.g. Os 

complex 
578

, ferrocene 
64,389,579,580

, cobaltocene 
581

), organic dyes (e.g. viologen 
540,581

, 

phenothiazine 
507,582

) and quinone 
64,583,584

 have been synthesized for mediated bioelectrodes. The 
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utilization of redox polymers allows electrical connection of multilayered enzymes, irrespective 

of enzyme orientation, leading to higher current output. The formal potentials of redox 

polymers (Figure 22) are determined primarily by the type and the nature of the covalently 

bound redox couples,
120,271,585

 and redox polymers based bioelectrodes with optimized redox 

potentials can be fabricated by using the appropriately designed redox species.
580,586-588

.  

 

Bartlett and Pratt developed a comprehensive model of the diffusion and kinetic effects within a 

uniform layer containing both immobilized GOx and mediator on an electrode surface
589

, which 

can be used to understand the limiting factors in redox-polymer based bioelectrodes. 

Experimental variables including enzyme loading, film thickness, substrate concentration, 

mediator concentration and electrode potential can be considered using this approach. The 

summary case diagrams can be used to predict the electrochemical response of an electrode 

under specified experimental conditions. It thus important, although difficult, to accurately 

determine the effective enzyme and mediator concentrations on the electrode.  

 

 

 

Figure 22. The range of redox potentials of enzyme cofactors and common mediators. Reprinted 

with permission from ref 
120

. Copyright 2018 Elsevier. 

 

An example is Os-complex based redox polymers, whose formal potential can be adjusted by 

using different ligands.
11,586,590,591

 Schuhmann’s group has reported a series of Os-complex 

modified polymers with redox potentials, for example, close to 0.2 V vs. SHE.
587,592

 

Consequently, glucose/O2 EFCs with OCVs of 0.50 ~ 0.54 V were developed. In addition, 

EFCs with improved OCVs of 0.6 ~ 0.8 V could be achieved by combination of 
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phenothiazine- or quinone derivative-modified redox polymer based bioanodes.
64

 For more 

negative redox potentials, viologen based redox polymers can be used, for example with a 

redox potential of -0.3 vs. SHE (Figure 23).
540

 H2/O2 EFCs with high OCVs of ~1 V were 

fabricated by combination of such viologen-based polymer MET-type H2 bioanodes and 

DET-type O2 biocathodes. Various ligands were synthesized to tune the redox potentials of 

the hydrogels 
593

. A similar viologen polymer-modified bioelectrode has been reported by 

Kano’s group for formate oxidation by FDH, and a formate/O2 EFC with an OCV of 1.2 V 

was recorded.
15

 Compared to the DET-type bioelectrocatalysis and MET-type 

bioelectrocatalysis using free mediators, redox polymer-based bioelectrocatalysis possess 

advantages such as rapid rates of ET, low levels of mediators and/or enzyme leakage. From 

this viewpoint, selection or development of redox polymers with specific properties, for 

example, low redox potential, high biocompatibility and stability, good permeablility for mass 

transfer of substrate and product through the film (i.e. tunable polymer film thickness), as 

well as high affinity to enzymes, have significant potential. 

 

Figure 23. Viologen-redox polymer-based H2/O2 biofuel cell. A) Chemical structure of 

viologen-modified polymer; B) Cyclic voltammograms of a [NiFe] hydrogenase from 

Desulfovibrio vulgaris Miyazaki F/polymer electrode under H2 (black) and CO (blue) and a 

covalently modified electrode with the hydrogenase in DET configuration (red). Experimental 
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conditions: electrode rotation rate of 2,000 rpm, pH 7.0, 40 °C, 1 mV s
−1

 and 1 bar of H2 

(black and red traces), 20 mV s
−1 

and 1 bar of CO (blue trace). C) Schematic diagram of a 

single compartment EFC, H2/O2 mixed feed, hydrogenase-coated anode and oversized 

O2-reducing BOD-coated cathode. D) Cell voltage (open circles) and power density (filled 

circles) versus current density for the H2/O2 EFCs. Reproduced with permission from ref 
540

. 

Copyright 2014 Nature Publishing Group. 

 

Gallaway et al. combined experimental data with numerical modeling to examine the influence 

of ∆Eet of a series of Os redox polymers on TvLac catalyzed oxygen reduction at pH 4 
574

. When 

∆Eet was lower than 300 mV, a larger ∆Eet significantly enhanced the power output. The 

optimum ∆Eet to obtain maximum power from an EFC using a non-limiting anode with an onset 

potential of 0 V vs. SHE was 0.17 V. Zafar et al. studied the effects of using five different 

Os-complex modified polymers with redox potentials over the range -0.07 to +0.36 V vs. SHE  

on the performance of a mediated AmPDH bioanode 
535

. ∆Eet and the structural properties 

including flexibility and length of the tether were crucial for the overall performance. The results 

indicated that an Os-complex modified polymer with a moderately high ∆Eet, companying with a 

long tether between the Os complex and the backbone with a greatly enhanced ET collision 

frequency, gave higher current densities. An Os-complex modified polymer with a redox 

potential of 0.14 V vs. SHE, that is slightly (ca. 20 mV) higher than that of the bound FAD of 

AmPDH (-0.17 V), was selected to be optimal mediator in terms of high current density and low 

onset potential 
535

. On comparing six different Os-complex modified polymers with redox 

potentials ranging from -0.02 to 0.49 V vs. SHE for Glomerella cingulata FAD-GDH 
590

, two 

Os-complex modified polymers with redox potentials of 0.31 and 0.42 V vs. SHE yielded the 

highest current densities. The above reports imply that a moderate ∆Eet is responsible for the high 

current density, allowing for optimization of OCV further. Heller suggested a ∆Eet of 50 mV for 

implantable glucose/O2 EFCs using both mediated bioanodes and biocathode in order to obtained 

practical OCVs 
578

. Based on such a design, Heller’s group reported a glucose/O2 EFC presenting 

an OCV of ca. 1 V and a Pmax of 350 µW cm
-2 

in an air-saturated 15 mM glucose solution at pH 5 

578
. It consisted of a GOx bioanode mediated by an Os-complex modified polymer with a 
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13-atom-long flexible tether (ca. 0 V vs. SHE) 
594

, and a Lac biocathode with an Os-complex 

modified polymer bearing 8-atom-long tethers (ca. 0.75 V vs. SHE). It should be noted that O2 

can to be reduced at the low-redox-potential Os-complex modified polymer producing H2O2 
595

 

and thus the interference of O2 on the mediator itself 
540

 should also be considered. 

 

Minteer et al. compared soluble 1,2- and 1,4- naphthoquinone (NQ) mediated FAD-GDH 

bioanodes and found that 1,2-NQ derivatives had larger catalytic current densities, which can be 

explained by the high values of ∆Eet 
64

. The obtained current densities between different NQ 

species with different structural reorganization or enzymatic affinity effects were not comparable. 

On grafting 1,2- and 1,4-NQ-epoxy groups onto linear LPEI, the NQ-2-LPEI showed a lower 

mediated bioelectrocatalytic response in comparison to that of NQ-4-LPEI. The 

NQ-4-LPEI/GDH-FDH bioanode displayed an onset potential of ca. -0.01 V vs. SHE. In 

combination with a non-limiting carbon felt/BOD biocathode, the resultant EFC registered an 

OCV of ca. 0.87 V and a Pmax of 2.3±0.2 mW cm
-2
 in air-saturated 100 mM glucose at pH 6.5 

64
.  

5.2 Serial connection 

Unlike microbial fuel cells which often encounter voltage reversal when stacked, EFCs do not 

have this issue
596

. Serial assembly of conventional fuel cells can be employed with EFCs to 

amplify the output voltage, while the connection in parallel can enable increases in current 

density 
182,597

. Sakai reported a carbon fibre based glucose/O2 EFC with NAD
+
-dependent GDH, 

BOD and mediators co-immobilized showing a Pmax of 1.45 ± 0.24 mW cm
-2
 at 0.3 V and a OCV 

of 0.8 V in the presence of 400 mM glucose
52

. A stacked cell of two individual EFCs allowed the 

successful operation of a radio-controlled car (16.5 g) and a memory-type Walkman 

continuously for more than 2 h. A microfluidic biobattery utilizing NAD
+
-dependent ADH and 

Pt/C at the bioanode and cathode, respectively, generated an OCV of 0.93 V which was increased 

to 1.44 V on connecting two cells in series 
598

. A H2/O2 EFC composed of two stacks of four 

cells in parallel with OCV and Pmax of 2.09 V and 7.84 mW, respectively, was used to power an 

electronic clock and red LEDs for 8 h with no decrease in light intensity
182

. Miyake et al. reported 
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a laminated stack of EFCS consisting of fructose oxidizing bioanode fabrics, air-breathing 

biocathode fabrics and a sandwiched hydrogel layer containing fructose 
50

. A triple-layer stack 

produced an OCV of 2.09 V, a 2.8-fold increase over that of a single set cell (0.74 V) and a Pmax 

of 0.64 mW at 1.21 V, that was able to power LEDs. Paper based EFCs are cost-effective as 

disposable devices 
19

. A screen-printed circular-type EFC system, composed of a series of 5 

individual cells with a single cell OCV of 0.57 V, generated an OCV of 2.65 V and illuminated 

an LED directly 
599

. 

 

The overall performance of interconnected EFC in serial is limited by the weakest EFC. 

Preparation of the stack needs to be carefully controlled and reproducible, especially with regard 

to material preparation and to the immobilization of the enzymes. Moreover, the 

serial-connection of EFCs with metal leads requires that individual EFC be isolated properly to 

avoid short-circuits introduced by ion-conductive electrolytes. MacVittie et al. prepared a 

buckypaper supported EFC composed of a PQQ-GDH bioanode and a Lac biocathode achieving 

an OCV of 0.54 V 
33

. Two EFCs implanted in a serial-configuration in separate claws of a lobster 

showed an OCV of only ca. 0.5–0.6 V. The potential of the serially connected EFCs was limited 

due to the ionic conductivity in the same body. Serial connection of two lobsters bearing EFCs 

resulted in a voltage of ca. 1 V. A fluidic system comprised of five EFCs connected in series was 

able to generate an OCV of ca. 3 V sufficient to activate a pacemaker. Similarly, an implantable 

glucose/O2 EFC in a clam registered an OCV of ca. 300–400 mV and the serial connection of 3 

“electrified” clams afforded an OCV of ca. 800 mV 
36

. Due to the above-mentioned constraint 

caused by the ionic conductivity, serial configuration has been primarily used for in vitro 

experimentation. As a solution, superhydrophobic surface may help to build ionic isolation 

between signal cells 
597

. Three glucose/O2 EFCs (OCV: 0.35 V) were series-connected on a 

fluidic chip and air valves were introduced between cells by a lotus leaf-like superhydrophobic 

structure. The possible output voltage was ca. 1 V. 



91 
 

5.3 Employment of external boost converter 

The output voltage of an EFC can be boosted by externally connecting a charge pump as a 

DC-DC converter 
600

. For example, a voltage-doubler operates by charging of two capacitors in 

parallel separately followed by discharge in series. Many examples in the recent litterature 

illustrate this concept. In 2013, Southcott et al. prepared a fluidic glucose/O2 EFC with an OCV 

of 0.47 V in a serum solution that mimick the human blood circulatory system 
601

. A single EFC 

was connected to a combination of a charge pump with a DC-DC converter, which increased the 

voltage from 0.3 to 2 V and from 2 to 3 V, respectively. The resultant device enabled the 

continuous operation of a commercial pacemaker 
601

. Coupling of a glucose/O2 biobattery with a 

charge pump and a capacitor resulted in 1.8 V electric pulses at different intervals determined by 

the fuel concentration 
381

. A commercial BQ25504 boost converter could amplify an input 

voltage in the range of 0.3-0.5 V up to 3 V 
34

. The EFC/boost converter/capacitor assembly 

enabled a glucose/O2 EFC implanted in rats with an OCV of 0.57 V to intermittently power a 

digital thermometer (power consumption: 50 μA at 1.5 V) and a LED (4.1 mA at 2.9 V). The 

output of other reported glucose/O2 EFCs could be amplified using similar boosting systems 

(OCV from 0.6 V to 2.3 V) to power a wireless transmitter 
323

, from 0.3 V to 1.8 V to power a 

LED 
324

 and from 0.145 V to 2.586 V for a glucometer 
561

. Those amplified voltage output can be 

used directly to activate microelectronic devices. 

 

Lactate/O2 EFCs consuming sweat and tear lactate are of interest to activate wearable medical 

devices. A power unit composed of an EFC/voltage booster couple can be easily combined into 

wearable devices. For example, two lactate/O2 biobatteries with an OCV of 0.67 V in parallel 

were able to generate 6 μW at 0.376 V, which was scaled up to 3.2 V to periodically to illuminate 

a blue LED bubble requiring 2.5 V and 0.5 mA 
49

. A lactate/O2 EFC with an OCV of 0.87 V was 

used to provide the operational voltage of an electronic watch (ca. 3 V) 
506

. A biobattery using 

real sweat lactate with an OCV of 0.5 V was coupled with a DC-DC converter/capacitor circuit 

to produce a 3.5 V pulse with a width of 53 s 
54

.  
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EFCs based on other fuels have also been reported. A lactose/O2 EFC with an OCV of 0.73 V 

has been integrated with a voltage amplifier and a capacitor 
289

, which was coupled into wireless 

carbohydrate and oxygen biosensor platforms with a threshold of 44 µA and 0.57 V. Three 

fructose/O2 EFCs with an OCV of 0.7 V in series generated 2 mW and 2 V, which was integrated 

with a minipotentiostat containing a DC-DC converter with an output voltage of 4 V 
388

. The 

integrated device enabled an oxygen sensor allowing ten measurements in the pulse mode 

without any disturbances. A H2/O2 EFC registering an OCV of 1.12 V can be boosted over 6 V to 

power a wireless device sending data every 25 s in a course of 7 hours continuous operation 
382

. 

 

It can be concluded that most reports utilized the DC-DC converter/capacitor junction with a 

pulse function. Only few reports have claimed that they can power an external device 

continuously 
601

. It should be noted that part of the generated power is consumed by the DC-DC 

converter as a price of the voltage boost, posing extra demand on EFC’s output power 
561

. The 

commercial BQ25504 boost converter requires a net current input from 10 to 100 μA 
34

, 

requiring a high-current-density EFC. Otherwise a larger size electrode is required, hindering the 

miniaturization of the implantable power source. The need for an external circuit increases the 

size of the devices, making device encapsulation more complex. 

 

6. Conclusions and perspectives 

EFCs are expected to be one of the next-generation energy conversion systems because they 

utilize bioavailable, renewable and diverse biocatalysts and biosourced fuels, operate under mild 

and safe conditions, and possess high theoretical energy-conversion efficiencies. In this review, 

we discuss four main obstacles, namely low energy density, power density, stability and output 

voltage, that hinder the successful development of EFCs and summarize a range of potential 

solutions. In spite of their high activity, the high specificity of enzymes typically restricts the 

ability of an enzyme to catalyze just a single reaction, leading to low fuel utilization efficiency 

and thus low power densities in single-enzyme based EFCs. A rationally designed bioanode 
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consisting of enzyme cascades or multi-step pathways has been proposed to improve the overall 

energy density. Additionally, approaches that utilise engineered enzymes to increase their 

catalytic performance, “wiring” enzyme with favourable orientation to facilitate improved rates 

of direct electron transfer, utilising nanomaterials to achieve high enzyme loadings, smart design 

of electrodes and cell for enhanced mass transfer, as well as constructing EFC and biocapacitor 

hybrid devices, have all been developed for high power density. A range of approaches ranging 

from enzyme immobilization to biochemical engineering have been investigated to extend the 

lifetime of EFCs. Microbial surface displayed enzymes, which are anchored on a cell surface 

mimicking the micro-environment that enzymes function in nature, are expected to provide 

enzymes with long term operational stability. Improved cell voltages have been realized by 

well-designed bioelectrode (MET or DET) with low overpotentials, series connection of cells, or 

external voltage boosters. 

 

It should be noted that these obstacles are identified from the point of view of the measurable 

performance of EFCs’. Many of the strategies mentioned above can simultaneously address more 

than one practical issues. For example, enzyme cascades can also be used to improve the power 

density of an EFC while achieving the complete oxidation of the fuel 
124

. Enzyme immobilization 

also plays a key role in increasing the power density of various DET-type EFCs as it is important 

to appropriately orient DET-capable enzymes to minimise the distances of electron transfer 

between enzymes and electrodes 
21

. These combined strategies can generate synergistic effects to 

enhance the performance of EFCs and should be addressed in combination rather than 

individually.  

 

In addition to increasing performance metrics of EFCs, expanding their functionalities is highly 

promising to enhance the practicability. As already mentioned, self-powered biosensors 

employing EFCs to function simultaneously as a power source and as a sensor offer the 

possibility to fabricate instrument-free (at least potentiostat-free) diagnostic systems 
86,151,602

. A 

self-powered biosensor is generally based on the preparation of an EFC generating power that is 
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proportional to the concentration of the analyte, which can be the fuel
324,443,507,603,604

, 

inhibitor
605-607

, activator,
608

 biorecognition element
609-611

 for enzymes used in the EFC. This type 

of biosensor is promising due to features of portability, miniaturization and low-cost. Operational 

stability issue can be overcome by fabricating disposable devices. 

 

Rather than employing EFCs to power existing devices that require high power and voltage, new 

concepts, i.e. self-power bioelectronics
149

, which utilize EFCs directly to achieve specific 

functions can be more feasible for practical applications. Unlike batteries requiring careful 

encapsulation to avoid the direct contact of the battery active materials and the body, EFCs 

possess the merit of ease-of-miniaturization as the bioelectrodes can be used directly in the body. 

A recently reported EFC/supercapacitor system can function as a pulse generator to mimic a 

cardiac pacemaker delivering 10 μA pulses for 0.5 ms at a frequency of 0.2 Hz 
283

. This is 

different from previous attempts to use EFCs to power a commercial pacemaker 
33

, which 

required a minimum voltage input of 3 V. EFC based controlled drug release is an emerging area 

of interest. In preliminary studies, an iontophoretic system using buit-in EFCs allowed 

transdermal release of compounds into the skin 
558

 and to heal skin wounds 
557

. It should be 

possible to use implantable EFCs to generate electric stimuli to trigger in vivo release of drugs 
612

. 

Recent work 
613-615

 by Katz et al. using bioelectrodes for insulin release is of interest. 

 

Enzymatic electrosynthesis
616

 in an EFC, or self-powered bioelectrosynthesis, enables 

simultaneous electrosynthesis of valuable chemicals and energy harvest. Rather than using an 

external high-power output, self-powered bioelectrosynthesis can enable the production of 

valuable chemicals circumventing external electricity input
617

. Minteer et al. reported the 

bioelectrocatalytic reduction of N2 to NH3 as the biocathode of a H2-fuelled EFC
153

. This 

spontaneous process to produce ammonia is of interest to explore alternatives to the Haber-Bosch 

process. A H2/heptanal EFC reported recently revealed the ability to produce alkanes from 

aldehydes and alcohols
152

, opening the prospect of using EFCs to prepare renewable biofuels. 

Zhu et al. developed a self-powered system by combining an EFC and an enzymatic 
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electrosynthesis cell and demonstrated the high-efficient production of 

l-3,4-dihydroxyphenylalanine powered by glucose oxidation, suggesting that EFCs can be a 

promising power source for the synthesis of valuable chemicals and pharmaceuticals
618

. 

 

Although there are significant obstacles to the development of EFCs, great opportunities to 

overcome these issues for practical applications are under investigation. Given that 

multidisplanar efforts have been taken to this prosperous topic, the time to transfer the lab-scale 

EFCs to real-life devices is not expected to be far away.  
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