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ABSTRACT
In electrostatic embedding mixed quantum and molecular mechanics (QM/MM) approaches, the QM charge distribution is polarized by the
electrostatic interaction with the MM environment. Analytic derivatives of expectation values of operators are required to extract properties
such as vibrational spectra. These derivatives usually require solving a set of coupled perturbed equations for each nucleus/atom in the system,
thus becoming prohibitive when the MM subsystem contains thousands of atoms. In the context of Electrostatic Potential Fitting (ESPF)
QM/MM, we can easily overcome this bottleneck by defining a set of auxiliary coupled perturbed equations called the Q-vector equations.
The Q-vector method scales only with the size of the QM subsystem, producing an effective charge tensor that leads to the atomic charge
derivative after contraction with the MM electrostatic potential gradient. As an example, we use the charge derivatives as an analysis tool
to identify the most important chromophore-polarizing amino-acids in plant cryptochrome. This finding opens up the route of defining
polarizable force fields and simulating vibrational spectroscopy using ESPF QM/MM electrostatic embedding at an affordable computational
cost.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5115125., s

Mixed quantum and molecular mechanics (QM/MM) meth-
ods1 have become standard approaches for treating quantum sys-
tems embedded in (large) molecular environments, usually modeled
using classical interatomic potentials. The total energy of the system
can be partitioned as

E = EQM + EMM + EQM/MM , (1)

in which EQM (respectively, EMM) is the energy of the QM (respec-
tively, MM) subsystem and EQM/MM represents the interaction
energy between the two subsystems. Among the different flavors
of QM/MM couplings, e.g., mechanical embedding,2 polarizable
embedding,3 etc., this communication focuses on the electrostatic
embedding mode. In the latter, the QM/MM leading interaction
yields a polarization of the QM charge distribution by the electro-
static potential generated by the MM subsystem.4 Using the Elec-
trostatic Potential Fitted (ESPF) method at its lowest order,5 the
interaction term reads

EQM/MM =

NQM

∑

A
ϕA
⎛

⎝

ZA +∑
μν

PμνQ̂μν,A
⎞

⎠

=

NQM

∑

A
ϕAq0

A, (2)

in which ZA is the nuclear charge of the QM atom A, ϕA is the
classical external potential felt by the QM atom, and Q̂μν,A is the
atomic charge operator.5 Note the strict equivalence, hence unique-
ness, between the classical and the quantum representations of this
interaction energy.6 The atomic charge operator, whose definition is
independent of the MM coordinates, can be explicitly written as

Q̂μν,A =

Ngrid

∑

k
[(T†T)

−1
T†
]

kA
⟨μ∣

1
∣r − rk∣

∣ν⟩ , (3)

in which ⟨μ∣∣r − rk∣−1
∣ν⟩ are the electrostatic integrals on a grid of

Ngrid points and coordinates rk, selected as a function of the QM
atom coordinates, and T is the electrostatic kernel, a rectangular
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matrix containing Ngrid × NQM terms TAk = ∣rk − rA∣−1.7

In this work, we focus on the QM atomic charge derivatives
using density matrices derived from single determinant mean-field
wavefunctions, in which the density matrix elements Pμν are simply
given by

Pμν = ∑
i
C∗νiCiμ , (4)

in which i runs over the occupied molecular orbitals and Cμi is the
molecular orbital coefficient. The contraction of the density matrix
with the atomic charge operator leads to the atomic charge q0

A. These
QM atomic charges play a central role in our QM/MM methodology.
They are polarizable and can respond to a change in the MM elec-
trostatic potential. Indeed, a Taylor development of the QM atomic
charges leads to

qA = q0
A +∑

i
qx̃iAΔx̃i +

1
2!∑ij

qx̃i x̃jA Δx̃iΔx̃j +⋯ , (5)

where qxA ≡
∂qA
∂x ∣x=x0

is a short-hand notation for the first deriva-
tive of the charge. Hereafter, superscripts are to be interpreted as
derivatives, while tilde refers to MM atoms. The zero-order contri-
bution qA ≈ q0

A is sufficient for computing the energy and its nuclear
gradient.5 However, second derivatives of the QM/MM energy
[Eq. (1)] and vibrational properties such as infrared,8 Raman,9 and
vibrational circular dichroism10 require first-derivatives of atomic
charges.11

The expression for the first derivative of the atomic charge with
respect to a QM atom is given by

qxA = ∑
μν
(Px

μνQ̂μν,A + PμνQ̂x
μν,A), (6)

while the derivative with respect to an MM atom is given by

qx̃A = ∑
μν

Px̃
μνQ̂μν,A . (7)

The derivative of the ESPF charge operator has a straightforward
analytic formula that has been presented elsewhere.5 Here, we focus
on the derivatives of the electronic density derivatives over the QM
and MM atoms. In order to construct such density derivatives over
QM atoms, it is common to compute the MO coefficient derivative
as

Cx
pμ = ∑

q
Ux

pqCqμ, (8)

in which Ux is given by

Ux
ij = −

1
2
S(x)ij , (9)

Ux
ia = −(S

(x)
ai + Ux

ai), (10)

Ux
ab = −

1
2
S(x)ab , (11)

for the occupied-occupied, occupied-virtual, and virtual-virtual
blocks. The indexes i, j, . . . and a, b, . . . correspond to occupied and
virtual orbitals, respectively, and the S(x) matrix is the derivative of
the atomic overlap matrix at fixed MO coefficients [indicated as (x)

in the superscript]. The occupied-virtual block is solved by a set of
coupled perturbed equations,

∑

bj
(A − B)ai,bjU

x
bj = −D

(x)
ai , (12)

with the following definitions for A, B, and D:

Aai,bj = (𝜖a − 𝜖i)δijδab + (ai∣ fHxc∣bj),

Bai,bj = (ia∣ fHxc∣bj), (13)

D(x)ai = F
(x)
ai − 𝜖iS

(x)
ai −∑

kl
(ai∣ fHxc∣kl)S(x)kl ,

in which 𝜖p are the canonical orbital energies, f Hxc is the Hartree-
exchange-correlation kernel, and F(x) is the derivative of the Fock
operator. In principle, Eq. (12) has to be solved for each perturba-
tion x. In the case of QM atoms, this requires solving the coupled
perturbed self-consistent field (CPSCF) equation 3NQM times. In
addition, another set of CPSCF equations has to be solved for the
MM atoms to obtain Px̃. They take the form

∑

bj
(A − B)ai,bjU

x̃
bj = −h

(x̃)
ai , (14)

in which the h operator is given by

h(x̃)ai = ∑
A
ϕx̃A∑

μν
CiμQ̂μν,AC∗νa = ∑

A
ϕx̃AQ̂ia,A. (15)

Usually, the number of MM atoms is so large that the numerical res-
olution of these equations becomes intractable. Several approxima-
tions have been proposed in order to reduce the computational cost
of charge derivatives.11,12 Here, we show that we can work around
the computation of Px̃ by applying the Z-vector method of Handy
and Schaefer.13 Indeed, we can rewrite the atomic charge derivative
[Eq. (6)] as

qx̃A = ∑
μν

Px̃
μνQ̂A,μν = 2∑

ai
Q̂A,aiU x̃

ai . (16)

Employing the CPSCF over MM coordinates [Eq. (14)], we obtain

qx̃A = −2∑
ia
Q̂A,ia∑

jb
(A − B)−1

ia,jbh
(x̃)
jb , (17)

and using the definition of the h operator [Eq. (15)], we arrive to

qx̃A = −2∑
B,ia

Q̂A,iaϕx̃B∑
jb
(A − B)−1

ia,jbQ̂B,jb. (18)

We can now define a new Q̃-vector,

Q̃B,ia = −2∑
jb
(A − B)−1

ia,jbQ̂B,jb, (19)

which is obtained as a solution from an auxiliary CPSCF equation
defined as

∑

jb
(A − B)ia,jbQ̃B,jb = −2Q̂B,ia. (20)
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This allows us to write the final expression for the atomic charge
derivative with respect to MM coordinates as

qx̃A = ∑
B,ia

Q̂A,iaϕx̃BQ̃B,ia = ∑
B
Q′ABϕ

x̃
B. (21)

This is the main results of the present work. The advantage of this
definition is obvious since now we avoid solving MM coordinate
times the CPSCF equations, and we only solve NQM times the Q̃-
vector equation defined in Eq. (20). Then, Q′AB can be interpreted as
a tensor that, given an electric charge QA on QM atom A interact-
ing with a gradient of the external potential, will give the “effective”
charge on QM center B that interacts with another gradient of the
external field.

We have shown to this point that the first derivative of the
ESPF atomic charges with respect to MM perturbations of single-
determinant wavefunctions does not require the solution of 3 ⋅ NMM
times the CPSCF equation, but rather an auxiliary set of only NQM
CPSCF equations is necessary, in which the perturbation is given
by the atomic charge operator. We call this the Q-vector method.
In fact, this method is valid for higher orders of the multipo-
lar expansion. Indeed, we can apply this technique as long as the
perturbation in the CPSCF equation is given by a product of an
operator that does not depend on the MM atom positions and an
external field that does depend on the MM atom positions. For
example, if we write the interaction energy [Eq. (2)] to the next
order,

EQM/MM = ∑
A
(qAϕA − μA ⋅∇ϕA) , (22)

in which μA is the dipole tensor and ∇ϕA is the external poten-
tial derivative. Applying the same strategy as shown for the charge
operator, we can define a new set of independent CPSCF equa-
tions for each component of the dipole tensor operator of the
type

∑

jb
(A − B)ia,jbμ̃τ,A,jb = −μ̂τ,A,ia, (23)

in which τ = x, y, z. Then, the charge derivative [Eq. (21)] would add
the following contribution:

q′ x̃A = q
x̃
A + ∑

τ,B,ia
μ̃τ,B,iaμ̂τ,A,ia ⋅ ∇τϕx̃B . (24)

Again, only NQM auxiliary CPSCF equations for each tensor compo-
nent need to be solved.

We have implemented the Q-vector method in a local devel-
opment version of GAUSSIAN 16.14 The implementation requires only
the transformation of the first-order derivative of the ESPF oper-
ator [Eq. (3)] in atomic orbital basis to molecular orbital basis.
The occupied-virtual block is then used to solve the CPSCF equa-
tion [Eq. (20)], using the standard algorithms for solving CPSCF
equations for static perturbations.15

As a first application of the Q-vector method, we use the charge
derivative with respect to MM atoms as a measure of the polariza-
tion of the QM subsystem. The derivative of atomic charges qx and
qx̃ has the physical interpretation of the induced dipole moments

by motions of the QM and MM atoms, respectively. In fact, we can
use this as a criterion for selecting the “importance” of an atom, a
molecule, or a cluster (hereafter simply denoted as residue) in polar-
izing the quantum system. If we define the atomic charge response
modulus as

δqA,k =

√

(qx̃kA )
2

+ (qỹkA )
2

+ (qz̃kA )
2
, (25)

in which the index k refers to MM atoms, we can define the residue
induced polarization of QM atom A as

μ̄A,res =
1

Nres

Nres

∑

k∈res
δqA,k , (26)

in which “res” stands for residue (for example, an amino acid in the
case of proteins), k runs over all the atoms in the residue, and Nres
is the number of atoms in the residue. We have applied this cri-
terion to investigate the residues, the motion of which induces the
largest polarization of isoalloxazine chromophore in the plant cryp-
tochrome 3 of Arabidopsis thaliana.16 For each of the QM atoms
of the chromophore, we search for the maxres{μ̄A,res}. In Fig. 1, we
associate each of the isoalloxazine atoms with the residue induc-
ing the largest μ̄. As we can observe, the isoalloxazine chromophore
is polarized by 4 types of residues. The uracil-like ring of isoal-
loxazine is strongly affected by the motions of aspartate 422. The
nitrogen N5 is strongly affected by the motions of asparagine 428,
while the o-xylene ring is mostly polarized by asparagine 431 and
to a lesser extent by arginine 394. Interestingly, the N5 position is
strongly polarized by a single residue. This position becomes acidic
when isoalloxazine is reduced, and a proton transfer from a nearby
residue occurs.17 With the proposed analysis, we can easily identify
a good candidate as a proton donor. Furthermore, this criterion can
be used to identify important residues for performing mutations in
“site-directed evolution,” that is, identifying the mutations that will
affect the quantum properties of the chromophore in the desired
manner.18

FIG. 1. Schematic representation of the residues (stick) showing the largest
induced dipoles (maxres{μ̄A,res}, see definition in the text) for each of the atoms
of isoalloxazine chromophore (ball and stick). The color associates each residue
inducing the largest polarization of the quantum atom. This calculation has been
performed at the B3LYP/6-31G∗ level for the QM subsystem using the Amber99
force field for the MM subsystem.
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In summary, we have shown that the Q-vector method allows
us to obtain analytic atomic charge derivatives in electrostatic
embedding ESPF QM/MM methods by solving an auxiliary num-
ber of equations that scales only with the number of QM atoms. We
have shown that this is general for any order of the multipolar expan-
sion for the QM/MM interaction. Indeed, the Q-vector method can
be applied whenever the atomic charge operator does not depend
on the MM coordinates. This opens up a broad perspective in the
electrostatic embedding QM/MM methods, ranging from a defini-
tion of polarizable force fields, second- and higher-derivatives of
the QM/MM energy, and calculation of property derivatives neces-
sary for computing infrared, Raman, and other type of vibrational
spectroscopies.
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