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Abstract

Anabaena Sensory Rhodopsin (ASR), a microbial photoactive protein featuring the

retinal chromophore in two different conformations, exhibits a pH-dependent electronic

absorption spectrum. Using the recently developed CpHMD-then-QM/MM multiscale

protocol applied to ASR embedded in a membrane model, the pH-induced changes in its

maximum absorption wavelength have been reproduced and analyzed. While the acidic
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tiny red-shift is essentially correlated with the deprotonation of an aspartic acid located

on the ASR extracellular side, the larger blue-shift experimentally reported at pH values

larger than 5 involves a cluster of titrating residues sitting on the cytoplasmic side.

The ASR pH-dependent spectrum is the consequence of the competitive stabilization

of retinal ground and excited states by the protein electrostatic potential.

1 Introduction

The pH of the water phase is of crucial importance for the activity and stability of proteins,

influencing a considerable amount of chemical properties, such as the tertiary structure,1 the

enzymatic activity2 or the solubility.3 It relies on the fact that, on average, 29% of protein

sequence is composed by titratable (also often termed as ionizable) amino acids (i.e. ASP,

GLU, HIS, LYS, CYS, TYR and ARG),4 which can dynamically change their protonation

state with the pH value. The loss/binding of a proton modifies the atomic charges on

the side chains, triggering adjustments in the electrostatic interactions and conformational

rearrangements. Consequently, the variation of the pH can induce major changes in the

protein function. The understanding of the origin of such a pH-dependent behavior faces a

great challenge: at a given pH, several protein residues can be in different protonation states

(ie. they titrate) at the same time, making very difficult the identification of a single amino-

acid as the main responsible for the pH-dependent property of interest. In other words, the

protein has to be considered as a poly-acid macromolecule featuring tens of titrating sites

which individual behaviors and their possible interactions (also allowed by water networks)

shape the protein pH-dependency.5 Nevertheless, the interpretation of the pH-dependency

in terms of titrating sites is always appealing. As a matter of fact, such understanding opens

the way to site-directed mutagenesis designed for altering the protein function in a controlled

manner.6–11

In this work, we identify the titrating residues responsible for the pH-dependence of

the visible-light absorption spectrum of Anabaena Sensory Rhodopsin (ASR), a transmem-
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brane photochromic microbial protein whose photoactivity is carried out by the retinal chro-

mophore. The retinal, present in the protonated Schiff base form, is linked to the lysine

K210 and counterbalanced by the aspartate counterion D75 (Figure 1). Its predominant

configuration in the ASR dark-adapted state is the all-trans (AT), while the 13-cis (13C)

configuration is the major one in the light-adapted state.12 In this protein, the pH has the

capacity of influencing the entire photochemistry, including absorption spectra, lifetimes

and reaction dynamics.13,14 In particular, a small red-shift (2 nm in both isomers14) in the

maximum absorption wavelength (λmax) has been experimentally found from pH 3.6 to 5.0,

while a more consistent (6 nm for the all-trans isomer and 10 nm for the 13-cis one) blue-

shift is evidenced when the pH changes from 5.0 to 7.6 (Figure 2). The latter shift has

been experimentally attributed putatively to the D217 deprotonation. While it is located

about 15Å from retinal, this aspartic acid is known as the retinal proton acceptor during

the ASR photocycle, thanks to an extended hydrogen bonding network present in ASR.15

Accordingly, D217’s change of protonation probably perturbs this network, modifying the

electrostatic potential experienced by retinal and ultimately the ASR λmax. The cause of

the shift occurring at the more acidic pH remains unknown.

The elucidation of the molecular origin of such small λmax shifts is not always easy

from the experimental point of view, and can take benefit from multiscale atomistic models

rooted in theoretical chemistry: quantum mechanical (QM), molecular mechanical (MM) or

hybrid QM/MM).16–26 Most of the time, the pH effect is introduced thanks to very specific

change of individual protonation states, without considering the relevance (probability) of

such a chemical process at a given pH. In the present work, we will demonstrate that,

indeed, the number of populated protonation states combinations (microstates) is always

large. Accordingly, the corresponding ensemble has to be fully considered when small λmax

shifts have to be reproduced and analyzed, as it is the case in the ASR absorption spectrum.

Therefore, we have derived and used a molecular model which has been especially targeted

towards the investigation of the ASR protonation microstates. For that purpose, we have
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Figure 1: Schematic representation of the ASR model, featuring (i) retinal chromophore
bonded to lysine 210 and (ii) 18 titratable residues between pH=3 and pH=8: aspartic acids
(1-letter code D) in red; glutamic acids (1-letter code E) in yellow, histidines (1-letter code
H) in blue.

chosen the Constant-pH Molecular Dynamics (CpHMD) approach which consists in sampling

both the conformation and protonation state spaces.27,28 With respect to usual molecular

dynamics simulations, CpHMD ones include Monte Carlo-based sampling of the system
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Figure 2: ASR experimental λmax values (in nm) between pH=3 and pH=8. Black (grey):
AT retinal (13C retinal). Data taken from Rozin et al.14 The red (blue) arrow indicates
the pH region characterized by a λmax red-shift (blue-shift). Note the lack of data between
pH=5 and pH=7.
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protonation states, weighted for the semigrand canonical ensemble (constant temperature,

volume and hydronium chemical potential). The nature of the opsin–retinal interactions

responsible for the tuning of the chromophore photochemical properties like λmax has been

studied for many years.16,29–35 Within recent years, new models have emerged in which the

direct electrostatic interactions are found to be less important than inductive, dispersive,36

excitonic or charge transfer ones.37 Nevertheless, in the context of the present study regarding

pH-effects in ASR, in which most of the titratable amino-acids are not in the immediate

vicinity of its chromophore (see Figure 1), we have based our model on a very qualitative,

yet simple, QM/MM with electrostatic embedding approach. Such an approach has proven

to be effective when one is looking for reproducing trends, eg due to rhodopsin mutations38

or in other photoactive proteins.39 The successful reproduction of the ASR λmax variations

with the pH validates such an effective model.

2 Methods and computational details

From the microscopic point of view, the large number of interacting titratable sites translates

to the existence of an ensemble of protonation microstates whose respective populations are

pH-dependent.40,41 Consequently, macroscopic pKa values characterizing the acid-base prop-

erties of a macromolecule cannot be strictly attributed to independent and well-identified

titrating amino-acid. Only the pK1/2, ie the pH value at which a given titrating site is equally

populated in its protonated and deprotonated forms, keeps a physically-ground meaning.

Accordingly, a pH-dependent macroscopic property A can be evaluated as the average of in-

dividual contributions ai for each member of the ensemble containing N possible microstates,

weighted by their respective probabilities wi:

A (pH) =
N∑
i=1

wi (pH) ai (1)
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Because the size of the ensemble grows exponentially with the number of titratable sites,

it is very often assumed that a unique microstate dominates the sum in Equation 1, being

then used as a template for further atomistic modeling, and eventually allowing for the

identification of the microscopic origin of the protein pH-dependency. However, the sum

in Equation 1 can be rewritten in a different way, grouping in a cluster all the microstates

sharing the same ai value (M being the number of clusters, M ≤ N):

A (pH) =
M∑
j

Wj (pH) aj (2)

in which Wj denotes the cumulated weight of a particular cluster, Wj =
∑

iwi,∀ai = aj.

There is no mathematical evidence that the most probable cluster (ie the largest Wj) coin-

cides with the most probable microstate (ie the largest wi). As a consequence, A may signif-

icantly deviate from the value ai characterizing the most probable protonation microstate.

In order to mitigate the bias introduced by the selection of a single microstate, some of the

authors have recently designed a multiscale modeling protocol, denoted as CpHMD-then-

QM/MM, which heavily relies on the statistical sampling of both the protonation state and

conformational spaces, together with large scale (thousands) of QM/MM λmax evaluations.

This approach, successfully applied to the modeling of a polypeptide dyad,42 is summarized

hereafter (all details are given in SuppInfo).

System setup and CpHMD calculations. The ASR initial structure has been retrieved

from the 1XIO PDB entry,43 a dimeric system in which both the retinal AT and the 13C

forms are present. Having cleaned the structure of a monomer (see SuppInfo for the details),

we have built two ASR models: (i) one solvated in water; (ii) one embedded in a membrane,

modeled as a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) lipid bilayer.

Using the Amber16 package,44 explicit solvent CpHMD simulations27,45 have been carried

out using the ff14SB Amber and TIP3P forcefields,46 complemented with parameters for

retinal.47 Enhanced sampling has been achieved using the Replica-Exchange technique for
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pH values between 3.5 and 8.5, for a total simulation length of 20 to 30 ns (reduced sets of

titrated residues) or 40 ns (full set of titrated residues) per pH value and per retinal isomer.

For the sake of simplicity, individual pK1/2 values are simply called pKa in the following and

are fitted to the calculated deprotonated fraction xi using the Hill equation:

pKa(i) = pH− n log
xi

1− xi
(3)

in which the fitted n value represents cooperative effects between residue i and the other

titrating residues.

Semi-empirical QM/MM calculations. Using 20000 to 40000 equally-spaced snap-

shots (geometries and protonation microstate) extracted from CpHMD trajectories obtained

at pH values between 3.5 and 8.5, we have carried out QM/MM vertical excitation energy

calculations of retinal, in electrostatic interaction with the rest of the system. In order to

keep reasonable the computational cost, we have used the PM7 semi-empirical Hamilto-

nian,48 together with the Multi-Electron Configuration Interaction49 approach implemented

in Mopac.50 The absorption spectra at different pH values have been generated using the

Newton-X 2.0 package.51,52

ARM calculations. Automatic Rhodopsin Modeling (ARM)11,53 calculations have been

used to obtain accurate vertical excitation energies on a selected subset of protonation mi-

crostates. In short, ARM is a semi-automated protocol which starts from a PDB structure,

builds a minimal rhodopsin model, samples the conformational space of the retinal cavity,

before calculating vertical excitation energies using the high-level CASPT2 method.54 In its

current stage of development, it only deals with a single protonation microstate.

Analysis tools. In order to decipher the relations between calculated λmax and the pH,

we have mainly used two analysis approaches.
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The first one is an improved version of the Minimal Electrostatic Model derived by some

of us and already applied to the experimental ASR absorption spectrum.55 It is based on the

sounded assumption that the λmax changes with the pH are governed by modified electrostatic

interactions between the retinal chromophore and the protein protonation state changes. By

fitting the λmax variations (actually, the related ∆Emax variations) to the computed changes

of the deprotonated fraction xi (which depends on the pH) for each of the Ntit titrating

residue i experiencing the pH-independent retinal transition electrostatic potential φS0→S1
ret

(only the 3 terms Efull, εint and εsurf are optimized, all the other ones are constants or

parameters, ci, φ
S0→S1
ret and ri which are derived independently, see SuppInfo):

∆Emax(pH) = Efull +

Ntit∑
i=1

{
xi(pH)

e

4πε0 [ciεint + (1− ci)εsurf ]
φS0→S1
ret (ri)

}
(4)

the contribution ∆Ei (corresponding to the term in between the braces) of each individual

titrating residue i can be obtained at all the considered pH values.

The second analysis has been done using multilinear regression analysis of λmax as a

function of the protonation states for all the considered independent titratable residues.56

Ultimately, this analysis provides correlations between λmax and individual (de)protonation

events.

3 Results

Before explicitly considering the very large ensemble of the ASR protonation microstates,

we first report accurate λmax values for a selected set of microstates, in order to illustrate

how it can be difficult to pick one or few ASR models as candidates for explaining the origin

of its pH-dependency.
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3.1 ARM calculations of some individual microstate λmax

When one builds an atomistic model of a protein, one of the main assumptions concerns

the protonation state of each and every titratable residue. This is usually based on the

comparison of each microscopic pKa value with the targeted pH. It is then possible to

roughly mimic a change of pH by modifying the protonation state of one or several titratable

residues with respect to a reference microstate. We have applied this procedure to ASR λmax

by means of ARM calculations (Figure 3). As expected, the largest λmax shift (> 120 nm)

Figure 3: λmax values (in nm) of several ASR models, using the ARM protocol. The REF
model corresponds to the most likely protonation microstate at pH=7. The 3-letter code
for each amino-acid has been chosen to unambiguously denote each change of protonation
state on the y-axis, as follows: initial protonation state–amino-acid number–final protonation
state.

is due to protonation of retinal counterion, D75, keeping retinal as a protonated Schiff base.

Because this shift is out of the range reported experimentally (max 10 nm), we will keep D75

as deprotonated in the following.

The deprotonation of D217 (15.4 Å from retinal) induces a blue-shift of 13 nm, in quali-
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tative agreement with the experimental assignment.14 Closer to retinal (14.2 Å), the depro-

tonation of D198 causes a much larger 41 nm λmax blue-shift. Simultaneous deprotonation

of both D198 and D217 results in a blue-shift which is 32 nm with respect to the reference

value, hence less than the one obtained by the single deprotonation of D198.

The smallest red-shift (2 nm) is due to protonation of H219. Accordingly, H219 could be

a good candidate for explaining the ASR red-shift at acidic pH. This tiny effect is probably

related to the large distance between H219 and retinal, more than 19 Å. The smaller dis-

tance between H21 and retinal (18 Å) results in a slightly larger red-shift (8 nm) upon H21

protonation. However, protonation of both H21 and H219 results in a 22 nm red-shift, larger

than the ones resulting from each protonation taken separately.

In this configuration, H21 and H219 form an interacting pair in the ASR structure.

Because of the large electrostatic repulsion between two close positively charged moieties,

this doubly-protonated situation has very little chance to occur in the considered pH range.

In other words, the corresponding protonation microstate is unlikely to be populated.

These ARM calculations result in accurate λmax values for each microstate. Accordingly,

they can be used for predicting how λmax changes between two different microstates. How-

ever, they need to be complemented with the probability of such a process to take place at

a given pH. For instance, it may occur that the large blue-shift caused by D198 deproto-

nation actually does not matter if this reaction is not likely to happen, because D198 pKa

value could be significantly far from the pH range under study. Rephrased in a probabilis-

tic language, they don’t take into account the relative populations of D198 protonated and

deprotonated forms at a given pH. The same remark applies to all the above-considered

changes of protonation and this is the very reason why a correct ASR modeling protocol

needs to include the determination of microstate populations. The latter are evaluated by

means of CpHMD simulations.
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3.2 Preliminary CpHMD-then-QM/MM study: effect of the mem-

brane.

We have first applied the CpHMD-then-QM/MM protocol to an ASR model featuring 13C

retinal at three pH values: 3.5, 5.5 and 7.5, using 6 equally-spaced 40 ns trajectories obtained

between pH=3.5 and pH=8.5. Because the pKa values of the 18 selected titrating residues

(all aspartic and glutamic acids, all histidines) obtained from CpHMD simulations are known

to be slowly converging with the system size and the number of titrating residues,45 we have

considered two models of ASR: in water and in a membrane solvated in water, using several

10, 20 or 40 ns windows (see the discussion in SuppInfo). As mentioned above, the retinal

counterion D75 is always deprotonated. In all, our study demonstrates that most of the pKa

values are converged after 20 ns, with the exception of D57, H69, D98, D120 and D198 in

water, but only D57 and D98 in the membrane (see Figure 4). Indeed, the titration curve of

the latter residue shows a chaotic behavior which can be attributed to its peculiar location.

It allows both a complete exposure to water and embedding in the membrane, so that the

side chain can easily flip between the two opposite environments and experience completely

different dielectric constants. As a matter of fact, the distance between the centers of mass of

D98 and the closest phospholipid head changes sharply between 6Å and 18Å at all pH values

(see SuppInfo). This behavior is responsible for the oscillating titration curve of D98, which

would require prohibitively long simulations to achieve a good convergence. D57 belongs to

a very flexible part of the protein, which was actually not resolved in the original 1XIO PDB

structure. Accordingly, it is likely that its pKa value would converge using a larger sampling

(see SuppInfo for the time evolution of its pKa value).

Even if the 40 ns trajectory length is relatively short to observe any major secondary

or tertiary rearrangement, the ASR structural fluctuations are indeed smaller when the

membrane is included into the model, as exemplified by the RMSD values reported in Table

1. The cavity in which the retinal chromophore lies keeps the same shape whatever the

ASR environment. Its fluctuations, as well as those characterizing the retinal structure are
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Figure 4: ASR structure with 13C retinal, bonded to K210. Retinal counterion is D75. Mem-
brane phospholipid headgroups are represented as transparent surfaces. Other 4 titrating
residues (D57, D98, D125, D198) are discussed in the text.
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Table 1: Root-mean-square deviation (RMSD, in Å) with respect to the original crystallo-
graphic structure, without (Water column) and with the membrane (Membrane column),
averaged over the 3 pH values 3.5, 5.5, 7.5 (individual pH RMSD values are available in
SuppInfo).

RMSD Water Membrane
All 3.14 2.03

Backbone 2.36 1.27
Cavity 1.22 1.04
Retinal 1.03 1.03

reduced and independent of the pH value. The average distance between the centers of mass

of the titrating residues is also independent of the pH (see SuppInfo). Moreover, the distances

between titrating residues and retinal only change slightly, the maximum variations being

observed for residues close or belonging to the reconstructed Q58 – Q66 missing loop (see

SuppInfo). Accordingly, it is likely that the pH-dependence of ASR λmax is not primarily

related to structural rearrangements involving the retinal cavity.

The importance of the membrane is striking when water-to-membrane pKa shifts are

considered (Table 2). Besides D57 and D98 which are not discussed for the reasons explained

above, 2 pKa differences are much larger than 1 pH unit, corresponding to titrating D125

and D198. Actually, it turns out that D198 is always deprotonated in the membrane, while

it can exist in water within its protonated form at acidic pH. The cause of this behavior

can be found in the distances between D198 and the closest titratable sites (E4, H8, H69).

For instance, the E4 – D198 distance is almost constant when ASR is embedded in the

membrane (9.4 Å(±0.3)) while it fluctuates between 9.8 Å and 13.6 Å in its absence (see

SuppInfo). The same behavior is found for H8, while it is reduced in the case of H69. In

their protonated forms, these residues favor the deprotonation of D198, especially when they

remain close to it. Eventually, D198 pKa becomes negative. Regarding D125, this residue

is very close to the membrane in the acidic pH range (the distance between its carboxylate

and the closest phospholipid head is 5 Å as an average); the low dielectric constant of the

membrane environment favors the neutral form of D125.
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Table 2: pKa values calculated fitting the Hill equation (3) using the deprotonated fractions
retrieved from 40 ns long CpHMD trajectories (13C isomer) in water and in membrane.

Water membrane
Residue pKa n pKa n
H8 7.07 0.63 6.15 0.88
H21 6.27 0.99 7.21 0.73
H69 5.43 0.75 6.05 0.83
H219 5.70 0.84 6.70 0.49
E4 4.89 0.78 5.27 0.60
E36 6.63 0.75 7.56 0.83
E62 4.83 0.86 4.72 0.83
E123 4.52 0.82 5.19 0.71
E160 4.77 0.81 4.92 0.90
D57 3.84 0.73 4.94 0.43
D75 <0 - <0 -
D98 2.94 0.76 3.75 0.18
D120 5.30 0.69 2.05 0.36
D125 3.66 0.92 6.28 0.73
D166 <0 - <0 -
D198 3.28 1.44 <0 -
D217 5.99 0.59 6.05 0.73
D226 4.71 0.84 4.51 0.88

Hill factors are also reported in Table 2. Ideally, for a mono-acid without any interaction

with other titrating sites, the Hill factor n = 1.57 If n is very far from 1, it probably means

that the associated pKa value has to be considered carefully, probably due to convergence

issues (for instance D98 or D120). Besides this technical issue, it is expected that acidic

sites are interacting with each other in a protein like ASR, eventually resulting in n values

different from 1, as it is the case for the triad E4–H8–H69. This is also true for other

titrating residues like H21–E36–E217–H219 which are close in space. Actually, in the latter

case, H21 seems to behave as an independent titrating residue when ASR is not embedded

in the membrane, resulting in a pKa value closer to the reference one for histidine (6.5).

These pKa changes with the nature of ASR surroundings have an impact on λmax values.

In Figure 5 we have reported the QM/MM λmax values computed in both water and the

membrane environments. When calculated in the membrane, ASR λmax values are closer to
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Figure 5: ASR (13C retinal) QM/MM (using 40000 structures extracted from 40 ns CpHMD
trajectories) and experimental (black line) λmax values in nm as a function of the pH; the
red line represents the calculations of ASR embedded in a membrane, while the blue line
stands for the results of ASR in water.

the experimental ones. This result suggests an improved accuracy of our model when the

protein is embedded in a lipid bilayer that resembles the physiological conditions. Between

pH=3.5 and pH=5.5, we obtain a 0.6 nm red-shift, in agreement with the experimental 2 nm

(note that the latter shift comes out of λmax values obtained at pH=5.0, not pH=5.5).14 Be-

tween pH=5.5 and pH=7.5, our protocol predicts a 12.2 nm blue-shift, in excellent agreement

with the experimentally reported 10 nm value. These two excellent results demonstrate that

our CpHMD-then-QM/MM protocol is particularly well adapted to the study of ASR λmax

pH-dependency. However, since we are titrating 18 residues at the same time, the analysis of

its molecular origin is rather complex and cumbersome. Therefore, we decided to reduce the

complexity of the problem by studying separately three smaller pH windows, each featuring

a different λmax behavior: red-shifting in the acidic 3.0 to 4.5 pH range, showing a maximum

in the intermediate 4.5 to 6.0 pH window, and blue-shifting in the neutral 6.0 to 7.5 pH

window.

16



3.3 Refinements using three pH windows.

CpHMD-then-QM/MM in each pH window. In order to select a minimal number of

titrating residues in each pH window, we have applied a two-step filtering procedure to our

13C ASR model:

1. A titratable residue is not titrated in a window if its deprotonated fraction within the

pH range is lower than 5% or larger than 95%, according to our preliminary 40 ns

CpHMD calculations.

2. Each list of titrating residues is then complemented with titratable residues whose

protonation states show a large interaction with at least one of the members of the list.

All details are given in SuppInfo. The number and the list of titrating residues in each pH

window are reported in Figure 6. Four residues (E4, D57, D98, E123) are included in all the

three windows, due to their irregular or very flat titration curves (see SuppInfo). Some other

ones belong to two consecutive pH windows (eg H69 which is titrating between pH=4.5 and

7.5).

Figure 6: Selection of the titrated residues in the three narrow pH windows 3.0-4.5, 4.5-6.0
and 6.0-7.5. In a given window, the protonation state of the other titratable residues is fixed
and decided according to their deprotonated fractions.

Each pH window is treated independently of the other ones. As a consequence of their
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different numbers of titrating residues, and the resultant fixed protonation state of the non-

titrated amino acids, the 3 different potential energy surfaces yield two λmax discontinuities

at pH=4.5 and pH=6.0 (Figure 7).

Figure 7: Experimental (dashed line) and computed (full lines) ASR 13C λmax (in nm)
variation with the pH, increasing the CpHMD trajectory length: 10 ns in yellow, 20 ns in
red, 30 ns in blue.

At first glance, our CphMD-then-QM/MM protocol is able to catch the qualitative fea-

tures of λmax variations induced by the considered pH variations, even using a reduced

number of titrating residues in each window. As a matter of fact, our results show a red-

shift between pH=3 and pH=5, and then a blue-shift between pH=5 and pH=7.5. As shown

in Figure 7 and confirmed by a bootstrapping analysis (see SuppInfo forthe details), the λmax

convergence in each window is improved by increasing the CpHMD sampling, while keeping

reasonable the consumed computational resources.

Global electrostatic analysis of the ASR λmax pH-dependency. The retinal chro-

mophore and its counterion (D75) keeping the same protonation states, the overall ASR

structure being conserved at all pH values, the pH-dependency of the ASR absorption spec-
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trum is probably due to pH-dependent electrostatic interactions between titrating residues

and retinal. In order to test this hypothesis, we have calculated the average external poten-

tial felt by the retinal atoms for each considered pH value, as reported in Figure 8a. Two

(a)

  

+

+ -
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S1

S0

en
er

g
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Figure 8: (a): Average external electrostatic potential felt by the retinal atoms, from pH=3.0
to pH=7.5. From blue (positive potential), to red (negative potential). (b): Stabiliza-
tion/destabilization of the retinal ground (S0) and excited (S1) states triggered by either
a positive external potential (left, in blue) in the β-ionone ring region and/or a negative
external potential (right, in red) in the protonated Schiff base region, with respect to the
reference situation in which no external potential is applied (middle).
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main trends can be highlighted. The external potential felt by the Schiff base is very small

at acidic pH and becomes more negative when the pH increases. Conversely, the external

potential felt by the β-ionone ring is very positive at acidic pH and decreases to reach small

negative intensity at pH=7.5. Remembering that the retinal positive charge, mainly located

in the Schiff base region in the electronic ground state (S0), is translocated towards the

β-ionone ring when retinal is excited to S1,
58 we can immediately infer that both S0 and

S1 are more and more stabilized when the pH increases from acidic to neutral (Figure 8b).

Of course, the pH-induced stabilizations of each electronic state have no reason to be equal.

Accordingly, we can rationalize the acidic λmax red-shift by a slightly larger stabilization of

S1 than S0. Conversely, the λmax blue-shift between pH=5 and 7.5 can be attributed to a

larger stabilization of S0 than S1.

As a final check of the electrostatic origin of the pH-dependence of ASR 13C absorption

spectrum, the λmax values at pH=3, 5 and 7 have been computed in the absence of the exter-

nal potential in the PM7 calculations, keeping frozen the retinal structures extracted from

the corresponding CpHMD trajectories. Whatever the pH, retinal λmax is 632 nm (±0.4), ie

red-shifted by almost 100 nm, in agreement with experimental maximum absorption wave-

length of retinal in vacuo.59

Deciphering the molecular origin of the ASR 13C λmax pH-dependence. Correla-

tions between computed QM/MM vertical excitation energies and the individual protonation

states of all the titrating residues have been determined for each pH window, using MLR

analysis. First, it must be remembered that using three different pH windows with different

sets of titrating residues results in exploring three different potential energy surfaces. As

a consequence, some MLR coefficients are significantly different in different windows. For

instance, D57 deprotonation induces a red-shift in both the acidic and intermediate windows

and a tiny blue-shift in the neutral one. However, in the latter window, its deprotonated

fraction is larger than 90%, casting doubts on the statistical relevance of the blue-shift. In
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Figure 9: Left axis: individual contributions to λmax variations (bars, in nm). Right axis:
deprotonated fraction of each titrating residue (black dots). Top: acidic window, middle:
intermediate window, bottom: neutral window.

the case of E4, its deprotonation induces a blue-shift in the acidic window, a red-shift in

the intermediate one, and a tiny blue-shift in the neutral one. Again, we don’t consider

the latter one, because of the corresponding large deprotonated fraction. The discrepancy

between the acidic and intermediate windows can be related to the non-titration of H8 and

H69 in the acidic one, despite the spatial proximity of these three amino-acids.

In the acidic window (pH=3.0–4.5), deprotonated fractions of D120 and D57 are 47%
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and 38% respectively. Both titrating residues contribute to λmax variations with a red-shift.

Three blue-shifting contributions are due to E4, D226 and E160, all with a deprotonated

fraction comprised between 15 and 20%. Accordingly, we propose D120 as the main molecular

origin of λmax red-shift. This residue is located at about 8Å from the retinal β-ionone ring.

Accordingly, upon photo-excitation, the negative charge of the D120 deprotonated form will

stabilize the retinal excited state, whose positive charge moves away from the Schiff base in

S1 with respect to S0, ultimately inducing the reported λmax red-shift.

In the middle window (pH=4.5–6.0), many important contributions are found, either

red-shifting (D57, H69, E123, D125) or blue-shifting (D217, D226) ASR 13C retinal λmax.

This complicated situation reflects the large number of titrating amino-acids in this window,

i.e. many carboxylic acids and histidines showing deprotonated fractions comprised between

20% and 70%. Accordingly, the presence of the λmax peak can be roughly rationalized using

the different stabilizations of both the retinal ground and excited state energies, as already

presented above.

In the neutral window (pH=6.0–7.5), D217 gives the largest blue-shifting contribution,

while being mainly deprotonated. Other residues significantly contribute to the blue-shift:

H8, E36, H219. Residues H69, D98, E123, D125 induce a red-shift, however smaller. With

the exception of H8, all the blue-shifting residues are spatially close and are possibly in-

teracting, also with H21. Accordingly, we propose that the titrating residues H21, E36,

D217 and H219 behave as a single acid-base cluster, being characterized by the experimental

pKa = 6.4 value.14

Confirmation of the electrostatic origin using the Minimal Electrostatic Model.

Recalling that the Minimal Electrostatic Model is based on the assumption that pH-effects

are mainly electrostatic (Equation 4), we have used different structures extracted from the

CpHMD trajectories in the acidic and neutral pH windows and fitted the calculated λmax to

the deprotonated fractions of each titrated residue. As expected from the low structural fluc-
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tuations highlighted above, the results of the present analysis are qualitatively independent

of the selected molecular model (see SuppInfo). In Figure 10, we present the energetic con-

tribution of each titrating residue as a function of pH. In the acidic window, D120 is clearly

the most λmax red-shifting residue. In the neutral window, D217 contributes the most to

the λmax blue-shift. However, H8, H21, E36 and H219 also contribute to the blue-shift while

H69, E123 and D125 are found to red-shift λmax. All these results are in line with the ones

presented in the previous section and confirm the electrostatic origin of the pH effects on

ASR λmax.

Figure 10: Minimal Electrostatic Model energy contributions of each important residue in
the acidic and neutral pH windows. Negative (resp. positive) contribution translates to λmax

red-shift (resp. blue-shift).

The AT case. The same CpHMD-then-QM/MM protocol has been applied to the AT

retinal case, with the further hypothesis: 13C pKa values and protonated/deprotonated

fractions for individual titrating residues are transferable to AT. As a consequence, the

definition of the 3 pH windows, including the number and list of titrating residues per
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window, is kept the same. The final λmax evolution as a function of the pH is reported in

Figure 11. Qualitatively, the same trends are observed in AT and 13C: red-shift, a peak at

Figure 11: Experimental (dashed lines) and computed (full lines) ASR 13C (in blue) and
AT (in red) λmax (in nm) variations with the pH.

pH=5, then blue-shift. Moreover, the ordering of 13C and AT λmax is correctly reproduced,

even if the energy gap between the two retinal conformations is too small with respect to

the experimental data, probably due to the qualitative QM level of theory. Nevertheless, the

same convergence issues are met in both AT and 13C isomers.

4 Conclusions

In this article, we have reported the successful application of our CpHMD-then-QM/MM

protocol to the study of the pH-dependent ASR absorption spectrum between pH=3 and

pH=7.5.

The main result is the identification of the titrating residue responsible for the λmax red-

shift in acidic conditions, namely D120 which was never suggested in the available literature.
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We have also confirmed the implication of D217 in the λmax blue-shift between pH=5 and

pH=7.5. However, we have found out that other residues, close to D217, are also involved.

Accordingly, we suggest that the experimental pKa (about 6.5) has to be attributed to

a cluster of titrating residues located on the ASR cytoplasmic side, instead of D217 alone.

Overall, it is demonstrated that pH-induced λmax tuning in ASR can be reproduced by means

of simple opsin – retinal electrostatic interactions and achieved by residues located far from

its retinal chromophore, as seen in figure 12. More involved and challenging studies would be

needed in order to understand the very nature of these long-range interactions.34,36,37 This

finding suggests that the ASR structure is actually designed for reducing as much as possible

the effect of pH on its absorption spectrum, and maybe on other photochemical properties.

In principle, the methodology used in this work could be applied to understand the origin

of the pKa =8.5 value experimentally reported for the 13C retinal isomer only.14 However,

major complications arise. First, at this pH value, other titratable residues can enter into

the game: lysine and maybe some cysteine or tyrosine amino-acids. Second, it would be

necessary to use a different starting structure (the one used in the current work, 1XIO, was

obtained at pH=5.6), for instance the NMR-based 2M3G structure60 obtained at pH=9.

On the methodological side, we have shown evidence that atomistic models based on

a single protonation microstate are not relevant when pH-dependent properties are inves-

tigated. As a matter of fact, the predominant microstate represents less than 5% of the

populated microstates, even at pH=7.5 which is the most favorable case in the case of ASR.

The CpHMD-then-QMMM protocol remains a very expensive tool, requiring a lot of

computational resources. Accordingly, it is important to reduce the number of titrating

residues, using a screening procedure based on the determination of correlations between

the targeted property and the individual (de)protonation events. The minimal electrostatic

model55 endorses the electrostatic origin and the identification of the microscopic sources of

the ASR pH-dependent absorption spectrum.
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Figure 12: ASR representation featuring its retinal chromophore (RET), its counterion (D75)
and its most important titrating residues. D120 (mainly) and D57 are responsible for the
λmax red-shift between pH=3 and pH=5. H8, H21, E36, D217 and H219 are collectively
responsible for the λmax blue-shift between pH=5 and pH=7.
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