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Behavioral and physiological evidence suggests that developmental changes lead

to enhanced cortical differentiation and integration through maturation and learning,

and that senescent changes during aging result in dedifferentiation and reduced

cortical specialization of neural cell assemblies. We used electroencephalographic (EEG)

recordings to evaluate network structure and network topology dynamics during rest

with eyes closed and open, and during auditory oddball task across the lifespan. For

this evaluation, we constructed a hyper-frequency network (HFN) based on within- and

cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies

ranging between 2 and 20Hz. We found that WFC increased monotonously across the

lifespan, whereas CFC showed a U-shaped relationship. These changes inWFC andCFC

strengths coevolve with changes in network structure and network topology dynamics,

namely the magnitude of graph-theoretical topology measures increased linearly with

age (except for characteristic path length, which is going shorter), while their standard

deviation showed an inverse U-shaped relationship with a peak in young adults. Temporal

as well as structural or nodal similarity of network topology (with some exceptions)

seems to coincide with variability changes, i.e., stronger variability is related to higher

similarity between consecutive time windows or nodes. Furthermore, network complexity

measures showed different lifespan-related patterns, which depended on the balance of

WFC and CFC strengths. Both variability and complexity of HFNs were strongly related

to the perceptual speed scores. Finally, investigation of the modular organization of

the networks revealed higher number of modules and stronger similarity of community

structures across time in young adults as compared with children and older adults.

We conclude that network variability and complexity measures reflect temporal and

structural topology changes in the functional organization and reorganization of neuronal

cell assemblies across the lifespan.

Keywords: lifespan changes, EEG, functional connectivity, directional coupling, network topology dynamics,

graph-theoretical approach, resting state, auditory oddball performance
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INTRODUCTION

A growing body of evidence from electromagnetic and
neuroimaging studies suggests that successful cognitive aging
as well as maturation are determined by interactions both
within and between largescale functional brain networks
(Tsvetanov et al., 2016; Baum et al., 2017). Distinct cell
assemblies communicate with each other to integrate single
information flows into a common network (Müller et al.,
2016). Much less, however, is known about lifespan changes
in network architecture and network dynamics underlying
complex interaction of spatially segregated cell assemblies and
their integration into the brain system as a whole. One
of the mechanisms underlying integration or communication
between different cell assemblies might be the cross-frequency
coupling (CFC) allowing accurate timing between different
oscillatory rhythms (Jensen and Colgin, 2007; Jirsa and Müller,
2013). CFC can also promote selective and dynamic control
of distributed functional cell assemblies (cf. Canolty and
Knight, 2010; Canolty et al., 2010), and elevation of different
dimensions of brain integration (Varela et al., 2001; Buzsáki
and Draguhn, 2004). The so-called ‘communication through
coherence’ emphasizes synchronization within single bands or
within-frequency coupling (WFC), although allows for inter-
band modulation or CFC (Fries, 2015). Much less if everything is
known about the complexity of such modulations or connections
within and between brain networks and their changes across the
lifespan. The present study aims at overcoming these limitations.
For this purpose, we constructed hyper-frequency networks
(HFNs) based on WFC and CFC, and analyzed variability,
complexity, topology, and modular organization of the HFNs
across the lifespan.

Recent literature suggests that brain (cortical) signal

variability (i.e., transient temporal fluctuations in brain signal)

could be used as a means to capture complex interactions
between neuronal structures and cell assemblies, providing

thus important information about network dynamics and
brain states, as well as cognitive performance and mental
activity (McIntosh et al., 2008, 2014; Deco et al., 2011; Garrett
et al., 2011, 2015; Sleimen-Malkoun et al., 2015). It has been
shown that older brains are less variable than younger brains
(Garrett et al., 2011, 2015; Sleimen-Malkoun et al., 2015). More
interestingly, brain signal variability seems to promote more
accurate and less variable cognitive performance in development
(McIntosh et al., 2008) and aging (Garrett et al., 2011). In this
regard, it was also found that better-performing younger adults
exhibit significantly greater brain variability and revealed vaster
variability-based regional differentiation as compared with older,
poorer performers (Garrett et al., 2011). Moreover, age-related
differences in brain signal variability reflect aging-induced
changes in dopaminergic neuromodulation (Garrett et al.,
2015). Applying an entropy-based complexity measure (MSE,
multi-scale entropy) to EEG and MEG signals, McIntosh et al.
(2014) found that age-related changes in brain signal variability
were timescale-dependent, with elderly’s MSE curves showing
higher entropy at fine scales and lower entropy at coarser scales.
Using MSE and other variability or complexity measures to

study fluctuations of cortical activity in young and older adults,
Sleimen-Malkoun et al. (2015) found that in line with previous
findings of McIntosh et al. (2014), the EEG signals displayed
systematic age-related changes that were timescale-dependent
and were more complex (variable) at shorter time scales, but
less complex at longer scales in elderly as compared with
younger adults.

In a number of studies, it has been demonstrated that methods
and models derived from non-linear dynamics are suitable
tools for describing brain variability or complexity dynamics in
development and aging (Anokhin et al., 1996, 1999, 2000; Müller
and Lindenberger, 2012). Specifically, it has been shown that
non-linear dynamic complexity of EEG signals steadily increased
with age during resting state (Anokhin et al., 1996; Müller
and Lindenberger, 2012), accompanied by a steadily decrease in
non-linear coupling (Müller and Lindenberger, 2012). During
stimulus processing, a significant drop in complexity and a rise
in non-linear coupling across the lifespan has been observed
(Müller and Lindenberger, 2012). A negative correlation between
EEG dynamic complexity and spectral coherence has also been
found in the study of adolescence (Anokhin et al., 1999).
Further, in a study by Anokhin et al. (2000), an overall
increase in EEG dynamic complexity with brain maturation
(between 7.5 and 16 years) both during resting state and
performance of cognitive tasks was observed. Moreover, it has
been shown that oscillatory brain activity and the corresponding
phase synchronization dynamics are modulated during stimulus
processing and task performance with a steadily increase of
phase synchronization across the lifespan (Müller et al., 2009).
Recently, Jirsa and Müller (2013) showed that CFC measures
covering the interaction between different frequencies add
another dimension to the understanding of complex neural
dynamics of the frequency-specific neuronal networks. They also
provided evidence that CFC, allowing accurate timing between
different oscillatory rhythms, may be one of the mechanisms for a
communication between different cell assemblies and integration
or re-integration of different information flows. Furthermore,
in our previous study, we suggested a new approach for
construction of HFN based on WFC and CFC, and described
changes in network topology dynamics (NTD) during resting
state and auditory oddball performance (Müller et al., 2016).
In contrast to previous research, this new approach allows to
overcome at least two constrains: (i) HFN consider several
frequencies integrated in a common network with all possible
interactions between frequencies and electrodes, and (ii) NTD
of HFN represents variability (and also similarity) not in single
brain signals but examines structural and dynamic changes of
brain networks (see also Müller and Lindenberger, 2014, for the
use of the HFN approach in a hyper-brain study).

In the present work, we take a further step using the
HFN approach to explore network dynamics by applying
and introducing several indices of graph complexity providing
further important information about the geometry or structure
of complex networks beyond purely topological aspects. These
graph complexity measures can be pooled into four different
groups (Müller and Lindenberger, 2018): (i) spectral or energy
measures: Graph Energy (GE) and Laplacian Energy (LE), (ii)
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product measures: efficiency complexity (Ce) and graph index
complexity (Cr), (iii) entropy measures: offdiagonal complexity
(OdC) and partition entropy (PE), and (iv) dimensionality
measures represented by correlation dimension of the network
(CDN) and information dimension of the network (IDN). While
most of these measures are well known in the literature (Gutman
and Zhou, 2006; Claussen, 2007; Zhou et al., 2007; Kim and
Wilhelm, 2008), CDN and IDN were here implemented based
on correlation dimension algorithms for time series (Grassberger
and Procaccia, 1983; Lutzenberger et al., 1992; Skinner et al.,
1993) and its applications to complex networks (Daqing et al.,
2011; Lacasa and Gómez-Gardeñes, 2013). These measures
represent different aspects of network complexity (e.g., energy,
entropy, dimensionality, etc.). We are confident that they would
provide important information about the network complexity
dynamics across the lifespan, which is a scarcely studied topic in
the literature.

Here, we present EEG data obtained from 111 subjects across
the lifespan. The conditions comprise rest with eyes closed
(REC) and open (REO), and an auditory oddball task under an
attended (AOT) and unattended (UOT) condition. Based on the
above considerations, we predicted a more or less monotonous
increase or inverted U-shaped lifespan-changes in variability
and complexity of the networks, which will change their NTD
patterns dependent on the measure used. We also expected more
prominent changes in adults as compared to children, while we
also presume developmental and aging-related differences. In
addition, we expected significant associations between network
topology and complexity measures and perceptual speed (PS)
scores assessed in several tasks.

MATERIALS AND METHODS

The study design has been described previously (cf. Müller et al.,
2009). Here, we investigated the same group of participants.
We also used (but in different context) the data showing their
performance on perceptual speed tasks. However, EEG analyses
were carried out on different segments or segment lengths, and by
using distinct algorithms based on synchronization across time
within and between different frequencies.

Participants
All participants were volunteers, right-handed, had no reported
history of head or neurological disorders, and none were
on medication (cf. Müller et al., 2009). The effective sample
consisted of 24 younger children (YC, mean age = 9.9, SD =
0.6, age range = 9.0–10.8 years, 13 females), 28 older children
(OC, mean age = 12.0, SD = 0.6, age range = 11.0–12.8 years,
14 females), 31 younger adults (YA, mean age = 22.7, SD = 1.6,
age range = 18.8–25.1 years, 14 females), and 28 older adults
(OA, mean age= 67.8, SD= 3.0, age range= 63.9–74.5 years, 14
females). Participants of all ages including children were able to
sustain their attention for the entire duration of the experiment.
The study has been approved by the ethics committee of Saarland
University and has therefore been performed in accordance
with the ethical standards laid down in the 1964 Declaration of

Helsinki. All subjects gave their written informed consent prior
to their inclusion in the study.

Psychological Assessment
Psychological assessment was carried out on a different day
preceding the EEG session. For psychological assessment, the
cognitive battery of the Berlin Aging Study (BASE; Baltes and
Mayer, 1999) was used. Three tests from this battery—Digit
Symbol Substitution (DSS), Digit Letter Substitution (DLS), and
Identical Pictures (IP)—are marker tests of perceptual speed
(PS) and were selected for correlational analysis of relations
with electrophysiological data. The materials and procedural
details of the cognitive battery have been described elsewhere
(Lindenberger et al., 1993; Müller and Lindenberger, 2012).

Briefly, the Wechsler (1955) version of the DSS test was
used. We presented the participants with a coding key pairing 9
numbers (1 through 9) with 9 symbols. Printed under the coding
key were rows of randomly ordered numbers with empty boxes
below. Participants had to write as many symbols as possible into
the empty boxes based on the digit–symbol associations specified
in the coding key within 90 s. The number of correctly completed
items represented the outcome measure.

The DLS test closely resembles the DSS except that subjects
had to name letters instead of writing symbols. The test consisted
of a total of 21 sheets. Each sheet contained six digits with a
question mark underneath. Moving from left to right, subjects
had to name the letters that corresponded to the digits. Testing
lasted for 3min, with scores being taken after each minute. The
score used here is based on the total number of correct responses
after 3 min.

In the IP test, a total of 32 items was presented. For each
item, a target figure was presented in the upper half of the screen,
and five response alternatives were presented in the lower half.
Participants had to touch the correct (identical) figure in the
lower half as fast as possible. Before the test phase, instructions
and three practice items were given. Testing was terminated
automatically after 80 s. The score refers to the number of correct
responses (cf. Müller and Lindenberger, 2012).

Procedure
The EEG measurement began with a 3min relaxation phase
(1.5min with eyes closed and 1.5min with eyes open). During
the recording, the subjects sat in a chair in a relaxed position
in an electrically shielded room. The rest phases were followed
by the auditory oddball task. During the oddball task, which was
carried out with eyes closed, the participants heard two different
types of tone pips: a 1,000Hz tone played frequently to form the
standard stimulus and an 800Hz tone played only occasionally to
form the deviant stimulus. The standard and deviant stimuli were
presented binaurally (with a probability of 0.8 and 0.2 for the
standard and deviant stimuli, respectively) through headphones
(Sony DJ MDR-V300) at 70 dB SPL for a duration of 70ms
(including a 10-ms rise and fall period). The stimuli were
generated using the Audacity 1.2.4 software. The inter-stimulus
interval (ITI) was uniformly chosen at random between 1,200
and 1,500ms. Two different experimental conditions were used:
passive listening (unattended) and active counting (attended).
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For the first condition, the subjects were simply asked to listen
to the tone pips without any response, whereas, for the second
condition, the subjects were asked to listen to the stimuli
and count the number of deviant tones. Each experimental
condition contained 152 standard tones and 38 deviant tones
presented in a pseudo-random order fixed for all participants.
The conditions were always presented in the same order, with
the passive listening condition followed by the active counting
condition in order to facilitate the interpretation of between-
person differences (see Müller et al., 2009 for details).

EEG Recordings and Preprocessing
The electroencephalogram (EEG) was recorded from 58 Ag/AgCl
electrodes using an elastic cap (Electrocap International) with a
sampling rate of 500Hz in a frequency band ranging between
0.5 and 100Hz. The left mastoid was used as a reference and
the right mastoid was recorded as an active channel. The data
were also re-referenced off-line to an average of the left and
right mastoids for further analysis. The electrodes were placed
according to the international 10–10 system. The vertical and
horizontal electrooculograms (EOG)were recorded for control of
eye blinks and eye movements. Signals were digitally filtered off-
line (Butterworth zero phase filters 1–100Hz, slope 12 dB/octave;
notch filter 50Hz). Eye movement correction was accomplished
by independent component analysis (Vigário, 1997) using
BrainVision Analyzer (Brain Products, Gilching, Germany).
Thereafter, artifacts from head and body movements were
rejected by visual inspection. Finally, data were downsampled to a
sampling rate of 250Hz, segmented in artifact free 10 s segments
(i.e., comprising Nt = 2,500 data points each), and normalized
within segments before further analysis.

Within- and Cross-Frequency Coupling
To investigate phase coupling in a directed and frequency-
resolved manner (cf. Müller et al., 2016), we used an Integrative
Coupling Index (ICI) that was calculated as described elsewhere
(Müller and Lindenberger, 2011; Müller et al., 2016). For this
calculation, we first applied an analytic or complex-valuedMorlet
wavelet transform computing the instantaneous phase in the
frequency range from 0 to 20Hz. The complex mother Morlet
wavelet, also called Gabor wavelet, has a Gaussian shape around
its central frequency f :

w(t, f ) =
(

σ 2π
)−1/4

e((−t2/2σ 2)+3/2π jft), j =
√
−1 (1)

in which σ is the standard deviation of the Gaussian envelope
of the mother wavelet. The wavelet coefficients were calculated
with a time step of 5 leading to a time resolution of 20ms and
frequency resolution of 0.125Hz. In order to identify the phase
relations within and between any two channels or frequencies,
the instantaneous phase difference was computed from the
wavelet coefficients for all possible electrode and frequency pairs.
On the basis of instantaneous phases for two signals (X and Y)
given as 8X(fm,t) = arg[φX(fm,t)] and 8Y (fn,t) = arg[φY (fn,t)],
respectively, with arg denoting an argument of the complex
number, and φX and φY being complex numbers, the n:m phase
synchronization between two oscillations at the frequencies fm

and fn was determined. The generalized phase difference (18)
according to equality n·fm =m·fn was calculated by:

18
(

fm, fn, t
)

= n · 8
(

fm, t
)

−m · 8
(

fn, t
)

, mod2π (2)

In the case of WFC with fm = fn, the phase difference 18

is calculated in the same way by setting m = n = 1. Phase
differences and corresponding phase synchronization measures
were determined for 10 different frequencies of interest (FOI):
2, 4, 6, 8, 10, 12, 14, 16, 18, and 20Hz, resulting in different
frequency relations, such as 1:2, 1:3, 1:4, 2:3, 3:4 etc.

Thereafter, ICI was determined between all possible electrode
and frequency pairs. ICI ranges between 0 and 1 and is an
asymmetric coupling measure (i.e., ICIXY 6= ICIYX), indicating
the relative extent of the positive shift in phase difference
between two signals. To investigate the dynamic changes in phase
synchronization and network topology (see below), we calculated
phase coupling usingmoving time window of 2,000ms width and
100ms time delay. Overall, within a segment of 10-s duration,
coupling measures across 81 time widows were collected by this
shifting procedure.

Network Construction
ICI values were used to construct a connectivity matrix or a graph
representing the network properties, where each node is defined
as a combination of electrode location and oscillation frequency.
This means that the same electrode site at the 10 FOI represents
10 different nodes that communicate with other nodes at the
same or different frequencies. There were 580 nodes altogether
(58 electrodes × 10 frequency bins = 580) in the common
HFN (cf. Müller et al., 2016). As ICI is a directed measure, the
constructed networks were directed weighted graphs.

Threshold Determination
In general, the choice of a threshold plays an important and
non-trivial role in network construction, but is necessarily always
arbitrary. At least two issues appear important for us in this study:
(i) the connectivity measures should not occur by chance, and (ii)
the networks changing in time should have the same threshold,
which correspond to a high sparsity level. For determining the
network properties across the different time windows, we set
the connectivity threshold to 0.26, which was always higher
than the significance level determined by the surrogate data
procedure (see below). At this threshold, the cost level of the
networks (ratio of the number of actual connections divided by
the maximum possible number of connections in the network)
was approximately 20%, corresponding to high sparsity of the
resulting networks and allowing more accurate examination of
the network topology across conditions and lifespan samples.
Being aware that an absolute threshold could cause slightly
different cost levels, we calculated the costs in order to use them
as covariates.

Surrogate Data Procedure
Surrogate data were created in two ways: (1) by random
permutations of the original time series, and (2) by phase
permutation of the time series. The latter surrogate data
procedure involved: (a) computing the amplitude and phase
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spectrum of a real signal using a Fourier transformation;
(b) phase shuffling, whereby the phase values of the original
spectrum are used in random order and the sorted values
of the surrogate sequence are replaced by the corresponding
sorted values of the reference sequence; and (c) inverse Fourier
transformation back to the time domain. In this way, the real and
the surrogate data retain the same power spectrum but a different
time course. Thereafter, we applied a bootstrapping procedure
with 1,000 resamples of the coupling measures resulting from
the surrogate data sets and determined the significance level
(p < 0.001) as the bootstrapping mean plus the confidence
interval. The chosen threshold of 0.26 was always higher than the
determined significance level in both surrogate data procedures
and corresponded to a relatively high sparsity level, i.e., it
matched both of our criteria (see above).

Network Topology Metrics and Dynamics
Since for our further analyses and calculation of spatiotemporal
NTDmetrics we were interested in nodal network characteristics,
we first determined all the GTA measures described below for
each node and time window separately. Thereafter, the nodal
GTAmeasures were averaged across time windows or nodes with
regard to temporal or structural dynamics (see details below),
whereby the set size was equal to 81 or 580, respectively.

Strengths
As ICI is a directed weighted measure, we obtained the nodes’ in-
and out-strengths, whereby the in-strength is defined as the sum
of weights of all incoming connections (wji), Sin =

∑

j∈N
wji, and

the out-strength is the sum of weights of all outgoing connections
(wij), Sout =

∑

j∈N
wij. Note that strengths were first determined

for each node separately and then averaged across time or nodes
(see below). The overall strength (S) was calculated as a sum
of in- and out-strengths: S = Sin + Sout . The overall strengths
were calculated for WFC and CFC separately, to investigate their
influence on network complexity and network dynamics.

Clustering Coefficient and Characteristic Path Length
For an individual node, the clustering coefficient (CC) is defined
as the proportion of the number of existing neighbor–neighbor
connections to the total number of possible connections within
its neighborhood. In the case of a weighted directed graph, the
mean CC is calculated as (Fagiolo, 2007):

CC =
1

m

∑

i∈N
CCwd

i

=
1

m

∑

i∈N

twdi
(

kouti + kini
) (

kouti + kini − 1
)

− 2
∑

j∈N aijaji
(3)

with CCwd
i being the nodal CC and

twdi = 1
2

∑

j,h∈N

[(

wij
1/3wih

1/3wjh
1/3
)

+
(

wji
1/3whi

1/3whj
1/3
)]3

being

the number of weighted directed triangles around a node i; kini
and kouti are in- and out-degrees of the node i, aji, and aij are
directed links of the adjacencymatrix,N denotes the network size

or the number of nodes, and m is the set size used for averaging.
The CCmeasures the cliquishness of a typical neighborhood and
is thus a measure of network segregation.

Another important measure is the characteristic path length
(CPL). As our networks are directed weighted graphs, the weight
and direction of the links must be considered. The input matrix
is then a mapping from weight to length (i.e., a weight inversion),
and the distance dwdij is the minimal weighted directed distance

between the nodes i and j. CPL was determined as (Watts and
Strogatz, 1998):

CPL =
1

m

∑

i∈N
Lwdi =

1

m

∑

i∈N

∑

j∈N,j 6=i d
wd
ij

n− 1
(4)

where Lwdi denotes the nodal or average shortest path length from
node i to all other nodes in the network, n is the number of nodes,
andm is the set size used for averaging.

Local and Global Efficiency
Local efficiency (Elocal) is similar to the CC and is calculated as
the harmonic mean of neighbor-neighbor distances (Latora and
Marchiori, 2001):

Elocal =
1

m

∑

i∈N
Ewdlocal(i)

=
1

m

∑

i∈N

twde
(

kouti + kini
) (

kouti + kini − 1
)

− 2
∑

j∈N aijaji
(5)

with twde = 1
2

∑

j,h∈N,j 6=i (w
1/3

ij + w1/3
ji)(w

1/3
ih + w1/3

hi)
(

(

[

dwd
jh
(Ni)

]−1
)1/3

+
(

[

dwd
hj
(Ni)

]−1
)1/3

)

, where Ni denotes

the subgraph comprising all nodes that are immediate neighbors
of the node i, kini , and kouti are in- and out-degrees of the node
i, aij and aji are directed links of the adjacency matrix, n is
the number of nodes, and m is the set size used for averaging.
Thus, Elocal of node i is defined with respect to the subgraph
comprising all of i’s neighbors, after removal of node i and its
incident edges (Latora and Marchiori, 2001). Like CC, Elocal is
a measure of the segregation of a network, indicating efficiency
of information transfer in the immediate neighborhood of each
node and showing how fault-tolerant the system is.

Global efficiency (Eglobal) is normally defined as the average
inverse shortest path length, and is calculated by (Latora and
Marchiori, 2001):

Eglobal =
1

m

∑

i∈N
Ewdglobal(i) =

1

m

∑

i∈N

∑

j∈N,j 6=i (d
wd
ij )

−1

n− 1
(6)

where Ewd
global(i)

is the nodal efficiency, which is defined as the

normalized sum of the reciprocal of the shortest path lengths
or distances dwdij from a given node (i) to all other nodes in the

network, n is the number of nodes, and m is the set size used for
averaging. Like CPL, Eglobal is a measure of the integration of a
network, but whereas CPL is primarily influenced by long paths,
Eglobal is primarily influenced by short ones.
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FIGURE 1 | Determination of HFN dynamics with temporal and nodal variability and similarity. (A) Time course of HFNs calculated in the 10-s segment using a moving

time window of 2,000ms and time delay of 100ms (81 time windows in total). (B) After the calculation of different GTA metrics for HFN in each time window, a time

windows × nodes matrix (81 × 580) was constructed. In this matrix, mean (M), and standard deviation (SD) were determined both across time and across nodes. In

addition, temporal and nodal similarity were determined also both across time and across nodes. (C) Temporal similarity matrix was built by calculation of Pearson’s

product correlation among the consecutive vertical lines in previous 81 × 580 matrix (each line represents 580 nodes of a GTA metric in corresponding time window).

In the temporal similarity matrix, average strength was determined as a global temporal similarity index. (D) Nodal similarity matrix was built by calculation of Pearson’s

product correlation among the consecutive horizontal lines in previous 81 × 580 matrix (each line represents time course of a single node of a GTA metric). In the

nodal similarity matrix, average strength was determined as a global nodal similarity index. HFN, hyper-frequency network; GTA, graph-theoretical approach. [Modified

from Müller et al. (2016)].

Network Topology Dynamics
Network topology given by the GTA measures specified above
changes across time. To capture the spatiotemporal NTD, we
calculated for each time window and each HFN node the six GTA
metrics specified above (Figure 1A), then build for each GTA
metric a ‘nodes × time windows’ matrix (580 × 81, Figure 1B),

and calculated the means (M) and standard deviations (SD)
both across time windows (tSD) and across nodes (nSD). For
statistical evaluation and in order to achieve a global measure
for dynamic and structural variability, means and SDs were
further averaged across nodes and time points, respectively.
Thereafter, we determined temporal network similarity, i.e.,
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correlation among time windows resulting in an 81 × 81
matrix (Figure 1C), and spatial or nodal network similarity,
i.e., correlation among nodes resulting in a 580 × 580 matrix
(Figure 1D). Both similarity measures were determined by
Pearson’s product correlation. Resulting correlation matrices
were used for determination of overall temporal and nodal
network similarity. For these purposes, we calculated average
strength in resulting correlation matrices. Since nodal network
similarity contained positive as well as negative values, we
calculated two means or average strengths for positive and
negative correlation values, respectively.

Network Complexity Measures
We used different graph complexity measures to investigate
network complexity dynamics. First, we determined Graph
Energy (GE) and Laplacian Energy (LE) of a network. The GE is
defined as (Gutman and Zhou, 2006):

GE =
n
∑

i=1

|λi| (7)

where λi = λ1, λ2, ..., λn are the eigenvalues of the weighted
directed adjacency matrix. GE was normalized by dividing by 2n.

The LE was determined by the formula
(Gutman and Zhou, 2006):

LE =
n
∑

i=1

∣

∣

∣

∣

µi −
2m

n

∣

∣

∣

∣

(8)

whereµi = µ1,µ2, ...,µn are eigenvalues of the Laplacianmatrix,
and n and m are the numbers of vertices and edges, respectively.
LE was then normalized by dividing by the maximal number of
edges: n(n – 1).

Next, we determined graph index complexity Cr based on the
largest eigenvalue of a graph called index r, which fulfills the
inequality 2cos(π / (n+ 1))≤ r ≤ n – 1. Cr complexity is defined
then as (Kim and Wilhelm, 2008):

Cr = 4cr(1− cr) with cr =
r − 2 cos π

n+1

n− 1− 2 cos π
n+1

(9)

where 0 ≤ Cr ≤ 1.
Efficiency complexity Ce was determined as

(Kim and Wilhelm, 2008):

Ce = 4

(

E− Epath

1− Epath

)(

1−
E− Epath

1− Epath

)

(10)

where E is the global efficiency of a graph and Epart is efficiency
of the least efficient graph, which is determined by:

Epath =
2

n (n− 1)

n−1
∑

i=1

(

n− i

i

)

(11)

Off-diagonal complexity (OdC) was calculated by the formula
(Claussen, 2007):

OdC = −
M−1
∑

i=1

Li

m
log

(

Li

m

)

(12)

where Li is the sum of entries in the ith diagonal. We adapted
this measure for directed weighted graph by calculating upper
and lower weighted diagonal entries, and normalized it through
dividing by ln(n-1).

Partition entropy (PE) is the entropy of the distribution of
community sizes when the nodes are separated into communities
(Onnela et al., 2012):

PE = −
N
∑

i=1

Ci

n
log

(

Ci

n

)

(13)

where Ci is a size or the number of nodes in the community i and
n is the number of nodes in the network.Ci was determined using
the modularity optimization method as described below.

Further, we estimated complexity of the network with regard
to its dimensionality. We used a correlation dimension algorithm
similar to the one introduced by Grassberger and Procaccia
(1983) for time delay embedding (cf., Lacasa and Gómez-
Gardeñes, 2013). As a first step, we calculated weighted distances
of the network. Using the distance matrix, we calculated
the correlation integral or the correlation sum function by
comparing the distances with some scalar r:

Cm(r) =
2

m(m− 1)

m
∑

i,j=1

2(r − dij) (14)

where 2 is Heaviside step function, m is embedding dimension,
and dij is the distance between nodes i and j; scalar or preselected
distance r varies with a logarithmic step (100 steps were used for
calculation here) in the range between the smallest and the largest
distance in the given network. The embedding dimension m was
equal to the number of nodes in the network. The correlation
dimension of the network (CDN) was determined as a slope in
double logarithmic coordinates when plotting Cm(r) as function
of r:

CDN = lim
r→0

lg(Cm(r))

lg(r)
(15)

For determination of the slope or CDN, the region between the
10th and 30th r-value was used, where the dependence curve
(Cm(r) vs. r) showed clear linear trend.

Using similar partition procedure, the information dimension
of the network (IDN) can be determined by:

IDN = −
M(r)
∑

i=1

Ci

N
log

(

Ci

N

)

(16)

where Ci is the number of nodes in the partition i, M(r) is the
number of the partitions with a partition range r, andN indicates
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FIGURE 2 | Representation of real, regular (lattice), and random networks. (A) In the real network (left), the nodes are organized by electrode location and oscillation

frequency. The lattice network (middle) was configured by the randomization of the edges in the real network and consecutive redistribution in such a way that the

strongest edges lay close to the main diagonal. The random network (right) was configured by the randomization of the edges only. The lattice and random networks

were reconstructed in such a way that they have the same number of nodes and edges as the initial real network, but are characterized by ring (lattice) or random

network topology. (B) The same networks as in (A), represented in the form of brain maps including WFC (within-frequency coupling) and CFC (cross-frequency

coupling). (C) Box plots of the GTA metric for the real and control (regular and random) networks. Box plots of clustering coefficient (CC), characteristic path length

(CPL), local efficiency (Elocal ), and global efficiency (Eglobal ) are presented. For this presentation, data were determined for attended oddball task (AOT) condition and

averaged across all subjects.
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the overall number of nodes used in the calculation with N =
m(n-1). As previous, the embedding dimension m was equal to
the number of nodes in the network. There were 100 partitions
(i.e.,M(r)= 100) in the range between the smallest and the largest
distance in the given network.

To investigate the network topology and network complexity
of the real networks, we constructed regular (lattice) and random
networks that have the same number of nodes and edges as
our real networks (see Figure 2). For these purposes, we first
randomized the edges in the real network to achieve a random
network; lattice network was configured like random network,
but in addition, edges were redistributed after an initial random
permutation such that they lay close to the main diagonal with
increasing order of their weights. Lattice network reconstructed
in such a way has the same number of nodes and edges as the
initial real network but is characterized by ring or lattice topology
incorporating nearest-neighbor connectivity (Sporns et al., 2007).
Control networks (i.e., regular and random networks) were
constructed for all subjects for AOT condition only.

Modular Organization of the Networks and
Its Dynamic Changes
To further investigate the topological properties of the
HFNs, community structures and modularity index (Q) were
determined. For this calculation, the modularity optimization
method for directed graphs that is implemented in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) was used. The
optimal community structure is a subdivision of the network into
non-overlapping groups of nodes or communities in a way that
maximizes the number of within-module edges and minimizes
the number of between-module edges. The modularity (Q) is
a statistic that quantifies the degree to which the network may
be subdivided into such clearly delineated groups or modules.
For directed networks, this is given by the formula (Leicht and
Newman, 2008):

Q→ =
1

l

∑

i,j∈N

[

aij −
kini k

out
i

l

]

· δmi ,mj , (17)

where l =
∑

ij aij is the number of edges in the graph, and aij is

defined to be 1 if there is an edge from j to i and zero otherwise,
kini and kouti are the in- and out-degrees of the node i, and δmi ,mj is
the Kronecker delta, where δmi ,mj= 1 ifmi =mj, and 0 otherwise.
High modularity values indicate strong separation of the nodes
into modules. Q = 0 if nodes are placed at random into modules
or if all nodes are in the same cluster (Leicht and Newman, 2008).

To investigate the dynamic changes of modular structures
across time, we used normalized mutual information (nMI)
and normalized variation of information (nVI), which measure
the similarity between two partitions and the distance in the
space of partitions, respectively (cf. Vinh et al., 2010). Thus,
these measures show how similar or how different the partitions
are. As with the similarity of the network topology indices,
we determined these similarity or variation measures for all
consecutive community structures and calculated the average in
the given similarity or variation matrices.

Data Reduction and Statistical Analyses
For statistical analyses of ICI values, the network vertices of
58 electrode locations oscillating at 10 different frequencies
were collapsed into 5 brain sites at each frequency: F (frontal
electrodes: Fp1, Fpz, Fp2, F7, . . . F6, F8), C (central electrodes:
FC3, FC1, . . . , C1, Cz, C2, . . . , CP2, CP4), P (parieto-
occipital electrodes: P7, P5, . . . , PO8, O1, Oz, O2), LT (left
temporal electrodes: FC5, T7, C5, TP7, CP5), and RT (right
temporal electrodes: FC6, T8, C6, TP8, CP6). For sake of
clarity, we describe here only two experimental conditions:
REC and AOT. Results on all four conditions can be found
in Supplementary Material. At first, we analyzed the WFC
and CFC connectivity strengths (ICI values) using a four-way
repeated measures ANOVA with a between-subject factor Age
and three within-subject factors Condition (REC and AOT),
Site (F, C, P, LT, and RsT), and Frequency (10 frequency bins).
This analysis was performed separately for WFC and CFC
connectivity data determined during the entire 10-s time interval
and averaged across eight segments. All other measures that
were determined within a 10-s time interval using a sliding time
window approach as described above (i.e., mean and standard
deviation as well as similarity indices across time and across
nodes, complexity measures, and similarity/variation measures
of modular organization changes), were analyzed using a two-
way repeated measures ANOVA with a between-subject factor
Age and a within-subject factor Condition. Greenhouse-Geisser
epsilons were used in all ANOVAs for non-sphericity correction
when necessary. Fischer’s LSD (FLSD) test was employed for post-
hoc testing. To exclude the influence of costs on the network
topology, we also run corresponding ANCOVAs with costs used
as covariates. This result is reported in Supplementary Material.
To correlate the network topology and network complexity data
with perceptual speed (PS) assessed in the three perceptual speed
tasks (DSS, DLS, and IP), we calculated composite scores by PCA
on the data of these three tasks. Pearson product correlation was
then performed with the composite scores of PS and NTD data.
To provide further information about the association between
WFC and CFC strengths and complexity measures as well as
modular organization of the network (e.g., number of modules),
we correlated them with each other. It should be indicated here
that this was an exploratory study and analyses were performed
without adjustment for multiple comparison (cf. Althouse, 2016).
We also note here that additional dedicated studies are needed to
confirm the results.

RESULTS

Age-Related Changes in Network
Structure and Network Dynamics
Before describing network topology changes across the lifespan
under different conditions, we present the estimation of topology
in real and control (i.e., regular and random) networks that were
calculated for AOT condition only. This topology estimation is
presented in Figure 2. It can be seen thatCC and correspondingly
Elocal are greatest in regular or lattice networks and lowest in
random networks, whereas CC and Elocal for the real networks
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are in between. In contrast, CPL is shortest in real networks and
longest in lattice networks, while the random networks are in
between. Contrary to CPL, Eglobal is lowest in the lattice, highest
in random, and lies in between in real networks.

Age-Related Changes in WFC and CFC
Statistical analyses of the ICI values performed separately
for WFC and CFC connectivity data determined during
the entire 10-s time interval and averaged across eight
10-s segments as well as similar analyses performed on
WFC and CFC strengths determined within single 10-s

epoch using sliding time window approach are presented
in Supplementary Material and indicate different age-related
patterns for WFC and CFC under the four task conditions
(see Supplementary Table 1 and Supplementary Figure 1 for
details). These analyses showed the same age-related patterns
and therefore indicate high generalizability of the data. To
prove this statistically, we calculated Cronbach’s alpha (α)
between mean ICI values averaged across eight 10-s segments
and strengths determined within a single 10-s time interval.
As shown in Supplementary Table 2, both WFC and CFC
strength showed high reliabilities (α > 0.895) with exception

FIGURE 3 | ANOVA results for WFC and CFC strengths and correlation plots of the strengths vs. PS scores. (A) Box plots of the WFC (left) and CFC (right) strengths

across the lifespan. (B) Box plots of the WFC (left) and CFC (right) strengths across the lifespan under the two task conditions (REC and AOT). (C) Correlations

between strengths (WFC and CFC) and PS composite scores. Age groups: YC, younger children; OC, older children; YA, younger adults; OA, older adults.

Conditions: REC, rest with eyes closed; AOT, attended oddball task. WFC, within-frequency coupling; CFC, cross-frequency coupling; PS, perceptual speed.
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of CFC strength during REO condition (α = 0.773), which is
nevertheless in acceptable range. For the sake of clarity, we
further present data for only two task conditions (REC andAOT).
To further provide reliability of network topology metrics, we
determined these measures for a next 10-s epoch and calculated
Cronbach’s α between corresponding means determined within
two different epochs. As shown in Supplementary Table 3, all
topology measures determined for AOT condition showed high
reliability (α > 0.900 for network topology means).

Here we present CFC and WFC strengths determined within
a 10-s time interval to further investigate the influence of
WFC and CFC on NTD. As expected and also shown in
Supplementary Material for the four task conditions, WFC
strength increased practically linearly with age, and CFC strength
showed U-shaped relationship across the lifespan (see Figure 3

for details). Statistical analyses of WFC strength revealed only
age-related differences [F(3,107) = 5.74, P < 0.001, η

2 = 0.14],
whereas CFC strength showed significant effects of both factors
Age [F(3,107) = 7.75, P < 0.0001, η

2 = 0.18] and Condition
[F(3,321) = 26.25, P < 0.0001, η

2 = 0.20]. There were no
significant interactions of these two factors. To exclude the
confounding effects of wiring costs, we performed an ANCOVA
with costs as covariates. Interestingly, the main effects of the
factors Age and Condition were found significant for both WFC
[Age: F(3,105) = 7.75, P < 0.0001, η2 = 0.18; Condition: F(3,105)
= 4.07, P < 0.05, η

2 = 0.04] and CFC [Age: F(3,105) = 4.36, P
< 0.01, η

2 = 0.11; Condition: F(3,105) = 4.54, P < 0.05, η
2 =

0.04]. To assess the relationship between coupling strengths and
cognitive performance, we correlated WFC and CFC strengths
with composite scores of the PS (see Methods). As shown in
Table 1 and Figure 3C, CFC strength correlated negatively with
PS scores, whereas the correlation betweenWFC strength and PS
scores was positive but did not reach the significant level.

Mean and Standard Deviation of Network Topology

Changes Across the Lifespan
Using a two-way repeated measures ANOVA with a between-
subject factor Age and a within-subject factors Condition,
we separately tested the six GTA metrics to show overall
(temporal and structural) changes in NTD. Results of these
analyses (with exception of the factor Condition, which is
outside our focus and was reported previously, cf. Müller
et al., 2016) are summarized in Table 2 and Figure 4 (lifespan
network topology changes under the four Conditions are
shown in Supplementary Figure 2). It can be seen that for
all GTA measures both mean and standard deviation vary as
function of age. As shown by post hoc FLSD test, mean for
practically all GTA metrics increases with age and for CPL
correspondingly decreases. The dynamic variability (tSD) was in
most cases highest in YA and for CC in OA, while the structural
variability (nSD) was highest in YA and OA as compared
with children (especially, YC). Besides significant age-related
differences between children and adults (see Figure 4 for details),
post hoc FLSD test revealed also significant differences between
YC and OC as well as between YA and OA. In general, YA
showed highest SD (especially, tSD), whereas the magnitude
of the GTA metrics (M) was greatest in OA. As shown in

TABLE 1 | Correlation between PS scores and network variability and complexity

measures under the four task conditions.

Measure REC AOT

R P R P

WFC AND CFC

WFC_S 0.168 0.078 0.168 0.078

CFC_S −0.317 0.0007 −0.237 0.010

tSD

Sin 0.363 0.0001 0.548 0.0001

Sout 0.227 0.016 0.469 0.0001

CC 0.195 0.040 0.090 0.35

CPL 0.407 0.0001 0.456 0.0001

Eloc 0.413 0.0015 0.333 0.0003

Eglob 0.429 0.0001 0.573 0.0001

nSD

Sin 0.182 0.056 0.185 0.051

Sout 0.160 0.092 0.172 0.072

CC 0.251 0.0076 0.181 0.057

CPL 0.298 0.0014 0.218 0.022

Eloc 0.458 0.0001 0.421 0.0001

Eglob 0.154 0.11 0.185 0.052

COMPLEXITY

GE −0.491 0.0001 −0.448 0.0001

LE −0.200 0.035 −0.116 0.23

Ce −0.143 0.14 −0.072 0.45

Cr −0.036 0.71 0.083 0.39

OdC −0.360 0.0001 −0.331 0.0003

PE 0.375 0.0001 0.308 0.0009

CDN −0.415 0.0001 −0.409 0.0001

IDN 0.306 0.0010 0.237 0.012

REC, rest with eyes closed; AOT, attended oddball task; WFC, within-frequency coupling;

CFC, cross-frequency coupling; PS, perceptual speed; Sin, in-strength; Sout, out-

strength; CC, clustering coefficient; CPL, characteristic path length; Elocal , local efficiency;

Eglobal , global efficiency; tSD, standard deviation across time; nSD, standard deviation

across nodes; GE, graph energy; LE, Laplacian energy; Ce, efficiency complexity;

Cr , graph index complexity; OdC, offdiagonal complexity; PE, partition entropy; CDN,

correlation dimension of the network; IDN, information dimension of the network.

Supplementary Table 4, ANCOVA controlling for the effects of
wiring costs confirmed all main effects of the factor Age shown
by ANOVA, which even sometimes were getting stronger.

To assess the relationship between temporal and structural
network variability and cognitive performance, we correlated
tSD and nSD with composite scores of the PS. Results of these
correlations are summarized in Table 1. It can be seen that
correlations between tSD and perceptual speed scores were
significantly positive for practically all NTD data with exception
of CC (see also Figure 5); nSD also correlated positively with
PS but to a lesser extent and only for CC, CPL, and Elocal with
some exceptions.

Temporal and Nodal Network Similarity Across

the Lifespan
Results of these analyses for all GTA measures are summarized
in Table 3 (with exception of the factor Condition) and Figure 6
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TABLE 2 | ANOVA results for the mean (M) and standard deviation (SD) across time and across nodes for the six GTA measures.

GTA measures Factors F-value P-value Partial eta squared

MEAN (M)

Sin Age F (3,107) = 5.34 P < 0.005 η
2 = 0.13

Age × Condition F (3,107) = 1.65 P = 0.18 η
2 = 0.04

Sout Age F (3,107) = 5.32 P < 0.005 η
2 = 0.13

Age × Condition F (3,107) = 1.56 P = 0.20 η
2 = 0.04

CC Age F (3,107) = 5.49 P < 0.005 η
2 = 0.13

Age × Condition F (3,107) = 0.07 P = 0.97 η
2 = 0.002

CPL Age F (3,107) = 16.71 P < 0.0001 η
2 = 0.32

Age × Condition F (3,107) = 0.83 P = 0.48 η
2 = 0.02

Elocal Age F (3,107) = 7.06 P < 0.0001 η
2 = 0.17

Age × Condition F (3,107) = 0.19 P = 0.90 η
2 = 0.01

Eglobal Age F (3,107) = 12.26 P < 0.0001 η
2 = 0.26

Age × Condition F (3,107) = 1.34 P = 0.27 η
2 = 0.04

STANDARD DEVIATION ACROSS TIME (tSD)

Sin Age F (3,107) = 28.04 P < 0.0001 η
2 = 0.44

Age × Condition F (3,107) = 2.45 P = 0.068 η
2 = 0.06

Sout Age F (3,107) = 13.30 P < 0.0001 η
2 = 0.26

Age × Condition F (3,107) = 2.73 P < 0. 05 η
2 = 0.07

CC Age F (3,107) = 4.41 P < 0.01 η
2 = 0.11

Age × Condition F (3,107) = 1.78 P = 0.16 η
2 = 0.05

CPL Age F (3,107) = 18.67 P < 0.0001 η
2 = 0.34

Age × Condition F (3,107) = 1.33 P < 0.27 η
2 = 0.04

Elocal Age F (3,107) = 9.76 P < 0.0001 η
2 = 0.22

Age × Condition F (3,107) = 1.16 P < 0.33 η
2 = 0.03

Eglobal Age F (3,107) = 33.37 P < 0.0001 η
2 = 0.48

Age × Condition F (3,107) = 2.15 P = 0.10 η
2 = 0.06

STANDARD DEVIATION ACROSS NODES (nSD)

Sin Age F (3,107) = 4.25 P < 0.01 η
2 = 0.11

Age × Condition F (3,107) = 0.38 P = 0.77 η
2 = 0.01

Sout Age F (3,107) = 3.82 P < 0.05 η
2 = 0.10

Age × Condition F (3,107) = 0.64 P = 0.59 η
2 = 0.02

CC Age F (3,107) = 4.20 P < 0.01 η
2 = 0.11

Age × Condition F (3,107) = 0.13 P = 0.94 η
2 = 0.004

CPL Age F (3,107) = 4.85 P < 0.005 η
2 = 0.12

Age × Condition F (3,107) = 1.42 P = 0.24 η
2 = 0.04

Elocal Age F (3,107) = 13.56 P < 0.0001 η
2 = 0.28

Age × Condition F (3,107) = 0.11 P = 0.96 η
2 = 0.003

Eglobal Age F (3,107) = 4.36 P < 0.01 η
2 = 0.11

Age × Condition F (3,107) = 0.40 P = 0.75 η
2 = 0.01

Sin, in-strength; Sout, out-strength; CC, clustering coefficient; CPL, characteristic path length; Elocal , local efficiency; Eglobal , global efficiency. Significant effects (P < 0.05) are in bold.

(only temporal similarity data, showing strongest lifespan
differences, are presented). It can be seen that main effect Age
was mostly significant for temporal similarity and to lesser extent
for nodal similarity, and only for negative similarity values (with
an exception of a significant Age effect in the case of Sin for
positive similarity values). The temporal similarity was highest in
YA for Sin, Sout , SPL, and Eglobal and lowest for CC. The negative
nodal similarity was lowest in YA (i.e., the negative similarity
was strongest) for Sin, SPL, Elocal, and Eglobal, which above all

differentiates between YA and OA (YA < OA), indicates thus
stronger (negative) similarity in YA. ANCOVA controlling for
the effects of wiring costs confirmed all these main effects of the
factor Age shown by ANOVA, with some few exceptions (see
Supplementary Table 5 for details). Lifespan network topology
changes in temporal and nodal similarity under the four task
Conditions are shown in Supplementary Figure 3. It can be
seen that there were some modulations of lifespan differences
by Condition.
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FIGURE 4 | Box plots of the mean and standard deviation (SD) of the six GTA measures across the lifespan. Changes of the mean and SD across the 81

time windows calculated for each network node (tSD) and across 580 nodes calculated for each time window (nSD) are presented for the six GTA measures: In-Strength

(Continued)
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FIGURE 4 | (Sin), Out-Strength (Sout ), Clustering Coefficient (CC), Characteristic Path Length (CPL), Local Efficiency (Elocal ), and Global Efficiency (Eglobal ). For

statistical analyses and this presentation, mean and SDs were averaged across nodes (tSD) and time windows (nSD), respectively. Note that the mean does not

depend on averaging procedure. Factor Age is presented here. Differences between age groups were examined by Fisher’s LSD post-hoc test and are shown by

lines’ color and thickness.

FIGURE 5 | Correlation plots showing Pearson’s product correlations between perceptual speed and network variability measures. (A) Correlations between temporal

variability (tSD) and PS composite scores. (B) Correlations between nodal variability (nSD) and PS composite scores. Pearson’s product correlations were calculated

for each condition separately (see also Table 1 for details) for each of the six GTA measures: In-Strength (Sin), Out-Strength (Sout ), Clustering Coefficient (CC),

Characteristic Path Length (CPL), Local Efficiency (Elocal ), and Global Efficiency (Eglobal ). Note that significant correlations are presented.

Age-Related Changes in
Network Complexity
Before describing network complexity changes across the lifespan
under different conditions, we compared complexity in real
and control (i.e., regular and random) networks. Normally,
complexity is highest in random networks and lowest in regular
or lattice networks, while the real networks were expected to

lie in between. This expectation was mostly true with several

exceptions, especially with regard to energy-based measures. As
shown in Figure 7A, GE was lowest in real networks and highest

in random networks, while LEwas contrary slightly higher in real

networks and equal in regular and random networks. Cr and PE

were highest in real networks and lowest in random networks.
It should be noted here that PE is dependent on partition or
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TABLE 3 | ANOVA results for the temporal and nodal (positive and negative) similarity for the six GTA measures.

GTA measures Factors F-value P-value Partial eta squared

TEMPORAL NETWORK SIMILARITY

Sin Age F (3,107) = 6.36 P < 0.001 η
2 = 0.15

Age × Condition F (3,107) = 2.74 P < 0.05 η
2 = 0.07

Sout Age F (3,107) = 3.70 P < 0.05 η
2 = 0.09

Age × Condition F (3,107) = 1.39 P = 0.25 η
2 = 0.04

CC Age F (3,107) = 5.96 P < 0.001 η
2 = 0.14

Age × Condition F (3,107) = 3.40 P < 0.05 η
2 = 0.09

CPL Age F (3,107) = 23.18 P < 0.0001 η
2 = 0.39

Age × Condition F (3,107) = 3.32 P < 0.05 η
2 = 0.09

Elocal Age F (3,107) = 1.92 P = 0.13 η
2 = 0.05

Age × Condition F (3,107) = 0.49 P = 0.69 η
2 = 0.01

Eglobal Age F (3,107) = 7.29 P < 0.0001 η
2 = 0.17

Age × Condition F (3,107) = 0.13 P = 0.94 η
2 = 0.004

NETWORK SIMILARITY ACROSS NODES (POSITIVE)

Sin Age F (3,107) = 2.90 P < 0.05 η
2 = 0.08

Age × Condition F (3,107) = 0.22 P = 0.88 η
2 = 0.01

Sout Age F (3,107) = 2.54 P = 0.061 η
2 = 0.07

Age × Condition F (3,107) = 0.06 P = 0.98 η
2 = 0.002

CC Age F (3,107) = 2.29 P = 0.082 η
2 = 0.06

Age × Condition F (3,107) = 0.14 P = 0.94 η
2 = 0.004

CPL Age F (3,107) = 1.12 P = 0. 34 η
2 = 0.03

Age × Condition F (3,107) = 0.79 P = 0.50 η
2 = 0.02

Elocal Age F (3,107) = 1.31 P = 0.34 η
2 = 0.03

Age × Condition F (3,107) = 0.32 P = 0.81 η
2 = 0.01

Eglobal Age F (3,107) = 2.02 P = 0.12 η
2 = 0.05

Age × Condition F (3,107) = 0.34 P = 0.80 η
2 = 0.01

NETWORK SIMILARITY ACROSS NODES (NEGATIVE)

Sin Age F (3,107) = 2.90 P < 0.05 η
2 = 0.08

Age × Condition F (3,107) = 0.22 P = 0.88 η
2 = 0.01

Sout Age F (3,107) = 1.23 P = 0.30 η
2 = 0.03

Age × Condition F (3,107) = 0.47 P = 0.70 η
2 = 0.01

CC Age F (3,107) = 0.25 P = 0.86 η
2 = 0.01

Age × Condition F (3,107) = 0.83 P = 0.48 η
2 = 0.02

CPL Age F (3,107) = 5.67 P < 0.001 η
2 = 0.14

Age × Condition F (3,107) = 0.22 P = 0.88 η
2 = 0.01

Elocal Age F (3,107) = 3.66 P < 0.05 η
2 = 0.09

Age × Condition F (3,107) = 1.52 P = 0.21 η
2 = 0.04

Eglobal Age F (3,107) = 8.38 P < 0.0001 η
2 = 0.19

Age × Condition F (3,107) = 0.80 P = 0.50 η
2 = 0.02

Sin, in-strength; Sout, out-strength; CC, clustering coefficient; CPL, characteristic path length; Elocal , local efficiency; Eglobal , global efficiency. Significant effects (P < 0.05) are in bold.

number of modules (r = 0.990, p < 0.0001), and therefore, this
result should be treated with caution, especially with regard to
random networks because of amorphous or random modularity
structure. As shown, IDN as well as OdC and Ce were highest
in random networks and lowest in regular networks, while they
were in between for the real networks. Finally, CDN was highest
in real networks, lowest in regular networks, and was in between
for random networks.

Lifespan differences in network complexity under the four
experimental conditions were tested using a two-way repeated

measures ANOVA with a between-subject factor Age and
a within-subject factor Condition. Results of these analyses
are presented in Table 4 and Figure 7B. It can be seen that
main effects of the factor Age was highly significant for all
complexity measures. These effects were also confirmed by
ANCOVA, excluding the confounding effects of wiring costs (see
Supplementary Table 6 for details). The energymeasuresGE and
LE were greatest in OA and lowest in YA. The product measures
Cr and Ce were also greatest in OA as compared to all other age
groups. OdC and CDN showed U-shaped relationship across the
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FIGURE 6 | Box plots of the temporal similarity of the six GTA measures across the lifespan. Temporal similarity was calculated by Pearson’s product correlation

between nodes among the 81 consecutive time windows, resulting in an 81 × 81 symmetric matrix. In this matrix, average strength has been determined as a global

temporal similarity index. Temporal similarity indices are presented for the six GTA measures across the lifespan (factor Age): In-Strength (Sin), Out-Strength (Sout ),

Clustering Coefficient (CC), Characteristic Path Length (CPL), Local Efficiency (Elocal ), and Global Efficiency (Eglobal ). Differences between age groups were examined

by Fisher’s LSD post-hoc test and are shown by lines’ color and thickness.

lifespan and were greatest in YC and lowest in YA. Contrary, PE
and IDN showed inverted U-shaped relationship and continuous
increase across the lifespan, respectively.

To assess the relationship between network complexity and
cognitive performance (PS), we correlated network complexity
measures with the composite scores of the PS (see Methods).
Results of these correlations are summarized in Table 1 and
Figure 7C. It can be seen that most of the complexity measures
(i.e., GE, LE, OdC, and CDN) correlated significant negatively
with PS scores; PE and IDN correlated significant positively, and
two product complexity measures (i.e., Ce and Cr) did not show
significant correlations.

Further, to investigate the influence of WFC and CFC on
network complexity, we correlated them with the complexity
measures. Correlation of WFC and CFC strengths with
complexity measures are summarized in Table 5 and
Supplementary Figure 4. All correlations were statistically
significant, whereby most of them were positive and only some
of them were negative: WFC strength correlated negatively
with GE, OdC, and CDN, while CFC strength correlated
negatively with PE and IDN. It should be noted that the
former three complexity measures (i.e., GE, OdC and CDN)
showed a U-shaped relationship across the lifespan, and the
last two measures (PE and IDN)—an inverted U-shaped and

linear-positive, respectively. Thus, lifespan-related changes
in network complexity seem to be predictable for the sign of
correlation in this case.

Dynamic Changes of Modular Organization
of the Networks Across the Lifespan
Modular organization of the network was captured above by the
PE, demonstrating an inverted U-shaped relationship across the
lifespan. We showed that this entropy or complexity measure
was dependent on the number of modules. Here, we investigated
modular organization of the networks and its dynamic changes or
temporal similarity of community structures, i.e., we are aiming
to show how stable or unstable the community structures are
across time. For these purposes, we used modularity analyses to
partition the HFNs at each time window, and then calculated
normalized mutual information (nMI) and variance information
(nVI) between consecutive community structures to each other.
For statistical analyses, we calculated the average in the given
similarity or variation matrices.

Modular organization of the HFNs is displayed in Figure 8A

for four exemplary networks or time windows. It can be seen
that the modularity or community structures are organized
according to the principle of frequency allocation and frequency
interaction, i.e., nodes or electrodes that share the same
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FIGURE 7 | Box plots of the network complexity measures for the real and control networks (regular and random) as well as for the lifespan-related changes. (A) Box

plots of the eight complexity measures for real, regular, and random networks. For this presentation, data were determined for AOT condition and averaged across all

(Continued)
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FIGURE 7 | subjects. (B) Box plots of the network complexity changes across the lifespan. Differences between age groups were examined by Fisher’s LSD post-hoc

test and are shown by lines’ color and thickness. (C) Correlation plots of Pearson’s product correlations between perceptual speed and network complexity

measures. Pearson’s product correlations showing significant relationships are presented (see also Table 5 for details). Age groups: YC, younger children; OC, older

children; YA, younger adults; OA, older adults. Conditions: REC, rest with eyes closed; AOT, attended oddball task. Complexity measures: GE, graph energy; LE,

Laplacian energy; Ce, efficiency complexity; Cr , graph index complexity; OdC, offdiagonal complexity; PE, partition entropy; CDN, correlation dimension of the

network; IDN, information dimension of the network. PS, perceptual speed scores.

TABLE 4 | ANOVA results for the network complexity and modular organization measures.

Measures Factors F-value P-value Partial eta squared

COMPLEXITY MEASURES

GE Age F (3,107) = 16.69 P < 0.0001 η
2 = 0.32

Age × Condition F (3,107) = 2.78 P < 0.05 η
2 = 0.07

LE Age F (3,107) = 7.76 P < 0.0001 η
2 = 0.18

Age × Condition F (3,107) = 2.07 P = 0.11 η
2 = 0.06

Ce Age F (3,107) = 13.67 P < 0.0001 η
2 = 0.28

Age × Condition F (3,107) = 1.13 P = 0.34 η
2 = 0.03

Cr Age F (3,107) = 7.28 P < 0.0001 η
2 = 0.17

Age × Condition F (3,107) = 1.57 P = 0.20 η
2 = 0.04

OdC Age F (3,107) = 8.83 P < 0.0001 η
2 = 0.20

Age × Condition F (3,107) = 0.63 P = 0.60 η
2 = 0.02

PE Age F (3,107) = 10.41 P < 0.0001 η
2 = 0.23

Age × Condition F (3,107) = 1.51 P = 0.22 η
2 = 0.04

CDN Age F (3,107) = 16.67 P < 0.0001 η
2 = 0.32

Age × Condition F (3,107) = 0.84 P = 0.47 η
2 = 0.02

IDN Age F (3,107) = 17.40 P < 0.0001 η
2 = 0.33

Age × Condition F (3,107) = 0.89 P = 0.45 η
2 = 0.02

MODULAR ORGANIZATION MEASURES

Q Age F (3,107) = 4.03 P < 0.01 η
2 = 0.10

Age × Condition F (3,107) = 1.12 P = 0.35 η
2 = 0.03

NoFM Age F (3,107) = 11.31 P < 0.0001 η
2 = 0.24

Age × Condition F (3,107) = 1.51 P = 0.22 η
2 = 0.04

nMI Age F (3,107) = 16.81 P < 0.0001 η
2 = 0.32

Age × Condition F (3,107) = 0.52 P = 0.67 η
2 = 0.01

nVI Age F (3,107) = 5.0 P < 0.005 η
2 = 0.12

Age × Condition F (3,107) = 0.82 P = 0.49 η
2 = 0.02

GE, graph energy; LE, Laplacian energy; Ce, efficiency complexity; Cr , graph index complexity; OdC, offdiagonal complexity; PE, partition entropy; CDN, correlation dimension of the

network; IDN, information dimension of the network; Q, modularity; NofM, number of modules; nMI= normalized mutual information; nVI= normalized variation of information. Significant

effects (P < 0.05) are in bold.

oscillation frequency or stay at a simple ratio (e.g., 1:2
or 1:4) mostly belong to the same community structure.
The partition of HFNs was non-random and slightly but
significantly worse in YC, as indicated by Q-value (see
Table 4 and Figure 8B for details). YC showed also in total
a lowest number of modules, which was highest in YA,
apparently through better separation of the frequencies. A two-
way repeated measures ANOVA for nMI and nVI measures
revealed significant main effect of the factor Age, which
was also confirmed by ANCOVA, excluding the confounding
effects of wiring costs (see Table 4 and Supplementary Table 6

for details). As shown in Figure 8C, nMI was highest and
nVI lowest in YA as compared with all other age groups,
indicating stronger similarity of community structures in YA
across time.

Further, to investigate the influence of WFC and CFC as
well as that of cognitive abilities of the subjects on modularity
structure, we correlated them with the number of modules,
nMI and nVI measures. Results of these correlation analyses
are summarized in Table 6 and Figure 8D. PS scores correlated
significant positively with the number of modules and with
the nMI but significant negatively with nVI. Interestingly,
WFC strength correlated significant positively with nMI,
and CFC strength correlated significant negatively with nVI.
Thus, WFC strength determines the similarity of community
structures, while CFC strength causes the (reduced) variation
of community structures. Similarly, WFC strength correlated
significant positively and CFC strength significant negatively
with the NofM. Interestingly, both nMI and nVI correlated
positively with NofM, i.e., high number of modules is associated
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TABLE 5 | Correlation between WFC and CFC strengths and complexity

measures.

Measure REC AOT

R P R P

WFC

GE −0.307 0.001 −0.268 0.0044

LE 0.578 0.0001 0.657 0.0001

Ce 0.736 0.0001 0.789 0.0001

Cr 0.810 0.0001 0.855 0.0001

OdC −0.744 0.0001 −0.798 0.0001

PE 0.701 0.0001 0.754 0.0001

CDN −0.616 0.0001 −0.594 0.0001

IDN 0.778 0.0001 0.768 0.0001

CFC

GE 0.727 0.0001 0.706 0.0001

LE 0.768 0.0001 0.667 0.0001

Ce 0.568 0.0001 0.463 0.0001

Cr 0.492 0.0001 0.391 0.0001

OdC 0.680 0.0001 0.639 0.0001

PE −0.579 0.0001 −0.543 0.0001

CDN 0.398 0.0001 0.370 0.0001

IDN −0.343 0.0002 −0.269 0.0042

GE, graph energy; LE, Laplacian energy; Ce, efficiency complexity; Cr , graph index

complexity; OdC, offdiagonal complexity; PE, partition entropy; CDN, correlation

dimension of the network; IDN, information dimension of the network.

with high similarity and at the same time with high variability
of modular structure of the networks (see Table 6 and Figure 8D

for details).

DISCUSSION

We examined network structure and network dynamics during
rest and auditory oddball performance across the lifespan. For
this examination, we constructed hyper-frequency networks
based on WFC and CFC, and explored structural and dynamic
changes of HFNs. The main findings are that: (a) WFC increased
linearly across the lifespan, whereas CFC decreased from YC
to YA and increased again in OA; (b) the magnitude of GTA
measures increased rather linearly with age (with exception
of CPL, which correspondingly was decreasing), while SD
demonstrates inverse U-shaped relationship with greatest SD in
YA, at least when calculated across time; (c) temporal and to
some extend structural or nodal similarity of network topology
(mostly with respect to negative correlation values) seems to
coincide with SD changes, i.e., stronger variability (SD) is
related to higher similarity between consecutive time windows
or nodes; (d) complexity measures showed different lifespan-
related patterns including U-shaped relationship for GE, LE,
OdC, and CDN, inverted U-shaped relationship for PE, and
linear-like relationship forCe,Cr , and IDNmeasures; (e)modular
organization of the networks is characterized by higher number
of modules and stronger similarity of community structures
across time in YA; (f) number of modules as well as PS scores

correlated positively with WFC strength and negatively with
CFC strength.

The fact that WFC increased continuously with age was
not unexpected (cf. Müller et al., 2009), while the U-shaped
relationship of the CFC across the lifespan with the lowest
CFC in YA was somewhat surprising. However, when taking
into account the suggestion mentioned in the introduction
that CFC might be seen as one of the mechanisms underlying
neural communication between different cell assemblies, the
decrease of CFC from YC to YA and its subsequent increase
in OA become clear. The negative relationship between CFC
strength and the number of modules (and also the PS scores)
just strengthen our suggestion. It seems that a good separation
between cell assemblies can be guaranteed when the connectivity
between cell assemblies, which is mostly provided by CFC,
is reduced. In OA, both WFC and CFC increase, and they
have lower number of modules than YA. Apparently, increase
in CFC in OA (and also in children) leads to confusion of
separated cell assemblies to bigger ones indicated also by a
smaller number of modules as compared with YA. Moreover,
this confusion of cell assemblies seems to reduce the cognitive
ability in perceptual speed. This observation is in line with the so-
called differentiation hypothesis during development (Garrett,
1946) and dedifferentiation hypothesis of cognitive aging (Baltes
et al., 1980; Baltes and Lindenberger, 1997; Hülür et al., 2015).
Interestingly, CC increased and CPL was going shorter with
age, whereby both Elocal and Eglobal correspondingly increased.
Notably, CPL and also Eglobal did not differ in children and
YA. YA and OA did not differ in CC and Elocal but showed
strong (significant) differences in CPL and Eglobal. On the one
hand, high CC and shorter CPL (as well as high Elocal and
Eglobal) are signs of strong segregation and integration of neural
processes and point out that the networks under investigation
are small-world networks (Watts and Strogatz, 1998; Achard
and Bullmore, 2007). On the other hand, stronger integration
of neuronal elements or processes (shorter CPL and higher
Eglobal) in OA as compared to YA is apparently related to
higher CFC and presumably indicates loss of independence of
separate cell assemblies, although high CC and Elocal indicate
preservation of high degree in local segregation processes. It
seems that the organization of neural networks in OA moves
toward a more consolidated structure (shorter CPL and higher
Eglobal) with higher local (CC and Elocal) but not global (lower
number of modules) separability (cf. Baltes and Lindenberger,
1997; Ghisletta and Lindenberger, 2003), which are accompanied
by increased WFC and CFC in OA as compared with YA and
children. The positive correlation between number of modules
and PS indicates that this reduction of number of modules
is not functional, i.e., do not promote cognitive or perceptual
speed performance.

Further, we found higher temporal (tSD) and nodal (nSD)
variability in adults as compared with children, and especially
in YA and for temporal variability. As mentioned, transient
temporal fluctuations in brain signal or brain signal variability
are mostly related to the high cognitive performance and mental
activity, and provide important information about network
dynamics and brain states (Deco et al., 2011; Garrett et al.,
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FIGURE 8 | Modular organization of the HFNs and its changes across the lifespan. (A) Modular organization of the HFNs displayed for four exemplary networks or

time windows. Module affiliation is indicated by color. Note that community structures are organized according to the principle of frequency allocation and frequency

(Continued)
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FIGURE 8 | interaction, i.e., nodes or electrodes that share the same oscillation frequency or stay at a simple ratio (e.g., 1:2 or 1:4) mostly belong to the same

community. (B) Changes of Q-values and number of modules (NofM) across the lifespan. (C) Temporal changes of similarity and variation of modular organization

measured by nMI and nVI across the lifespan. (D) Correlation plots for the correlations between number of modules (NofM) and PS scores as well as correlations of

WFC and CFC strengths with nMI and nVI indices.

TABLE 6 | Correlation between WFC and CFC strengths, indices of modular

organization, and perceptual speed.

Measure REC AOT

R P R P

NofM × PS 0.418 0.0001 0.331 0.0004

NofM × WFC_S 0.667 0.0001 0.743 0.0001

NofM × CFC_S −0.636 0.0001 −0.575 0.0001

NofM × nMI 0.296 0.0015 0.177 0.062

NofM × nVI 0.245 0.0094 0.367 0.0001

nMI × PS 0.374 0.0001 0.443 0.0001

nVI × PS −0.179 0.060 −0.250 0.0079

nMI × WFC_S 0.410 0.0001 280 0.0028

nMI × CFC_S −0.032 0.73 0.052 0.59

nVI × WFC_S −0.018 0.85 0.142 0.14

nVI × CFC_S −0.278 0.0030 −0.344 0.0001

NofM, number of modules; PS, perceptual speed; WFC_S, within-frequency coupling

strength; CFC_S, cross-frequency coupling strength; nMI, normalized mutual information;

nVI = normalized variation of information.

2011, 2015; McIntosh et al., 2014; Sleimen-Malkoun et al.,
2015). This relationship is strengthened by positive correlation
between network variability and PS. In the present study,
we calculated variability of the network topology instead of
signal variability, which seems to be an important marker of
development and aging. In contrast to brain signal variability,
NTD variability represent a high order of varying brain
processes, including not only variability in a signal but rather
variability of networks or network topologies capturing all
the complex interactions between different signals or network
components. Since we used HFNs in the present study, this
variability (primarily) encompasses interactions within and
between different frequencies. Calculation of structural or
nodal variability, which also correlated positively with PS
scores, although to a lesser extent than temporal variability,
extends our understanding about the nature of variable states
of the brain. Presumably, this variability measure, which
showed predominantly significant differences between adults
and children, and especially between YC and OC, seems to
be an effective indicator for differentiation processes in the
brain. Furthermore, it should be noted that nodal variability
of Elocal did not show significant differences between YC and
OC but showed strong significant differences between YA
and OA (and also children) that might be also a sign of
dedifferentiation. Elocal is a measure of the segregation of a
network and indicates efficiency of information transfer in the
immediate neighborhood of a node (Achard and Bullmore,
2007), therefore, decreased nodal variability of Elocal apparently
indicates a loss in plasticity of local processes, although the local

information transfer in OA remains strong (high magnitude
of Elocal).

Interestingly, high NTD variability in YA was also
accompanied by high NTD similarity, at least by high
temporal NTD similarity, with exception of CC and Elocal
topology measures, which are responsible for local processes.
High temporal NTD similarity indicates that although the
topology of each node in the network strongly varies across
time, the network structure itself with regards to these
measures (i.e., Sin, Sout , SPL, and Eglobal) remains more or
less stable allowing transportation of relevant information
from one variable state to the other variable state and provides
HFN self-similarity.

As indicated above, network complexity measures, which
provide further important information about the geometry or
structure of complex networks beyond purely topological aspects,
showed different lifespan-related patterns including U-shaped,
inverted U-shaped, and linear-like relationships. Graph energy
measures (GE and LE) indicated U-shaped relationship with
lowest network energy in YA and highest energy in OA. Graph-
energy concept has a chemical motivation and is related to the
total energy of π-electron orbits (Gutman and Zhou, 2006; Zhou
et al., 2007; Kim andWilhelm, 2008). As shown in our simulation
results when comparing real and control networks,GE is smallest
in real networks and highest in random networks, whereas LE
is relatively similar in real and control networks. Since energy
of a graph is represented on the sum of absolute eigenvalues,
it can provide information about capacity or connectedness of
the network. Children and especially OA seem to have high
capacity or connectedness of the networks but energy (GE
and LE) correlated negatively with cognitive performance (PS
scores). Presumably, these hyperenergetic network states reduce
the cognitive control or produce noise in the system with more
stochastic than deterministic components (cf. McIntosh et al.,
2010; Müller and Lindenberger, 2012).

The product complexity measures (Ce and Cr) increased
monotonously with age, although Ce does not differ in YA and
children. Comparison of real networks with control networks
showed that Ce was lowest in regular and highest in random
networks with real networks lying in between, whereby Cr

was highest in real networks and lowest in random networks.
Interestingly, both measures, which were highest in OA, did
not correlate with PS scores. As noted in Kim and Wilhelm
(2008), Ce can be maximal for graphs with a medium number
of links, but nevertheless quite high efficiency. OA showed high
level of local and global efficiency and correspondingly high
efficiency complexity. The graph index complexity Cr is based
on the calculation of the largest eigenvalue and is apparently
related to the high connectedness and interlacement. So, both
product complexity measures point at strong connectedness but
also at high efficiency in OA. Nevertheless, it remains to be
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seen whether this higher complexity calculated by these two
measures reflects the optimal structure and functionality of
the networks.

The two entropy measures (i.e., OdC and PE) quantifying
the diversity of different topological features showed U-shaped
and inverted U-shaped relationships, respectively. While OdC
correlated significant negatively with PS scores, PE correlated
significant positively with PS scores. When compared with
control networks, OdC was lowest in regular networks and
strongest in random networks, while PE was highest in real
networks and lowest in random networks. It should be noted
here that PE was strongly related to the number of modules
derived by the network partition and can be biased by the
number of modules. As noted in our previous work (Müller
et al., 2016), HFNs are small-world networks characterized by a
topology with a slight tendency to random characteristics and
are organized in such a way that if there is WFC only, such
a network will be akin to a regular network, and increasing
CFC will increase its randomness. A small-world network
would represent a balance between WFC and CFC. In the
case of OdC, the entropy is calculated across off-diagonals,
whereby first of them include mostly WFC and further include
CFC only. These peculiarities in the calculation procedure are
presumably reflected in the correlations between OdC on one
side, and WFC and CFC strengths on the other. The fact that
OdC correlated significant negatively with WFC and significant
positively with CFC indicates that high WFC supports regularity
and high CFC is responsible for randomness of the network. This
association ofOdC withWFC and CFC apparently designates the
lifespan-related differences, i.e., the U-shaped relationship across
the lifespan.

Like the OdC and the energy measures, the dimensionality
measure CDN revealed a U-shaped lifespan-related relationship
and correlated significant negatively with PS scores, while IDN
increased practically linearly with age, and correlated significant
positively with PS scores.When comparedwith control networks,
both CDN and IDN were lowest in regular networks but
CDN was strongest in real networks and IDN was strongest
in random networks. Moreover, CDN correlated significant
negatively with WFC strength and significant positively with
CFC strength, while IDN showed inverse relationship. This
is apparently the reason that YA, showing relatively high
WFC but lowest CFC strengths, are characterized by low
CDN and high IDN. The significant correlation with PS
scores (negative in the case of the CDN and positive in
the case of the IDN) underlines the functional diversity of
these network complexity or dimensionality measures with
regard to cognitive performance. In general, the relations
or differences between the WFC and CFC strengths seem
to be dispositive for the network topology and network
architecture, as well as for its complexity and functionality.
Further studies are necessary for better understanding of natural
and systemic diversity of HFNs and complex interplay of network
components and underlying neural processes. Furthermore,
because of the fact that we used an absolute threshold for
network construction, which can constitute a bias for different

groups, a proportional threshold could be used in further
analyses in order to increase the robustness of results. To
control for the bias mentioned before and to exclude the
confounding effects of wiring costs, we performed in this study
an ANCOVA with costs as covariates. It has been shown
that the confounding effects of costs on lifespan differences
was inconsiderable. Nevertheless, the use of proportional
thresholds or other threshold selection strategies could provide
further important information about NTD with regard to
different ages.

In sum, the present work showed that HFNs can be
characterized by a battery of metrics, designed to systematically
quantify the cross-spectral relationships constructed by WFC
and CFC. The HFNs possess small-world network topology and
lead to different lifespan-related patterns with regard to network
variability and network complexity dynamics. This dynamics
is characterized by mostly inverse U-shaped temporal network
variability and similarity across the lifespan, and different
lifespan-related patterns in network complexity, which depend
on the WFC-CFC balance in the network. Importantly, all these
dynamic changes are mostly related to cognitive performance
of the subjects and represent economically plausible features
(i.e., high local and global efficiency of parallel information
processing on the basis of low network connection costs) at
practically all frequencies investigated in the study, in line
with other biological and social systems. Future research would
clarify how different patterns in network topology, variability
and complexity dynamics contribute to functional activity and
reactivity of brain processes and stimulate or boost development
and aging. Furthermore, fine-tuned balance between WFC and
CFC in NTD and network complexity underlying behavior can
be an important factor in various forms of psychopathology. The
clinical and diagnostic utility of network topology and network
complexity measures in these and related contexts remains to
be explored.
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