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ABSTRACT

Objective: Q fever epidemic outbreaks were reported in Hrghgiana and in the
Netherlands. To determine whether @ieburnetiistrains involved in these epidemics
had a peculiar virulence pattern, we compared #tleggenicity of the Guiana and the
German strain (a clone of the Netherlands straingilico, in vitro andin vivoversus
the Nine Mile strain.

Method: The pan-genomes of the Guiana (Cb175), Germad5&)3and the referent
Nine Mile (RSA 493)C. burnetiistrains were comparebh vitro, the growth rate and
the morphological presentation were compahedivo (SCID and Balb/c mice),
weight loss, histological lesion§, burnetiibacterial load in deep organs, and
serological response were reported according th @aburnetiistrain studied.

Results: The Guiana strain had 77 times more missing gandsl2 times more
unique genes than the German strain. The Guiaaa gtresented as large cell
variants (LCV) and led to the most pronounced iigtaate in SCID mice (100% at 4
weeks). The German strain presented as small @aednts (SCV)andhad an
intermediate fatality rate (75% at 4 weeks). Botha@a and German strains led to a
significant higher serological response at two fanol weeks p.i. (p<0.05).
Conclusion: The Guiana strain was the most virulent stratipived by the German
strain and the referent Nine Mile strain. Uniquéd amssing genes could be

implicated but further investigations are necessagpecify their role.
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INTRODUCTION

Q fever is a worldwide zoonosis causeddmnxiella burnetiiand several
outbreaks have been reported, particularly in Hréagiana and the Netherlands.
[1][2][3][4]. These outbreaks were associated vgiglrere primary infection and with
the circulation of a specific strain. Each of thesains was characterized by a
specific multi spacer typing, i. e. MST17 for thai@na strain, and MST33 for the

strain involved in the Netherlands [1][2][3].

In French Guiana, a unique and endemic clone flemClayenne peninsula,
Cb 175, has been identified [2][5][®] presents the peculiarity of a 6,105 bp genome
reduction coding for the type | secretion systeinlfy 2005, severe pneumonia was
the most widespread clinical presentation witha@3% of hospitalized community-

acquired pneumonia cases [5].

In the Netherlands, more than 4,000 aclitburnetiicases were reported
between 2007 and 2011, representing the largesv€} butbreak ever reported and
responsible, to date, for more than 74 deaths][@J)9 The causative strain, NL3262
had 84.9% of its chromosomal components coincidorgpletely with those of the

Z3055 strain, both belonging to the same multi spagping, MST33 (3)(4)(11).

Animal models have demonstrated that the strainrafiedtion route played a
role in the virulence of. burnetiiinfection [11][12]. Based on the low infectious
dose and the rapid onset of the disease, expemhsnties supported the hypothesis
that the Nine Mile strain was the most virulenastrand has been considered as a
referent strain [12][13][14][15][16]. To determiméhether theC. burnetiistrains

involved in epidemic outbreaks had a peculiar ggviof phenotypic and virulence
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pattern, we compared the Guiana strain to the Gestrain, which is close to the

Netherlands strain, to the referent Nine Mile straa silico, in vitro andin vivo.

Material and Methods

Pan-genome analysis and phylogenetic tree

In silico analysis

The genome sequences corresponding to the @rbaernetiistrains of interest (the
Guiana, the German, the Nine Mile strains) as a®lhe sequence of the strain
isolated during the Netherlands outbreak, i. e. 2823 were retrieved from the NCBI
database. Then, a comparative analysis of RSA@88ljank: NC_002971.4], Z3055
[Genbank: NZ_LK937696], NL3262 [Genbank: NZ_CP0136énd Guiana
[Genbank: HG825990.3] was performed (supplemernttaterial and Methods).
Unique genes were defined as genes present igle sinain only, whereas missing
genes were defined as absent in a strain when cechpathe others strains. The
phylogenetic tree was performed using PhyMI soféen&ee supplementary Material

and Methods).

In vitro experiment

Culture/bacteria

The Nine Mile strain served as reference. The Gugrain was isolated from a
patient in Cayenne who presented endocarditisT}&. German strain was isolated
from an ewe placenta from Germany [3][17]. All steawere cultured in an NSB3
laboratory and growth rate was compared as detailsdpplementary Material and

Methods.
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LPS comparison for the three strains

For eaclC. burnetiistrain, LPS phase | and phase Il were analyzgzp(smentary
material). The immunostained virenose of LPS phagss visualized using a
commercially available chemiluminescence kit (ECMMstern Blotting Analysis
System, GE Healthcare). Images were performed wsigital camera (Fusion FX7,

Vilber Lourmat, Germany).

Morphological analysis

Transmission electronic microscopy (TEM)

Samples of L929 cells infected for 7 days weredixath 2.5 % glutaraldehyde in 0.1
M sodium cacodylate buffer and stored at 4°C fobedding (see supplementary
Material and Methods). Seventy nm ultrathin seciaere cut with a Leica UC7
ultramicrotome and placed onto HR25 300 Mesh CaRbpedium grids (TAAB,

UK). Sections were contrasted with 5% uranyl aeesatd 1% lead citrate and finally

observed on a FEI Morgagni 268D electron microsayerated at 80 keV.

In vivo experiment

Animals

The experimental protocol was approved by thetutsdnal Animal Care and Use
Committee of Aix-Marseille University, France, un@greement number “C2EA-
14”, and was registered by the French MinistryHogher Education and Research
under reference No. 01085.®or each strain, 44 six-week-old Balb/c and 52 SCID

male mice, weighing between 25 and 40 grams (Ch&ieer Laboratories,
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L'Arbresle, France), were housed in individual calgeusing five animals each.

Water and a standard diet of food were providédibitum

Experimental design

Mice were infected with a whole-body aerosol inbialaexposure system, using a
total of 10 phase | bacteria suspended in 5 ml of phosphédferbd saline (PBS) and
placed into a glass vial for liquid Venturi flowrasol generation[15]. The total time
of exposure was 2 h [15]. The aerosolization expent was reproduced similarly for
each strain, after decontamination. Control grafgss SCID and Balb/c mice
received aerosolized PBS and underwent the sanegiméntal protocol [15]. Four
Balb/c and four SCID mice were euthanized immediatéer aerosolization (day 0)
to assess initial lung bacterial load. Subsequeh@yBalb/c and 10 SCID mice were
euthanized on days 3, 7, 14 and 28 p.i., or whmait points were present. To study
the long-term results, for each of the 3 interestigs and controls, 8 additional SCID
mice were infected, to be euthanized at 2 month4)(and 3 months (n=4) p.i..
However, in accordance with Animal Research: Repgin Vivo Experiments
(ARRIVE) guidelines, weight loss > 20% initial bodseight was defined as the limit
ethical endpoint at which mice were to be euthahiBtood, lung, spleen, cervical
and tracheal lymph nodes were removed at eachganed (supplementary Material

and Methods).

Immunofluorescence assay for C. burnetii antibodetection in sera
Antibodies to phase | and phase Il were identifrechice serum by
immunofluorescence using conjugated goat anti-mtyGgImmunotech, Marseille,

France) or anti-mouse IgM (Jackson Immunoreseaatiotatories, West Grove,
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USA) as previously described [15][18]. We perfornsedological tests with both

cognate and specific antigens.

Detection of C. burnetii DNA

DNA from the whole lung, spleen, cervical, trachigaiph nodes and from 2Q{. of
blood were extracted using a QlAamp Tissue Kit ¢@r@ in 100 pL final volume as
previously described [15]. The CFX96® (Biorad, Franhwas used to perform

Quantitative real-time PCR (qPCR) using specifitRI$A andiS1111probes [15].

Histological examination, immunohistochemistry amdhunofluorescence

Serial sections (Bum) of tissue specimens were obtained for routimadiexylin-
eosin-saffron (H.E.S.) staining, immunohistocheryistvestigations and
immunofluorescence (IF) processing (see supplemeMaterial and Methods).
Pathological changes such as granulomas were athérchma tissues as previously

described [15][19].

Statistical analysis

Statistical tests were performed using the Graplipa 6 ® software. When
distribution was normal, variables were expressdgumean + standard deviation or,
when distribution was not normal, as medians. Oag-MNOVA was used to
compare many groups for normally distributed vdaabA Kruskal-Wallis test by
ranks was performed to compare non-normally digtetd variables. A two-by-two
comparison of non-parametric data was performetgusitwo-tailed non-parametric

Mann-Whitney test.



188 RESULTS

189

190 Insilico results

191 We observed that the German strain (Z3055) an@lgtkerlands strain (NL3262)

192  were very similar with regard to their phylogenistdnce (Figure 1A). The pan-

193 genome for the fou€. burnetiistrains contained 1,480 core genes (Figure 1B). Th
194 number of unique genes (genes identified only i@ oithe 4 tested strains) was 733
195 for the Guiana strain versus 58, 58 and 63 folNime Mile, Netherlands and German
196  strains, respectively (Supplementary Table 1). Gh&na strain genome presented
197 309 missing genes (genes that were present ihabther tested strains but not for
198 this strain) versus 29, 24 and 4 for the Nine Mietherlands and German strains,
199 respectively (Supplementary Table 2-5). Most mgsind unique genes identified for
200 the Guiana strain were involved in the T4 secresigstem (Supplementary Table 2-
201 5).

202

203  Invitro experiment

204  Velocity growth

205 The respective velocity growth for each straireigarted in supplementary Figure 1.
206  The Guiana and the Nine Mile strains grew faster.

207

208 LPS comparison

209  After 21 days of culture, a phase I/phase Il swit@s observed as attested by the loss
210 of virenose, except for the German strain, whigspnted an incomplete switch to
211 phase Il (supplementary Figure 2A, columns 4, 5R@garding the silver-stained

212  SDS PAGE (supplementary Figure 2B) some differemeae identified: the Guiana

10
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strain contained one more intense band at 20 kBa.German strain lacked bands at
15-20 kDa and 42-72 kDa, but had an intense bad kDa (supplementary Figure

2B). Moreover, each strain presented differentgpyotein profiles.

Morphological development TEM.
L929 infected cells, observed for seven days pth WEM, showed mainly large cell
variants (LCVs) with the Nine Mile and the Guianams and small cell variants

(SCVs) with the German strain (Figure 2).

In vivo experiment

Clinical outcome

The infected Balb/c mice did not present any sigdigcomfort nor significant body
weight change throughout the experiment. At twokyge, SCID mice infected with
the Guiana strain showed signs of discomfort, patish and a weight loss of more
than 20%, requiring euthanasia. Evidence of illressurred in the fourth week p.i.
with the German strain and after five weeks p.hwiite Nine Mile strain (Figure 3A-
C). The fatality rate in SCIDs at four weeks p.asn00% with the Guiana strain
versus 75% with the German strain and 0% with timeWile strain, as illustrated in
the survival figure 3A. Mice infected with the Goastrain presented the highest

mortality rate, conferring a hypervirulent pattéorthis bacterium.

Spleen weight
For SCID mice, at two weeks p.i., the Guiana grbag an increase in spleen weight
significantly higher than for the other strains,emas the German group had an

increase in spleen weight, which was lower thahabaerved with the Guiana strain

11
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but higher than that observed with the refereneNvhle strain (p<0.05; Figure 3C).
Spleen weight continued to significantly increaséldour weeks p.i. to about 25
times the baseline for both the Guiana and the @erstrains (reaching 1.7 grams). In
Balb/c mice, spleen weight changes were less irmpbthan in SCIDs, but here
again, the Guiana group presented the highest nadusipleen weight (supplementary

Figure 3).

Serology in Balb/c mice
A seroconversion could be detected starting twoke/@d. with the three strains.
Antibody titers were the highest for both the Gaiamd the German strains at two

and four weeks p.i. (p<0.05). (Supplementary figtire

Molecular detection of C. burnetii

In the lungs, the initial bacterial load was arod@4DNA copies (per 200L of lung
suspension) for all mice (Balb/c and SCID) regassllef theC. burnetiistrain.

In Balb/c mice, until two weeks p.i., the bacteta@d was the highest in the group
infected with the Guiana strain (p<0.05). Thergaté groups showed a decrease in
bacterial burden attesting to progressive clearanoen-immunosuppressed mice.
In SCID mice, globally, the levels reached highaliues than in Balb/c mice, DNA
copies increased until four weeks p.i., and lewadsge significantly higher with the
Guiana and the German strains than with the Nire Btrain(Figure 4 &

supplementary Figure 5).

Histopathological findings

12
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The earliest lesions were observed at 7 daysythe lungs of Balb/c and SCID mice
infected with the Guiana strain, whereas only S@liPe infected with the German
strain showed lung granuloma with negative immusinithemistry (Supplementary
Figure 6-7). Pathological findings, granulomas poditive immunohistochemistry,
were observed at the earliest stage of infectiothi® Guiana strain, followed by the

German strain, then by the Nine Mile strain.

Discussion

Comparison of the three strains have shown thaGthana was the most virulent
strain in mice whereas the German strain, whiaase to the strain involved in the
Netherlands outbreak, has an attenuated virul@rreereferent Nine Mile strain,
although less virulent, remained pathogenic.

In silico analysis revealed that the genome of the Guiaamgiresented 12 times
more unique genes and 13 to 77 times more misgnggthan the Netherlands and
the German strains, respectively. Most of the uaigid missing genes identified in
the hypervirulent Guiana strain were genes codanghfe T4 secretion system. The
role of T4SS is to translocate bacterial effectots the cytosol to facilitate bacterial
survival and replication [20][21]. The T4SS systsmecessary for the
parasitophorous vacuole expansion, and for theepitean of apoptosis [20][21]. The
specificity of T4SS in the Guiana strain desereelsd further explored.

In vitro, the Guiana strain was metabolically active, wasthe German strain
presented as “dormant”. The SCVs have been desdcahaon-replicating stationary
forms, with a condensed chromatin and a uniquestrgstomic profile that may
contribute taC. burnetii’'senvironmental resistance [22][23]. However, thailgnce

of the SCV as compared to the LCV remains unknd®agarding the different

13
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glycoprotein profiles observed here, further inigegions are necessary to elucidate

their implications in the virulence mechanisms.

In vivo, the Guiana strain clearly behaved as the mogkevit strain, as attested by the
earlier occurrence of limit endpoint in SCID mitlee faster increase in spleen
weight; the higheC. burnetiibacterial burden in deep organs, and the earliest
evidence (one week p.i.) of pathological findingse German strain appeared to be
an intermediate between the Guiana and Nine Miterst. A relative spleen weight

strain specificity was described in Balb/c mice][24

Some apparent discrepancies were observed. Thea@etnain presented vitro as
SCVs, but produced high pathogenidityvivo, whereas the Nine Mile strain
presented as LCMs vitro butinduced delayed pathological damage. This may
reflect the capacity of. burnetiito adapt to its environment, as suggested by

previousin vitro research [25].

The Guiana and the German strains both showed hagtigkody response. This
corroborates data observed in humans in relatiohet@uiana strain. [6]. To our
knowledge, no comparative study has yet focuseith®@serological response linked
to the Netherlands strain.

Some limitations of the study need to be acknowdedyVhereas the German Z3055
strain genome is close to the NL3262 strain resptmef the Netherlands outbreaks
(84% of genome similarities), furthar vivo investigations are needed to assess the
pathogenesis of the NL3262 strain. The Guianarstvai used was isolated from a
patient with persistent endocarditis, whereas aQuitever pneumonia is the main

clinical presentation observed in the French Guidha evolution from acute Q fever

14
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to persistenC. burnetiiinfection seems to depend on the host’s respottiserrénan
on the bacterial strain virulence [1].

As a conclusion, the Guiana strain presented alipe@attern characterized
by the association of a high number of unique arss$imy genes involved in ti@.
burnetii T4SS, LCV morphologya severe clinical disease induction and an intense
serological response. The German strain profile less categorical, presented lower
unique and missing genes, SCV morphologyitro and an intermediate
pathogenicityin vivo. Further investigations may be required to spettiéy

implication of these missing genes in the viruleneehanisms.
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FIGURE LEGENDS
Figure 1.
A. Genome-based Phylogenetic tree
B. Pan-genome representation for four analyzehstf Coxiella burnetii The total
number of genes for each strain is written in beé&kThe number of missing genes

for each strain appears in bold red.

Figure 2. Transmission electron microscopy showing L 929 infected cells at seven
days p.i. with the Guiana and the German strains.

High magnification identifies LCVs in L929 cellsfetted with the Nine Mile and the
Guiana strains, in which chromatin is largely exshas compared to the German

strain for which small cell variants are charaaedi by condensed chromatin.

Figure 3.

A. Kaplan Meer survival analysisover time (in weeks).

Significant survival differences were observed agiire three strains (p<0.001)

B. SCID body weight over time (in weeks)

The horizontal dotted bar indicates weight loss%2§ the initial body weight.

Initial weight was similar for the four groups (0-99) of SCID mice. Body weight
was significantly lower at day 28 p.i. in the Guaagroup versus the other groups (*:
p < 0.05).

C. Spleen weight over timein SCID mice (in weeks).

At two weeks p.i., spleen weight was the highesheaGuiana group ((p < 0.005)

versus the three other groups) and was higheeitgrman group than in the Nine
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Mile group (p < 0.05). At four weeks p.i., spleeaight was significantly different
between groups (ANOVA, p < 0.001). Post hoc testsved that the Guiana and
German groups had the highest values (p < 0.00d xi¢vificant change was

observed over time in the PBS group.

Figure4: PCR resultsof C. burnetii detection in lung, spleen, blood and tracheal
lymph nodes over time with thethree different strains

The red star indicates a significant differenca given time (p < 0.05) as detailed
below.

In the lungs of Balb/c mice infected with both tBaiana and the German
strains, the number of DNA copies was higher thah the Nine Mile strain three
days p.i. (0.5 week). At one and two weeks p.e,liacterial load was higher with the
Guiana strain versus the two other strains (p<0Il853CID mice infected with the
Guiana strain, the number of DNA copies was thadsgat all times.

In the spleen of Balb/c mice, the numbeCofburnetiiGuiana strain DNA
copies was significantly higher at one and two vegek, whereas both Guiana and
German strains presented higher levels of DNA atene and four weeks p.i. In
SCID mice, both the Guiana and the German stragsepted a significantly higher

number of DNA copies at one, two and four weeks p.i
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