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Direct observation of temperature dependence of individual bands of semiconductors for a wide
temperature region is not straightforward, in particular. However, this fundamental property is a
prerequisite in understanding the electron-phonon coupling of semiconductors. Here we apply ab
initio many body perturbation theory to the electron-phonon coupling on hexagonal silicon carbide
(SiC) crystals and determine the temperature dependence of the bands. We find a significant
electron-phonon renormalization of the band gap at 0 K. Both the conduction and valence bands
shift at elevated temperatures exhibiting a different behavior. We compare our theoretical results
with the observed thermal evolution of SiC band edges, and discuss our findings in the light of high
temperature SiC electronics and defect qubits operation.

I. INTRODUCTION

Electron-phonon interaction impacts a large variety of
fundamental materials properties1, from the critical tem-
perature of superconductors to the zero-point renormal-
ization and the temperature dependence of the electronic
energy bands, from the electronic band gaps2–6 to the
thermal evolution of the optical spectra and excitonic life-
times7–9. In addition the electron-phonon coupling con-
tributes to the optical absorption and emission in indirect
gap semiconductors10–12, determines the electronic car-
rier mobility of semiconductors13, the carrier relaxation
rates14, the distortion of band structures and phonon dis-
persion giving rise to kinks and Kohn anomalies in pho-
toemission15.

The thermal evolution of the band structure and band
gap arises from the thermal expansion effect and from
the coupling of electrons with phonons leading to a renor-
malization of the electronic states. The latter effect is in
most of the cases the dominant one, being larger than
the thermal expansion2. The strength of renormaliza-
tion depends on temperature so that valence and con-
duction bands may be shifted differently leading usually
to a shrinking of the gap2, although an anomalous be-
haviour (i.e. gap increases with temperature) is found in
other cases16.

Direct observation of the temperature evolution of in-
dividual bands over a wide region of temperatures is
not straightforward. Optical techniques are capable of
measuring band gaps, and not the absolute values of
the valence band maximum (VBM) and the conduction
band minimum (CBM) separately. The interpretation
of results from optical techniques is then weakly conclu-
sive. In addition, the indirect band gap nature of some
materials prohibits the direct optical transition between
VBM and CBM, which turns to be allowed only when
phonons assist the optical excitation. Recent attempts
used Si 2p core level as a reference to extract the CBM
and VBM energy position of Si and hexagonal 6H sil-

icon carbide (SiC) crystals [see Fig. 1(a)] from the on-
set of soft X-ray absorption spectroscopy (XAS) and soft
non-resonant X-ray emission spectroscopy (XES), respec-
tively17,18. This method assumes temperature indepen-
dent core exciton binding energy19, which results in a sys-
tematically smaller derived band gap than the observed
optical band gap, and it may suffer from the accurate ob-
servation of the onset energies at elevated temperatures
caused by temperature broadening effects. We stress that
none of these methods enables the observation of individ-
ual bands other than band edges but observation of the
temperature dependence of those bands can be an impor-
tant issue at high temperatures. It is utterly important
to apply ab initio many body perturbation theory that
can provide valuable insights on the electron-phonon cou-
pling effect in semiconductors by directly describing the
temperature dependence of individual bands. This fun-
damental property has been recently studied typically,
only for the band edges and up to room temperature4,5,7.
Here we are interested to extend these investigations to
higher temperatures for hexagonal 4H and 6H SiC crys-
tals [see Fig. 1(a)] and in particular we aim to get the
temperature dependence of the first and second conduc-
tion band in order to establish the effect of the latter on
the conductivity. The choice of these materials was moti-
vated by three points: (i) experimental data are available
for the temperature dependence of 4H SiC gap20 as well
as 4H SiC based semiconductor devices have been suc-
cessfully tested at high temperatures (around 800 K) for
Venus mission21, where deep insight into the electron-
phonon interaction of electronic bands has an uttermost
importance, (ii) since both experimental data for temper-
ature dependence gap22 and band edges18 of 6H SiC are
available, this compound is eligible for validation of the
theoretical methods which rely on the electron-phonon
renormalization of electronic states, and (iii) SiC is a
semiconductor platform for hosting hybrid opto-electro-
mechanical defect quantum bits23–33. These defect quan-
tum bits require very accurate electrical and optical con-
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FIG. 1. (a) Primitive cells of 4H and 6H SiC with k (k1, k2)
and h Si-C bilayers, where k and h refers to quasicubic and
hexagonal sites. (b) Brillouin-zone of hexagonal SiC poly-
types. (c) Sketch of band gap of hexagonal SiC crystals. In
4H SiC, the first (M1) and second (M2) conduction bands are
close in energy37. In 6H SiC, the lowest conduction band is
very flat along the M − L line38,39, and it should be close to
the M point [c].

trol which depend on the ionization thresholds, i.e., the
position of band edges at the operation temperature34–36.

II. COMPUTATIONAL METHODS

We perform geometry optimization, electronic struc-
ture and phonons calculation, followed by the calcula-
tion of electron-phonon matrix elements, and renormal-
ization of the electronic energies as a function of temper-
ature [see Supplemental Material (SM) Ref. 40 for fur-
ther details]. Density functional theory (DFT) and den-
sity functional perturbation theory (DFPT) calculations
are carried out using Quantum ESPRESSO 6.1.041 suite.
We employ norm-conserving pseudopotentials and the
exchange-correlation functional is described by the local
density approximation (LDA) with the Perdew-Zunger
parametrization42. We perform in a first step a full opti-
mization (starting from experimental lattice parameters
and atomic positions along ~c axis38,43) using 90 Ry as
kinetic energy cutoff, 18 × 18 × 6 and 18 × 18 × 4 k-
meshes for 4H and 6H SiC crystals, respectively. The
phonon frequencies are obtained with the same kinetic
energy cutoff on a 10× 10× 3 and 10× 10× 2 q-meshes,
respectively, and then interpolated along the q-path con-
necting Γ−K −M − Γ high symmetry points of hexag-
onal systems Brillouin zone [see Fig. 1 (b) and SM for
symmetry analysis of phonon modes, phonon dispersion
curves and comparison between theoretical and experi-
mental phonon frequencies at Γ point for 4H and 6H
SiC44–49].

The same k-point sampling of the Brillouin-zone and

cutoff are used to calculate the derivatives of the self-
consistent Kohn-Sham potential with respect to the
atomic positions needed to evaluate the electron-phonon
coupling matrix elements. A denser q-grid (12 × 12 × 3
and 12×12×3 q-meshes for 4H and 6H SiC, respectively)
results in a difference of less than 10%, thus we estimate
it as an upper bound of our accuracy. Unoccupied bands
as many as five times the number of the occupied ones
are taken into account for 4H SiC. On the other hand for
6H we are bound to use 96 unoccupied bands (four times
the number of occupied ones) because of technicalities in
the applied algorithms and computational capacity. We
note that this affects the convergence of 6H SiC results as
discussed in SM. We will present the extrapolated con-
vergent values for 6H SiC that are estimated from the
convergence study of 4H SiC results.

III. THEORETICAL BACKGROUND

The key issue of this study is the calculation of the
temperature dependent correction to the electronic state
| nk〉, with energy εnk due to the electron-phonon in-
teraction. The electron-phonon interaction is treated
perturbatively50,51 within Heine Allen Cardona (HAC)
approach52–54 as implemented in Yambo55 code, by con-
sidering the first- and second-order Taylor expansion of
the self-consistent potential Vscf(r)56 in the nuclear dis-
placements uIs with respect to the equilibrium positions
RIs = RI + τs for the atom s inside the cell I (the cell is
located at position RI) at the position τs. Standard per-
turbation theory is then applied. The first order Taylor
expansion of Vscf(r) is treated within the second–order
perturbation theory, while the second order Taylor ex-
pansion is treated within the first-order perturbation the-
ory. The corresponding temperature dependent energy
shift of the electronic state is then composed of Fan and
Debye-Waller (DW) contributions.

The Fan term is given by

∆εFannk (T ) =
∑

qλ

1

N

∑

n′

| gqλn′nk |
2

εnk − εn′k+q
× (2B(ωqλ) + 1),

(1)

where ωqλ are the phonon frequencies calculated ab-
initio using DFPT, while B(ωqλ) is the Bose function
distribution, εnk are the DFT bare electronic energies, N

is the number of q points, and | gqλn′nk |
2

are the electron-
phonon matrix elements for the scattering between the
electronic states |nk〉 and |n′k + q〉 via the phonon qλ,
defined as

gqλn′nk =
∑

sα

(2Msωqλ)−1/2eiq·τs×

× 〈n′k + q|∂Vscf(r)

∂Rsα
|nk〉ξα(qλ|s), (2)
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TABLE I. Energies of the lowest conduction band (first line) and the highest valence band (second line) at high symmetry
points in the hexagonal BZ with different levels of theory compared to the experimental data. The energy bands are referred
to the valence band maximum at Γ point, which is set to zero. For M point we give the first and second lowest conduction
band positions. In addition, the indirect band gap (Eind

g ) is reported together with the optical gaps. The quasiparticle-level
correction for the direct gap at Γ is also given in the last column.

Polytype Γ M DFT-LDA Eind
g GW Eind

g Optical gapa GW corr. (dir)

(eV) (eV) (eV) this work (eV) other worksb (eV) (eV) (eV)

4H 5.18 2.25 2.34 2.25 3.17 3.35 3.27 0.97

0.00 -1.14

6H 5.27 2.04 2.21 2.04 2.96 3.24 3.02 0.98

0.00 -1.11

a Ref. 22 and 57
b Ref. 58

where Ms is the atomic mass, τs is the position of the
atomic displacement in the unit cell and ξα(qλ) are
the Cartesian components α of the phonon polariza-
tion vectors corresponding to the phonon momentum
q and branch λ. We have also used the short form
Rsα = RIsα|I=0.

The DW contribution reads as

∆εDWnk (T ) = −1

2

∑

qλ

1

N

∑

n′

Λqλ
nn′k

εnk − εn′k
× (2B(ωqλ) + 1),

(3)

where Λqλ
nn′k is an expression written in terms of ∇Vscf

and obtained by imposing the translation invariance of
∆εnk when all atoms in the crystal are displaced of the
same amount from their equilibrium positions52. It is
worth noticing that from Eqs. (1) and (3) when the tem-
perature (T ) vanishes the energy correction does not van-
ish due to the (2B(ωqλ)+1) factor yielding the zero-point
motion renormalization (ZPMR).

IV. RESULTS AND DISCUSSION

Since the thermal expansion minutely increases the lat-
tice constants of hexagonal SiC59, the thermal evolution
of the band structure and of the electronic gap will be
caused mainly by the electron-phonon interaction. We
assess first the HAC approach to describe the thermal
evolution of 4H and 6H SiC indirect band gaps [see
Fig. 1(c) for a sketch of indirect band gaps in both sam-
ples]. At T = 0K, we found 0.17 eV and 0.14 eV for
4H and 6H SiC, respectively as of the indirect electronic
band gaps. These values are about 5% of the indirect
electronic band gaps, revealing an intermediate ZPMR
value in between bulk silicon and diamond3,60. The cal-
culated temperature dependence of the indirect band gap
can be compared to that of the observed optical gap of
SiC crystals22,61. In Fig. 2(a) and 2(b) the calculated
temperature-dependent indirect band gaps are aligned to

the experimental data at T = 0K after having applied the
electron quasiparticle (QP) correction as a simple scissor
on the DFT-LDA band gaps. The temperature evolution
agrees very well with the experimental data as derived
from the optical gaps for a wide range of temperatures,
which allows us to predict a shrinking of the electronic
gap of about 0.35 eV (4H SiC) and 0.30 eV (6H SiC) at
T = 800K. The shrinkings of the electronic gap of 6H
SiC have been estimated as we will explain later and in
SM in details.

The above briefly mentioned opening of the indirect
gap due to QP effects has been calculated adopting the
Godby-Needs plasmon-pole model62–65 obtaining 0.92 eV
QP-level correction for both 4H and 6H SiC. We used
18× 18× 6 and 16× 16× 3 k-point sets for 4H and 6H
SiC, respectively, with 200 bands in the numerically con-
vergent GW63,64 calculations. Our correction results to
be lower with respect to those calculated by Ummels et
al.58 [see Table I]. This is due to the different plasmon
pole model used [see Ref.66–68 and SM for a further dis-
cussion on previous QP calculations on these systems].
Our LDA energies for the highest valence band and the
lowest conduction bands at Γ and M points, in agree-
ment with literature38,69,70, are listed in Table I together
with previous GW gaps58 and experimental data20. The
experimental data comes from optical measurements in
which the exciton binding energies should be accounted
for comparison to the calculated electronic band gaps.
These binding energies are experimentally found to be
0.020 eV and 0.078 eV in 4H and 6H SiC71,72, respec-
tively, i.e., which are smaller than the expected accuracy
of the GW calculations.

Next, we study the temperature dependence of the in-
dividual bands. In particular, we focus on the valence
band maximum (VBM) and conduction band minimum
(CBM) [see Figs. 2(c) and (d)], whose difference provides
the indirect band gap plotted in Figs. 2(a) and (b), once
it is opportunely rescaled in order to match the experi-
mental data at T=0 K. Here we applied the contribution
of each band to the GW QP correction, -0.62 eV for the
VBM and +0.30 eV for the CBM for both systems. Since



4

0 200 400 600 800
T (K)

3.05

3.1

3.15

3.2

3.25

3.3

exp.

Theory

0 200 400 600 800 1000
T (K)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

exp (PL)

Theory (extrapolation)

exp (RIXS)In
d
ir

e
ct

 E
n
e
rg

y
 G

a
p
 (

e
V

)

4HSiC

(a) (b) 

6HSiC

0 200 400 600 800

2.35
2.4

2.45
2.5

2.55

0 200 400 600 800
T (K)

0.65

0.60

0.55

0.50

0.45

(c)

ε v
k
  
/ 

 ε
ck

 (
e
V

)

VBM

CBM
0 200 400 600 800 1000

2.15
2.2

2.25
2.3

2.35

CBMXAS

0 200 400 600 800 1000
T (K)

0.65
0.60
0.55
0.50
0.45
0.40

Theory (extrapolation)
VBMXES

(d) 

ε v
k
  
/ 

 ε
ck

 (
e
V

)

VBM

CBM

FIG. 2. Calculated thermal evolution of indirect band gaps in the temperature range 0−800 K for 4H SiC (a) and 0−1000 K
for 6H SiC (b). The calculated curves are aligned to the experimental data at T = 0 K after having applied the GW correction
to the indirect gap. For 6H an extrapolation at 150 bands (red squares: estimated convergent data) is given for comparison.
The experimental data (green crosses in (a) and (b)) of the optical gaps are taken from Refs. 22 and 61. The others (violet dots)
have been extracted from RIXS spectra (Ref. 18), with correction of the core-hole exciton binding energy included. Thermal
evolution of calculated VBM and CBM of (c) 4H SiC and (d) 6H SiC, where the latter is compared to the XAS and XES
measurements (Ref. 18) rescaled of 99.5 eV and 98.65 eV, respectively, in order to match the temperature evolution of CBM
and VBM. Notice that on top of the electron-phonon correction the quasi-particle correction has been also added.

VBM and CBM do not occur at the same point of the
BZ, they have different symmetries and they interact dif-
ferently with phonons. For 4H and 6H SiC, in fact, we
predict an asymmetry in the band gap closing, where the
contribution from the VBM is larger, respectively ∼63%
and ∼58% of the total band gap shrinking. Here, we
stress that the latter result has been estimated. We used
the converged data set for 4H SiC [see Fig. S3 of SM]
to extrapolate convergent data for 6H SiC because an
explicit convergent calculation is computationally pro-
hibitive as explained in SM. In Fig. 2(d) we report the
temperature dependent XAS and XES spectra which de-
pict respectively the CBM and VBM behaviour in 6H

SiC18. Both XAS and XES experimental data have been
shifted to match the temperature evolution of CBM and
VBM. We find a very good agreement with XAS derived
data. The XES one also agrees with the estimated con-
verged data set. Our theory well supports the observed
temperature evolution of the indirect band gap of 4H
SiC.

The nature of the electron-phonon coupling induced
renormalization in 4H and 6H SiC can be analyzed in
the light of plotted Eliashberg function (Fig. 3), where
the separate contribution of Fan and DW terms is high-
lighted. For both 4H and 6H SiC the VBM states are
mostly coupled to the optical phonons (LO and TO)
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FIG. 3. Generalized electron-phonon Eliashberg function for 4H and 6H SiC (a) valence band maximum (Γ-point), (b)
first conduction band minimum (M1-point) and (c) second conduction band minimum (M2-point). Fan and Debye-Waller
(DW) contributions are shown separately with dashed and solid lines, respectively. The blue shaded areas represent the total
Eliashberg function.

starting from 700 cm−1. In this phonon frequency en-
ergy range both Fan and DW have a significant weight
in the energy renormalization; while they almost cancel
each other in the acoustic phonon frequency range. On
the other hand, the CBM states (here called M1) and
the second lowest conduction band (here called M2) also
couple to acoustic phonons already from 220 cm−1. Most
of the contribution is given by the Fan term, which dom-
inates all over the whole phonon frequency range. The
difference between the CBM and VBM Eliashberg func-
tions, being negative, is strictly related to the tempera-
ture dependence of the fundamental band gap shown in
Fig. 2. The square modulus of VBM wavefunction shows
that the charge density is mainly localized on the Si-C
bond of the hexagonal Si-C layer (off-axis Si-C bonds).
The coupling with planar optic modes, as highlighted by
the Eliashberg functions, is then justified, as these vi-
brations change the length of the interatomic bonds in
which the charge density associated with the VBM re-
sides60. The CBM states are localized in the interstitial
places of 4H and 6H SiC lattice73, in contrast to the bond
localized charge density of the VBM. The coupling with
optical modes slightly looses weight and it is transferred
to acoustic modes.

We observe now that the calculated lowest energy con-
duction bands of 4H SiC labeled as M1 and M2 are
quite close in energy [see Tab. I]. According to a recent
measurement, the energy separation of the two lowest
conduction bands at M point of the Brillouin-zone is
144±2 meV at 2 K37. If these two bands crossed at el-

evated temperatures then this could seriously affect the
n-type conductivity of the SiC based electronic devices.
We find that the energy separation between M1 and M2

only reduces by 5 meV (< 5%) going from 0 K to 800 K
temperatures [see Fig. S4 in SM] because both M1 and
M2 bands shift downwards with increasing temperatures.
We note that similar properties are found in 6H SiC [see
Fig. S4 in SM]. The calculated effective masses of the M1

and M2 bands [see Table SII in SM and Ref.74] imply that
the conductivity of the M2 band is smaller than that of
the M1 band except in the K −M direction. However,
the overall conductivity75,76 still increases [see Fig. S5
in SM] because of a larger number of typical nitrogen
donors ionization at k and h sites at 120 and 60 meV77,
respectively, with increasing temperatures. This paves
the way for space agencies to employ 4H SiC based inte-
grated circuits to probe the surface of Venus, where the
temperature is ≈730 K21.

Our fundamental study has implications on the quan-
tum bits hosted by 4H SiC such as neutral divacan-
cies24,25. Divacancy qubits are initialized and readout by
optically detected magnetic resonance (ODMR)25, where
illumination at about 1.17 eV used in this process may
lead to a dark state, i.e., a permanent loss of qubits34–36.
The qubit state can be restored by applying ∼1.3 eV op-
tical excitation34–36, where the nature of the dark state
was debated in the literature34,35,78. According to one of
the most recent studies36, the dark state can be identified
as the negative charge state of divacancies where optical
excitation at ∼1.25 eV is the threshold of photoionization
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of the electron from the in-gap defect level to the conduc-
tion band edge at cryogenic temperatures. The coherent
control of defect spins in 4H SiC can be achieved even at
high temperatures up to 600 K79 paving the way for SiC-
based broad-temperature-range quantum sensing such as
magnetic and temperature sensing. As the typical excita-
tion energy of the qubit and the threshold for photoion-
ization of the dark state are close in energy, the temper-
ature dependent band edge and photoionization energies
can seriously affect the stability of the charge state of
divacancies, i.e., the operation of divacancy qubits. We
find that the CBM of 4H SiC shifts down by 0.1 eV going
from cryogenic temperatures up to 600 K. This implies
that the threshold for photoionization reduces ∼0.1 eV.
We conclude that high temperature operation of 4H SiC
divacancy qubits would be stable against photoioniza-
tion.

V. SUMMARY & CONCLUSION

In this study, we applied density functional theory
on the electronic structure and phonons in 4H and 6H
SiC, and determine the electron-phonon coupling within
Heine-Allen-Cardona (HAC) approach52–54. We find a
sizable temperature dependent renormalization energy
on the electronic structure for both crystals. As a con-
sequence, both valence and conduction band edges shift
with temperature thus affecting the operation of defect
qubits at elevated temperatures. We predict that the op-

eration of divacancy qubits in 4H SiC24,25 is stabilized at
elevated temperatures against bleaching caused by pho-
toionization. Furthermore, our ab initio results indicate
that the two lowest conduction bands do not cross at el-
evated temperature and the conductivity of doped 4H
SiC is not much affected, thus SiC electronics conforms
to high temperature operation.

We conclude that SiC exhibits favorable properties for
hosting electronic devices at extreme high temperatures
operation which is important for next generation sensors
and electronics in space missions. Our study has an im-
pact on quantum technology applications too, and serves
as a template for similar studies in other semiconductors.
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W. Wurth, and A. Föhlisch, New Journal of Physics 12,
043011 (2010).

18 P. S. Miedema, M. Beye, R. Könnecke, G. Schiwietz, and
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Phys. Rev. B 90, 214304 (2014).
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DESCRIPTION OF THE HEXAGONAL SILICON CARBIDE CRYSTALS

Silicon carbide (SiC) has over 250 polytypes which share the same hexogonal lattice in the basal plane and different
stacking sequences of Si-C bilayers perpendicular to the basal plane. The most important polytypes are the so-
called 4H and 6H SiC as shown in Fig. S1(a) and Fig.1(a) in the main text. They consist of 4 and 6 Si-C double
layers having a close-packed hexagonal arrangement. There are three types of hexagonal close packing (A, B and
C) in arranging the Si-C double atomic layers. In 4H and 6H the stacking sequences are ABCB|ABCB| . . . and
ABCACB|ABCACB| . . . , respectively. Each atom (Si or C) has a local quasicubic (k) or hexagonal (h) environment
with respect to the immediate neighbors. The experimental lattice constants are a = 3.08 Å with c = 10.08 Å [1] and
a = 3.08 Å with c = 15.12 Å [1] for 4H and 6H SiC, respectively, and the ideal values for the internal parameters
follow from the space group symmetry C4

6v[2].

ELECTRONIC STRUCTURE OF HEXAGONAL SILICON CARBIDE CRYSTALS

We applied density functional theory (DFT) within local density approximation (LDA) as reported in the main
text. The calculation of the phonon dispersion curves required the optimization of the lattice constants. This results
into a = 3.07 Å with c = 10.0 Å [1] and a = 3.07 Å with c = 15.0 Å for 4H and 6H SiC, respectively, that are close
to the experimental values. The optimized internal parameters remain close to the ideal ones [2].
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FIG. S1. (a) Primitive cells of 4H and 6H SiC with k (k1, k2) and h Si-C bilayers where k and h refer to quasicubic and
hexagonal sites. (b) Brillouin-zone of hexagonal SiC polytypes. (c) Calculated LDA band structure of 4H SiC. The valence
band maximum (VBM) is at the Γ point, whereas the conduction band minimum (CBM) is at the M point. (d) Calculated
LDA band structure of 6H SiC. The firt conduction band is very flat along M −L line [2, 3]. While the VBM is still at Γ point,
we find the CBM in between M and L. The VBM energies are aligned to zero, and the band gap is highlighted by yellow color
(shadowed).
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4H and 6H SiC are indirect semiconductors with relatively large band gaps at room temperature, 3.27 and 3.02
eV, respectively [4]. The calculated electronic band structures are shown in Fig. S1(c) and (d) versus high symmetry
lines A-Γ-M -L-A within the Brillouin-zone (BZ) of the hexagonal system (see Fig.S1(b)). The overall features show
the agreement with previous calculations [2, 5, 6]. The top of the occupied valence-band states is located at Γ in
both polytypes. As reported by [2, 3] the exact position of conduction band minimum depends on the details of the
calculation, on the ratio c/a of the hexagonal lattice constants, as well as on the atomic positions inside the hexagonal
unit cell. We find the conduction band minimum at M for 4H SiC and at about 0.5 M − L for 6H SiC. However,
the lowest conduction band is rather flat between L and M in 6H SiC case. For this reason, we assume that the
bottom of the conduction band occurs at the M point of the BZ, yielding just a minor error in the calculated LDA
fundamental gap for 6H SiC. Moreover, we observe that at the CBM two bands are very close in energy. We will
label them in the follow as M1 and M2.

At DFT-LDA level we obtain 2.25 eV for 4H SiC and 2.04 eV for 6H SiC, about 1.0 eV lower than the corresponding
measured values, and in agreement with other theoretical works [2, 6]. The discrepancy in the absolute value of the
indirect band gaps comes from the well-known self-interaction error of the LDA but the curvature of the individual
bands are well reproduced by this approximation. As a consequence, the effective masses of the electrons, i.e., the
inverse of the second derivatives of the energies around the M point for the conduction band minimum, can be
accurately calculated by DFT-LDA.

QUASIPARTICLE CORRECTION IN THE ELECTRONIC STRUCTURE OF HEXAGONAL SILICON
CARBIDES

Assuming DFT-LDA orbitals as a good approximation to the quasi-particle (QP) orbitals, the first-order correction
to the Kohn-Sham eigenenergies is obtained within a single iteration of Hedin’s GW approximation [7, 8]. For 6H
SiC, the exact position of the conduction band minimum (CBM) on the L−M line has been under discussion [2, 3, 5].
Wenzien et al. [6] found a tendency of CBM of 6H-SiC to move towards M point after the inclusion of QP effects.
They used a simplified GW method, meaning a model dielectric function and an approximate treatment of the local
filed effects. Ummels et al. [9] performed GW calculations for the 2H, 4H, and 6H SiC polytypes using the Engel
and Farid[10] plasmon pole model for the description of the energy dependence of the screened interaction. They
obtained G0W0 indirect band gaps of 3.35 eV and 3.24 eV for 4H and 6H SiC, respectively (see Table I in the
main manuscript). Our correction obtained with Godby-Needs plasmon-pole model [7, 8, 11, 12] as implemented in
Yambo [13] code, results to be lower with respect to those calculated by Ummels et al.[9]. This is due to the different
plasmon pole model (PPM) used. Godby-Needs PPM best reproduces the model-free contour deformation (CD)
results[14], when other PP models are applied the gap obtained is significantly higher and in particular Engel and
Farid PPM gives for ZnO a GW correction 0.3-0.4 eV larger than the CD one [15].

In our study, we have to rely on the DFT-LDA geometries as we have to calculate phonon bands which assumes
to stay close to the global energy minimum of the adiabatic potential energy surface. Our GW calculations justify to
apply a simple scissor correction on the DFT-LDA band gaps, in order to reproduce the experimental ones.

PHONONS OF HEXAGONAL SILICON CARBIDES

In view of the calculation of the temperature dependent renormalization of the electronic gap, the phonon dispersion
curve is an essential input for phonon-related properties. Besides the fact that the phonon dispersion curve reflects the
structure of a material and its symmetries, phonon spectra are one of the key ingredients that help in understanding the
coupling between electrons and lattice vibrations. Symmetry analysis shows that phonon modes can be decomposed
into N(A1 ⊕B1 ⊕E1 ⊕E2) modes, where N = 4, 6 for 4H SiC and 6H SiC, respectively. Whose modes A1 ⊕E1 are
acoustic and (N − 1)A1 ⊕ NB1 ⊕ (N − 1)E1 ⊕ NE2 are optic modes. Except for B1 modes which are infrared and
Raman forbidden, all the other are Raman active modes. Out of them A1 and E1 modes are also infrared active.

The calculated phonon dispersion curves are shown in Fig. S2. Table SI reports the theoretical and experimental
phonon frequencies at Γ point for 4H and 6H SiC. All the available experimental modes were readily assigned.
The phonon modes with longer wavelength are divided into axial or basal plane modes, depending if the atoms
displace parallel or perpendicular to the c-axis, as explained in Ref. [16]. The planar modes consist of Raman and
IR active E1 modes and Raman active E2 modes. The axial modes consist of Raman active A1 and Raman inactive
B1 modes. Our vibrational frequencies at Γ point are in excellent agreement with previously published calculations
and with experimental phonon dispersion curves obtained by infrared and Raman spectroscopies [17–21], being the
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FIG. S2. Phonon band dispersion of 4H and 6H SiC as obtained within Density Functional Perturbation Theory (DFPT).

average error smaller than 4 cm−1. This supports our choice of using DFT-LDA eigenergies and DFPT-LDA phonon
frequencies as key ingredients for the calculation of the electron-phonon interaction.

ADDITIONAL DATA ON THE CALCULATED ELECTRON-PHONON INTERACTION

This section provides details about the convergence of the temperature dependent electron-phonon coupling of the
valence bands as well as the the calculated temperature shifts for the two lowest energy conduction bands around M
point.

We find that the calculated temperature shifts of the valence bands depends on the number of conduction bands
used in the calculation of electron-phonon coupling whereas the temperature shifts of the conduction bands converge
much faster with the number of conduction bands as shown in Fig. S3(c). As can be inferred in Fig. S3(a), the
calculated temperature shifts in the valence band and the indirect band gap are absolutely convergent by using 100
bands in the calculation of the electron-phonon coupling for 4H SiC, as the 90 bands and 100 bands data are practically
identical. This corresponds to about 6× of the number of valence bands (16 bands without core electrons). As a
consequence, the convergent number of bands should be around 150 for 6H SiC that has 24 valence bands. However,
it is technically prohibitive to carry out such calculations for 6H SiC. Thus, we carried out electron-phonon coupling
calculations with non-converged 120 bands, which is only 5× of the number of valence bands. We estimated the
converged data by taking the difference in the calculated 80 bands data (5× of the number of valence bands in 4H
SiC) and the convergent 100 bands data of 4H SiC. Then we extrapolated the convergent 150 bands numerical data
by these differences at the given temperature in 6H SiC obtaining the thermal evolution of the indirect band gap and
of VBM and CBM as shown in Fig. S3(b)-(d).

Next we turn to the calculated temperature shifts for the two lowest energy conduction bands around M point. We
found an energy separation of 89 meV at DFT level between the two lowest conduction bands of 4H-SiC, as reported
in Table I of the main manuscript. QP corrections shift down the second conduction band with respect to the first
one of 3 meV. The final inclusion of the electron-phonon interaction leads to a positive zero point energy correction of
2 meV and 6 meV at 800 K. For 6H SiC the energy separation is 170 meV at DFT level, it increases up to 180 meV
by the inclusion of QP effects, and then it gets to 183 meV with zero point energy correction.

ADDITIONAL DATA ABOUT CONDUCTIVITY OF ELECTRONS IN 4H SIC

In extrinsic semiconductors, containing donor impurities, the presence of donor levels shifts the Fermi level from
the middle of the energy gap toward the edge of the conduction band. Let us define the ionization temperature of the
donor levels Td as

kBTd = εd (1)
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FIG. S3. Calculated thermal evolution of indirect energy gaps as a function of the number of conduction bands in the
calculation of electron-phonon coupling. (a) and (c) 4H SiC for the temperature range 0 − 800 K, the effect of the growing
number of unoccupied bands on the thermal evolution of band edges is shown. (b) and (d) 6H SiC for the temperature range
0 − 1000 K, with explicit calculation of 120 bands and extrapolated values at 150 bands based on the 4H SiC data. In (a)
and (b) the calculated curves are aligned to the experimental data at T = 0 K after having applied the GW correction to the
indirect gap. The experimental data (green crosses) of the optical gaps are taken from Refs. 22 and 23. The others (violet dots)
have been extracted from RIXS spectra (Ref. 24), with correction of the core-hole exciton binding energy included. Thermal
evolution of calculated VBM and CBM of (c) 4H SiC and (d) 6H SiC, where the latter is compared to the XAS and XES
measurements (Ref. 24) rescaled of 99.5 eV and 98.65 eV, respectively, in order to match the temperature evolution of CBM
and VBM. The depedence of the thermal evolution of the individual bands as a function of the number of conduction bands in
the calculation of electron-phonon coupling is analysed. Notice that on top of the electron-phonon correction the quasi-particle
correction has been also added.

where εd is the binding energy of the donor levels, kB is the Boltzmann constant and the density Nd of donor
impurities is supposed to be uniform in the sample. Within the perspective of employing 4H SiC in devices operating
at temperature of around 800 K, we expect that all the donor levels at 120 meV below the bottom of the conduction
band, are occupied and the chemical potential must be located in the energy range Ed < µ(T ) < Ec, where Ed is the
donor level and Ec is the lowest conduction band position. In the low temperature regime, T � Td the temperature
dependence of carrier conductivity is given by Refs. 26 and 27

σimp ∼ (

√
Nc(T )

Nd
2
e−εd/2kBT ) · e · e

m∗
c

T 3/2, (2)

being inversely proportional to the effective mass of the electron, which is the inverse of the second derivative of the
conduction band along a given direction in the Brillouin-zone. The effective masses of the second conduction band
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FIG. S4. Temperature dependent energy gap between M1 and M2 conduction bands for 4H SiC and 6H SiC as obtained
starting from DFT-LDA and QP corrected band structure. The experimental splitting at 2 K is about 144 meV in 4H SiC
(Ref. 25).

(M2) is generally greater (except along K −M line) than of the first conduction band (M1) (see Table SII). Nd is the
donor impurities density ∼ 1018 − 1019 #donors

cm3 and electronic charge e = 1.6× 10−19C. The carrier conductivity as a
function of temperature for binding energy donor levels equal to 120 meV in 4H SiC is represented in Fig. S5.

On the other hand for binding energy donor levels equal to 60 meV the carrier conductivity as a function of
temperature is given by Refs. 26 and 27

σ ∼ Nde
e

m∗
c

T 3/2. (3)
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TABLE SI. 4H- and 6H-SiC optic (Opt.) and low energy acoustic (Ac.) phonon frequencies at Γ point (in cm−1) either in the
basal plane (B.) or along c-axis (Ax.) and their corresponding irreducible representation (Irrep). B1 modes are Raman and
infrared (IR) forbidden. There are modes for both compounds that were not observed (N.O.).

Irrep DFPT-LDA Exp.a Exp.b Branch

freq. Raman IR reflectivity

E2 192.3 196.0 - B.Ac.

E2 200.3 204.0 - B.Ac.

E1 259.2 266.0 B.Ac.

B1 401.1 - - Ax.Ac.

B1 409.2 - - Ax.Ac.

A1 608 610.0 610.5 Ax.Ac.

E1 763.9 N.O. B.Opt.

E2 771.4 N.O. - B.Opt.

E2 779.7 776.0 - B.Opt.

E1 790.2 797 B.Opt.

A1 838.7 838 839 Ax.Opt.

B1 910.6 - - Ax.Opt.

B1 920.1 - - Ax.Opt.

A1 958.8 964 Ax.Opt.

Irrep DFPT-LDA Exp.c Exp.d Branch

freq. Raman IR reflectivity

E2 142.7 145.0 - B.Ac.

E2 147.4 149.0 - B.Ac.

E1 229.6 236.0 B.Ac.

E1 235.2 241.0 B.Ac.

E2 259.7 262.0 - B.Ac.

B1 281.0 - - Ax.Ac.

B1 283.4 - - Ax.Ac.

A1 504.1 504 Ax.Ac.

A1 511.9 508 Ax.Ac.

B1 610.5 - - Ax.Ac.

E2 763.1 766 - B.Opt.

E1 765.7 769 B.Opt.

E1 773.3 777 B.Opt.

E2 782.0 N.O. - B.Opt.

E2 783.2 788 - B.Opt.

E1 789.5 797 789 B.Opt.

B1 837.9 - - Ax.Opt.

A1 882.9 N.O. 884 Ax.Opt.

A1 887.6 889 889 Ax.Opt.

B1 937.1 - - Ax.Opt.

B1 944.8 - - Ax.Opt.

A1 960.1 964 Ax.Opt.

a Refs. 17 and 20
b Ref. 21
c Ref. 18
d Ref. 21
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TABLE SII. 4H SiC effective masses of electrons in the conduction band minima in units of free electron mass m0. Experimental
data (exp.) are taken from Ref. 28.

Effective mass direction M1 M1 (exp.) M2

m⊥ mΓM 0.48 0.42 0.67

m|| mLM 0.27 0.29 0.61

mKM 0.28 0.16


