From insects to robots and back

Nicolas Franceschini, Franck Ruffier, Julien Serres

To cite this version:

Nicolas Franceschini, Franck Ruffier, Julien Serres. From insects to robots and back. 2nd International
Conference on Invertebrate Vision (ICIV), Aug 2008, Bäckaskog, Sweden. hal-02195476

HAL Id: hal-02195476
 https://amu.hal.science/hal-02195476

Submitted on 26 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

From insects to robots and back

Nicolas FRANCESCHINI, Franck RUFFIER and Julien SERRES
Biorobotics Lab, Institute of Movement Science
CNRS \& Uni. of the Mediterranean
MARSEILLE, France
\{nicolas.franceschini, franck.ruffier, julien.serres\} @univmed.fr

When insects are flying forward, the image of the environment sweeps backward across their viewfield and forms an "optic flow" (OF) that depends on both the groundspeed and the distance to the ground (or to the lateral obstacles). Several studies have shown that insects are able to maintain a constant OF with regard to their surroundings while cruising and landing. To explain how insects could behave in this way, we introduced the concept of an optic flow regulator, that is, a feedback control system that adjusts a flight force so as to maintain the OF at a fixed set-point [1]. The variable that needs to be measured is neither groundspeed nor range but the ratio groundspeed:range - in other words, the optic flow - which the insect can access

Fig. 1. The robot OCTAVE equipped with a ventral OF sensor and an OF regulator mimics insect behaviour in the vertical plane (takeoff, cruising, terrain following, landing, wind reaction) directly via motion detecting neurons. The OF regulator concept accounts for a number of seemingly disparate insect behaviours that were reported over the last decades [2]. Most reports are qualitative, but quantitative findings made on honeybees' landing can also be explained on the basis of this simple control system, including the constant descent angle observed in the bee's final approach [3]. In a similar vein, a honeybee trained to fly in a corridor [4] may rely on a dual OF regulator that adjusts both its forward and side thrusts - resulting in a forward groundspeed and a clearance to the walls, respectively - without any needs to measure groundspeed or range [5]. The OF regulator concept was simulated and physically implemented on board two kinds of aerial robots: a miniature helicopter for ground avoidance [1] (Fig.1) and a miniature hovercraft for lateral obstacle avoidance and cruise control in straight or tapered corridors [5]. The electronic OF sensors aboard [6] were derived from the housefly EMDs previously analyzed using single neuron recording combined with single photoreceptor stimulation [7].
[1] Ruffier, F., Franceschini, N., Robotics and Autonomous Systems 50 (2005) 177-194
[2] Franceschini, N., Ruffier, F., Serres, J., Current Biology 17 (2007) 329-335
[3] Srinivasan M.V., Zhang, S., Chahl, J.S., Barth, E., and Venkatesh, S., Biol. Cyb. 83 (2000) 171-183
[4] Srinivasan, M.V., Zhang, S., Lehrer ,M., and Collett, T., J. Exp. Biol., 199 (1996) 237-244
[5] Serres, J., Ruffier, F., Franceschini, N., Autonomous Robots (2008, in press)
[6] Pudas, M. et al., Sensors and Actuators A133, (2007) 88-95
[7] Franceschini, N. et al., In: Facets of vision, D. Stavenga and R. Hardie, Eds. Springer (1989) 360-390

