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Abstract 

During the last decades, multiple approaches have been developed to combat bacterial resistance. 

However, the combination of antibiotic resistance mechanisms by bacteria and the limited number 

of effective antibiotics available, decreases the number of the interventions for the treatment of 

current bacterial infections. The solution to emerging antibiotic resistance will likely involve 

combination therapies of existing antibiotics and smart adjuvants, which re-empower the antibiotic 

agent to become efficacious against the resistant strain of interest. In this context, amphiphatic 

molecules provide the opportunity to target difficult-to-traverse bacterial membranes. We will 

depict herein that a reasoned adjuvant design permits to perform polypharmacy on bacteria by not 

only providing greater internal access to the co-dosed antibiotics but also by de-energizing the 

efflux pumps used by the bacteria to escape antibiotic action.  

 

Introduction 



Since the first isolation of penicillin by Alexander Fleming in 1940, antibiotics have been one of 

the most important discoveries in clinical therapeutics.1 However, the combination of antibiotic 

resistance mechanisms by bacteria and the limited number of effective antibiotics available, 

decreases the number of the interventions for the treatment of current bacterial infections (Figure 

1). In order to minimize the emergence of resistance, potentiate the action of already existing 

antibiotics and facilitate the development of new antibiotics, it is necessary to understand the 

strategies used by bacteria to circumvent antibiotics and their specific mechanisms of action.2  

Thus, an antibiotic will be functional if three conditions are fulfilled: a) the target of the antibiotic 

is present in the bacterial cell and intact, b) the antibiotic reaches its target in sufficient quantity to 

elicit the desired biological effect and c) the antibiotic does not undergo a change that makes it 

inactive. The alteration of one of these conditions will result in a bacterial resistance towards the 

antibiotic. This resistance may occur via different mechanisms (Figure 2) such as: a) target 

modification through a mutation, b) decreased permeability of the bacterial cell to the antibiotic, 

which is the most common cause of intrinsic resistance, c) reduction of the antibiotic influx or 

increase of its efflux, to prevent it from reaching its target in sufficient quantity and d) deactivating 

processes which degrade the antibiotic such as enzymatic hydrolysis or any other chemical 

modification that reduces the affinity of the antibiotic to its target.1,3 This report will review the 

common resistance mechanisms and provide new strategies as to how to move forward in this 

modern era of increasing bacterial resistance. 

 

Antibiotic resistance  

1) Target modifications 

Target modification constitutes one of the most important mechanisms of resistance developed by 

the bacteria. In this case, the modification of the molecular target takes place following a point 



mutation in selected genes causing rapid resistance as it directly affects target structure in the 

microbes.1 In all the major cases, these mutational changes result in a reduction of susceptibility to 

inhibition while retaining the cellular functions of the target. Alternatively, some modifications of 

the latter are accompanied with other changes in the cell to compensate for the new characteristics 

of the modified target.1,3  

It is also noteworthy that not only a mutation but also a highly effective enzymatic catalysis and 

regioselective alterations can be at the origin of the target modification.1,3 Thus, since the 

interaction of the antibiotic with its target is complementary, the slightest structural alteration of 

the target will have significant effects on the binding to antibiotics. For example, an alteration of 

the 30S or 50S subunit of the ribosome generates an antibiotic resistance targeting protein synthesis 

with respect to macrolides, tetracycline and chloramphenicol.  

2) The efflux pumps 

Another mechanism of resistance is the active expulsion of antibiotics from the interior of the cell. 

This resistance is accomplished by specific transport proteins called efflux pumps which are 

involved in the elimination of toxic substances.4 This type of resistance mainly affects antibiotics 

(in particular macrolides, tetracyclines and fluoroquinolones) that exert their action inside the cell, 

and inhibit the biosynthesis of proteins and DNA.3-5 The efflux pumps differ in their specificity 

and mechanisms3-5 where some specifically export only one molecule, others are called broad-

spectrum and are capable of expelling structurally-distinct classes of molecules thus defining 

multiple resistance.3,6-8  

These pumps are classified into five families: the ATP-Binding Cassette (ABC) family, the Small 

Multidrug Resistance (SMR) family, the Major Facilitator Superfamily (MFS), the Multidrug And 

Toxic-compound Extrusion (MATE) family, and the Resistance-Nodulation-cell Division (RND) 

family.3,6-8 This classification takes into account the number of units that make up the pump (single 



or multiple), the energy source used and the nature of the substrate exported.8  The phenomenon of 

antibiotic efflux is an "active" mechanism that requires energy for the movement of compounds 

against the concentration gradient, it is noteworthy that all the efflux pumps families  use the proton 

driving force except for the ABC family which uses the energy provided by the hydrolysis of 

ATP.7,9  

 

3) Inactivation of the antibiotic 

Several strategies have been developed by bacteria to diminish the effect of antibiotics and involve 

enzymes capable of modifying or degrading the antibiotic’s architecture through hydrolysis 

reactions, group transfers and redox mechanisms.3  

a) Antibiotics hydrolysis 

This defense mechanism is facilitated by the presence of hydrolysis-sensitive chemical bonds (e.g., 

ester or amides bonds) that are the target of many enzymes excreted by the bacteria and able to 

cleave these bonds, leading subsequently to the inactivation of the antibiotic before it reaches its 

target.3 The development of such effective catalysts demonstrates the power of bacterial defense 

mechanisms against antibiotics.10  

b) Beta-lactamases 

Many enzymes are capable of altering or destroying antibiotics and beta-lactamases represent the 

most critically and clinically widespread enzymes of resistance.11 They are responsible for the 

hydrolytic cleavage of the beta-lactam present in penicillin derived antibiotics. The beta-lactam is 

the key structural element responsible for antibiotic activity because they irreversibly acylate the 

Penicillin-Binding Proteins (PBPs) that cross the bacterial wall. Thus, β-lactamases hydrolyze 

almost all β-lactams, including those present in cephalosporins, carbapenems and monobactams 

and generate products of open-cycle hydrolysis which are microbiologically inactive.11-13 The 



genes encoding these enzymes are widespread in the bacterial kingdom and are carried on 

chromosomes or plasmids.11 Moreover, Gram-negative bacteria release their β-lactamases into the 

periplasm to prevent the antibiotic from reaching their PBP target in the cytoplasmic membrane,12 

while Gram-positive bacteria secrete their enzymes to the extracellular space.11  

It is noteworthy that there are hundreds of beta-lactamases, all of which have the same function 

and the only difference lies in the amino acid sequences influencing their affinity for the different 

substrates. They are classified by two different methods: a structural classification (of Ambler) and 

a functional classification (of Bush-Jacoby).11,13  

Repeated use of β lactam antibiotics stimulated the synthesis of particularly troublesome enzymes 

called Extended-Spectrum Beta-Lactamases (ESBL), which attack and degrade most lactams.11,14 

To date, more than 180 different ESBL were identified especially in Escherichia coli, Klebsiella 

pneumoniae, and Proteus mirabilis.15,16 

The absence of chemical functional groups sensitive to hydrolysis in the chemical structure of 

aminoglycosides allows them to escape from the action of beta-lactamases.  However, the bacteria 

have developed other classes of enzymes capable of disabling these protein synthesis inhibitors by 

decorating the periphery of aminoglycosides with three types of chemical substituents to prevent 

their binding to ribosomal RNA (Figure 3). 

 

c) The genetics of resistance 

Studies in a variety of micro-organisms have revealed the presence of numerous genetic loci 

involved in antibiotic resistance.3 The genes responsible for resistance are varied likely because the 

antibiotic has several different targets in the cell (any one of which may affect its potency) and 

because some targets require the expression of many genes at once.3  



Two types of resistance are: a) natural resistance, which is an innate property specific to the 

bacterium as a result of intrinsic structural and functional characteristics and b) acquired resistance, 

which results either from a mutation of the bacterial genes or from the acquisition of foreign 

resistance genes or a combination of these two mechanisms.17,18  

a) Resistance by mutations. Bacterial resistance can be acquired as a result of mutations in genetic 

information. These mutations result from errors in DNA replication, they appear continuously and 

independent of the presence or absence of an antimicrobial agent.19-21 Obviously, repair 

mechanisms exist and constantly intervene to correct these replication errors. However, some of 

the occasional mutations are positively selected for in the presence of antibiotics. The bacteria that 

carry these mutations resists the inhibitory action of the antibiotic, survive, proliferate and become 

the predominant type while susceptible bacteria are inhibited and disappear.19 22 

b) Transferable resistance. The bacterial genome consists of elements bearing the genetic 

information necessary throughout the life cycle of the bacterial cell. Beyond chromosomes, 

accessory genetic elements such as transposons and plasmids play an important role in ensuring 

the survival of the bacterium.19, 23 Since the chromosomes can be inherited vertically from a 

bacterium to offspring and the accessory genetic elements can be transmitted horizontally to other 

nearby bacteria23, the resistance can be transferred from a bacteria to the other in a quick and easy 

way by transferring plasmids, bacteriophages, naked DNA or transposons.23, 24 This ability to share 

newly-acquired resistance genes by both vertical and horizontal gene transfer is a daunting 

challenge in combating antibiotic resistance.   

It is noteworthy that the transfer of resistance genes can occur according to three mechanisms. The 

first deals with conjugation which requires a close physical contact between the two bacteria, where 

the adhesion of bacteria to each other facilitates the transfer of plasmids, resistance genes and 



transposons. In these cases, resistance genes can be carried on a conjugated plasmid, a transposon 

carried on a conjugated plasmid, or a conjugative plasmid that is mobilized on a chromosome.25 

The second mechanism is based on transduction, which consists of the accidental incorporation of 

bacterial DNA initially carried on a chromosome or plasmid, into a bacteriophage or a virus. These 

gene carriers/ vectors can transmit the genes of resistance to other cells.19,26 The third possible 

mechanism is via transformation which involves the absorption of naked DNA generated by the 

decomposition of bacterial cells.19 

 

I) Adjuvants to antibiotics 

In this context, the spread of resistant Gram-negative bacterial strains is a growing public health 

concern, which renders life-saving drugs less effective. Thus, there is an urgent need for guidelines 

to develop agents that can penetrate both outer and inner membranes of these bacteria. It is evident 

that drug permeability in Gram-negative bacteria is more challenging for antibiotics with cytosolic 

targets, as they must transit across two protective lipid bilayers. The phospholipid bilayer that 

comprises the inner membrane greatly limits the diffusion of hydrophilic molecules. Compared to 

the Outer-Membrane (OM), hydrophobic molecules easily pass through the Inner-Membrane (IM) 

by passive diffusion.  

During the last twenty years, four main therapeutic approaches were envisioned in order to delay 

the development of antibiotic resistance: (i) an anti-virulence therapy where agents that are not 

bactericidal indirectly inhibit the molecular pathway responsible for bacterial communication, (ii) 

a combination therapy where clinicians prescribe two or more antibiotics concomitantly during 

treatment to ensure the coverage of all possible bacterial pathogens and resistance profiles, (iii) the 

development of molecular antibiotic-hybrids by fusing different biologically active agents into one 



heteromeric entity with the hope of retaining the biological actions of the constituent fragment and 

(iv) an antibiotic-adjuvant combination approach.  

This review deals exclusively with the antibiotic-adjuvant combination strategy and does not 

cover these already well-reviewed approaches.27 

The combination of antimicrobial drugs has already been used in clinical therapy to cover a wider 

spectrum of microbes, achieve better efficacy or overcome treatment resistance.28,29 These 

combinations have represented effective and successful strategies to preserve the efficacy of 

current antibiotics, the result is a better efficacy while minimizing the necessary concentrations.30 

Nevertheless, due to the emergence of Multidrug Resistant (MDR) bacterial strains, it is important 

to envision a new strategy.   

Combining antimicrobial drugs with chemical entities that do not possess any antimicrobial action 

can be used to obtain a synergistic effect by targeting different steps in the biochemical process, 

improving the entrance or suppressing efflux of the antibiotic.29,31 Indeed, researchers have 

investigated the use of combinations of compounds devoid of antimicrobial activity to preserve 

existing antibiotics and potentiate their action. These peculiar compounds are called "adjuvants". 

The concept of antibiotic adjuvants deals with the ability of a molecule to potentiate and improve 

the effect of an antibiotic against a resistant microbial agent.32 Also called "resistance circuit 

breakers", “chemosensitizers” or "antibiotic potentiators"33,34, adjuvants are compounds without 

clean antimicrobial activity, although they can exert a slight inhibitory action of bacterial growth. 

In short, one can consider that once co-administered with an antibiotic they “suppress” the 

resistance and “improve” the inhibitory effect.31,35  

They can be classified depending on the resistance mechanism to which they oppose. For example, 

one can distinguish -lactamase inhibitors as molecules which prevent the degradation of the drugs 



before they reach their targets. Alternatively, efflux pumps inhibitors prevent drugs from being 

expelled outside and outer membrane permeabilizers aim to increase the number of molecules that 

penetrate the bacteria. 

Nevertheless, depending on the action carried out (and the target) one can distinguish three groups 

in the literature: 

a) Group 1. The first group of adjuvants which have an intrinsic antibacterial activity exerted 

directly on the bacterial cell36 and 

b) Group 2, the second group consisting of compounds called "auxiliary compounds" that alter 

the permeability of the antibiotic pathogen37,38 as well as compounds named "macrophage 

modulators" that potentiate the destructive power of macrophages responsible for the 

phagocytosis of the microorganism.39 

A third classification (Group 3) has also been suggested based on the nature of the target. 

Group 3A is reserved for adjuvants that exert their action directly on the target (reduction 

of permeability, blockage of metabolic pathways and disturbance of bacterial 

physiology...).  

Group 3B: for adjuvants that potentiate the activity of antibiotics by affecting the properties 

of the host. 

It is noteworthy that of the adjuvants described in Group 3 subclass A are the only ones used in 

clinics, whereas those of Group 3B are currently explored in pre-clinical models.29 

 

-lactamase inhibitors 

The almost unlimited ability of bacteria to survive under adverse conditions has allowed them to 

circumvent the inhibitory action exerted by antibiotics. The production of enzymes capable of 



hydrolyzing antibacterial molecules is one of these survival mechanisms.40 Thus, bacterial strains 

producing beta-lactamases, enzymes with destructive ability to  lactams have severely limited 

their long term therapeutic application. With the exponential increase in newly described beta-

lactamases, the world is witnessing an urgent and continuous demand for beta-lactamases inhibitors 

in order to withstand the escalation of bacterial attacks against beta lactam based therapeutics.41 

Depending on the type of inhibition exerted (reversible or irreversible), these inhibitors are 

classified into two different types. Reversible inhibitors bind to the enzyme on an interim basis 

allowing the enzyme to eventually be restored. These agents are involved in a dynamic equilibrium 

and a reduction in their inhibitory effect is susceptible to simple dilution of the inhibitor. 

Alternatively, irreversible inhibitors use the structure of the beta lactam to attach themselves to or 

near the active site of the enzymes and can inhibit enzyme function.40 

The first to be described and introduced as clinical therapeutics in the 1970s was clavulanic acid 

followed by sulbactam. The last introduced to the market was tazobactam which was described in 

the early 1980 and approved in 1993 in association with piperacillin.40, 42 It is noteworthy that only 

these three inhibitors are currently available on the market43 as combinations with antibiotics under 

the following trade names: Augmentin (amoxicillin + clavulanate), Timentine (ticarcillin + 

clavulanate), Unasyn (ampicillin-sulbactam) and Zosyn (piperacillin + tazobactam (Figure 4).  

The best-known combination, Augmentin is an oral antibacterial combination consisting of 

amoxicillin and the potassium clavulanate -lactamase inhibitor, used in the treatment of a wide 

range of conditions from bronchitis to Lyme disease.44 It acts synergistically with amoxicillin to 

prevent bacterial growth by forming an irreversible bond with the -lactamases functional site. 

Poorly active against pathogens, potassium clavulanate efficiently inhibits many types of the ESBL 

family45 able to hydrolyze penicillins, monobactams and cephalosporins.46,47 Clinicians considered 



that -lactam antibiotics constituted an ideal therapeutic approach due to their efficacy and good 

tolerability, but the increasing resistance slowed down the enthusiasm of the scientific community 

mainly due to the global spread of bacterial -lactamase-encoding genes. Thus, the design of 

numerous adjuvants such as avibactam in 2015 or vaborbactam in 2017 which inhibit -lactamases 

appears crucial for maintaining good clinical effectiveness of the -lactam class of antibiotics.48-51 

Today, research continues in this field and four new combinations, three of which encompass a 

new class of inhibitors that are not beta-lactam are undergoing the final stages of clinic 

development before being allowed on the market.43 The choice of the inhibitor to be combined with 

-lactam is a complex process that takes into consideration several criteria (Figure 5, Table 1): a) 

the inhibitor's ability to protect the antibiotic against enzymatic hydrolysis, b) the amount of 

inhibitor needed to ensure this protection and c) the possibility and stability of this combination. 

Among the research carried out in this field, the combination of stigmasterol steroid 16 with 

ampicillin lead to a clear improvement in the susceptibility of all the  lactam resistant bacterial 

strains tested. This synergy was validated by evaluating the fractional inhibitory concentration 

index (FIC) that was less than 0.5 suggesting that stigmasterol can restore the activity of ampicillin 

by inhibiting beta lactamases.52  

In a similar approach, English et al. reported a new semisynthetic inhibitor 17 called CP-45.899 

{3.3-dimethyl-7-oxo-4-thia-L-azabicyclo (3.2.0) heptane-2-carboxylic, 4.4-dioxide, [2s-(2, 

5)]}, that allowed the reduction of the amount of ampicillin necessary to inhibit the growth of 

resistant strains at a same level as that necessary against sensitive ones.  

It is noteworthy that an impressive synergistic activity of this combination was observed against 

strains producing penicillinases such as S. aureus, H. influenzae, N. Gonorrhoeae, and K. 

pneumoniae and against cephalosporinases-producing strains notably those of B. fragilis. 



Nevertheless, E. coli and E. Cloacae strains appeared resistant to the CP-45.899-ampicillin 

combination. Furthermore, CP-45.899 allows for the potentiation and expansion of the spectrum 

of antibacterial activity of other -lactams such as penicillin G, Carbenicillin and Cefazolin. 

Indeed, CP-45.899 has appeared much more stable than clavulanic acid in all tested conditions, 

with a half-life greater than 100 h and very high solution stability at 37°C.53  

Currently, beta-lactamases inhibitors approved for clinical use are unable to inhibit both the growth 

of class A penicillinases and class C cephalosporinases-producing bacteria. In 2004, a new 

bicyclo[3.2.1]diazabicyclooctanone bridged compound, AVE1330A 18, was identified with an 

inhibitory power covering a wide range of beta-lactamases and better than that exerted by 

clavulanic acid, tazobactam or sulbactam against the enzymes TEM-1 and P99.54 AVE1330A 

activity was studied against a panel of isogenic E. coli strains and the Minimum Inhibitory 

Concentration (MIC) of the ceftazidime/AVE 1330A combination was not affected by the large 

amount of enzyme proportional to the size of the bacterial population. This finding illustrated the 

ability of AVE 1330A to efficiently protect ceftazidime from the attack of -lactamases produced 

by the Gram-negative bacteria.54 Beta-lactamases are classified into four classes according to 

structural criteria on the one hand and their mechanisms of action on the other hand, three of them 

(serine-lactamases (SBL) Class A, C and D) use in their mechanisms a serine active site whereas 

class B uses divalent metal cations (Zn) during the hydrolysis of the antibiotic and are called 

"metallo-beta-lactamases (MBL)". One of the major concerns is the search for molecules capable 

of inhibiting both the -lactamases enzyme classes. 

Although double-acting molecules are difficult to develop given the large mechanistic and 

structural differences between the two classes, one study showed that cyclic boronates 19 and 20  

(Figure 5) can be considered as a dual-role inhibitor acting as analogues of the first tetrahedral 



intermediate common to these two classes in pathways of hydrolysis catalyzed by these enzymes 

as confirmed by an X-ray structure analysis of a cyclic boronate complexed with beta-lactamase 

CTX-M-15. This makes them able to inhibit the representatives of the various beta-lactamases 

classes including A71 ESBL, CTX-M-15, class C enzymes and two variants of Oxa hydrolyzing 

carbapenem Oxa-23 and Oxa-48.55 

In 2014, Aspergillomarasmine A (AMA) 21, a polyamino acid naturally produced by the mold 

Aspergillus versicolor has been reported to inhibit NDM-1 and VIM antibiotic resistance 

carbapenemase proteins in bacteria and render those antibiotic-resistant bacteria susceptible to 

antibiotics.56-58 Thus, in a mouse model of NDM-1-positive K. pneumoniae infection, a single dose 

of the combination of meropenem (10 mg/kg of body weight) and AMA (30 mg/kg) led to 95% 

survival after 5 days post infection whereas the use of meropenem or AMA alone at the same 

concentrations resulted in 0% survival.56 

Recently, the well-known Primaxin combination59 (imipenem/cilastatin 22) was improved by the 

addition of the diazabicyclooctane -lactamase inhibitor, relebactam 23 (also known as MK-7655), 

due to an increase in the prevalence of bacterial infections caused by carbapenemase-producing 

organisms that inactivate imipenem. MK-7655 can inhibit the activity of ESBLs, KPC and AmpC 

-lactamases against imipenem by irreversibly blocking their reactive site. 

 

Efflux pumps inhibitors 

Mechanisms of drug efflux contribute to the resistance of bacteria to many classes of 

chemotherapeutic agents. Drug efflux results from the activity of membrane carriers involved in a 

variety of physiological processes and are called ‘efflux pumps’.62,63 These pumps provide a 

protective role by expelling the antibiotic to the outside of the bacterial cell.62 Some are selective 
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and only expel a specific substrate, whereas others are non-selective and carry out a wide range of 

structurally-diverse compounds (dyes, organic solvents, detergents...) as well as different classes 

of antibiotics.64 This last category of pump is of a major clinical interest since they can make a 

bacterial infection untreatable by the available antibiotics, conferring the phenotype of multidrug 

resistance, defined by resistance to at least three different classes of antibiotics.65,66 Thus, the design 

of molecules that oppose the action of these pumps by improving the entry of the antibiotic and 

preventing its expulsion outside the bacterial cell constitutes an interesting approach that opens the 

door to the restoration of the bacterial susceptibility. 

In this context, combinatorial antibiotic therapy with small molecules that block the multi-drug 

efflux systems named the efflux pump inhibitors (EPI) appears to be a promising strategy to 

overcome multi-drug resistance (MDR).67 Overexpression of MDR-efflux pumps confer bacterial 

resistance to antibiotics either by intrinsic resistance to a specific antibiotic or to a whole family of 

antibiotics.  Efflux pump inhibition allows the restoration of sensitivity of resistant bacterial strains 

to antibiotics and limits the emergence of new resistant mutants.64,68 Targeting of the efflux pumps 

is carried out in several ways including a) inhibition of the expression of the genes encoding these 

pumps, b) prevention of the assembly of the pump components at the membrane level, c) blockade 

of the membrane outlet duct or d) depletion of the energy necessary for pumps to operate.69  

The development of efflux pump inhibitors must consider three crucial factors: the type of 

pathogenic bacteria to be targeted, the type of pump to be inhibited, and the nature of the antibiotic 

to potentiate.69 In addition, pharmacodynamic characteristics and kinetic parameters are also 

critical to ensuring the effectiveness of these inhibitors. Thus, an ideal inhibitor must meet the 

following requirements: 

1. It must be specific for the bacterial target and ideally free from any pharmacological activity on 

eukaryotic cells. 



2. It must be able to reach a therapeutically effective concentration in serum and reach its target in 

vivo to address intracellular infections. 

3. It must have maximum specificity and efficacy provided by a therapeutic index and an improved 

pharmacokinetic profile. 

4. It must be devoid of antibacterial activity to lower the possibility of the development of resistance 

mechanisms. 

5. And above all, it must be devoid of any toxic effect for humans, since it is going to be used at 

high concentrations.68,70,71 

One of the difficulties in targeting these efflux pumps is related to the variety of physiological 

functions they can perform, which can cause unexpected toxicities when they are blocked. 

Therefore research is focused on finding compounds that specifically inhibit pumps operating only 

in prokaryotic cells.64 Given this need, a wide variety of studies have been performed to identify 

the substrates and inhibitors of these pumps, as well as for the implementation of efflux inhibition 

therapies (Figure 6, Table 2). It is noteworthy that to date no efflux pump inhibitors have been 

registered for the treatment of bacterial infections in human or veterinary clinics and the only 

documented inhibitor is currently MP-601.205 24 administered as an aerosol in patients with 

ventilator-associated pneumonia or cystic fibrosis.63,64 

Quinoline derivatives have been tested as inhibitors of efflux pumps of E. Aerogenes MDR clinical 

strains expressing AcrAB efflux pumps conferring antibiotic resistance, piperidinoethyl branched 

side chain compound 7-Nitro-8-methyl-4-(2'-(piperidino) ethyl)-aminoquinoline 25 showed the 

highest inhibitory activity at the lowest concentration, and when used in combination with 

chloramphenicol, increased intracellular accumulation of chloramphenicol was observed. 

Concerning the observed inhibition of the pump a potent explanation is based on the Escherichia 

TolC structure showing an internal channel with a diameter of 35 Å whereas the diameter of the 



alkylaminoquinolines is 20 Å suggesting that the inhibition of the pump can occur either on the 

carrier of the inner membrane, or on the inner junction of the pump and the outer channel.72 

Another study showed that Conessine 26, a natural steroidal alkaloid extracted from the 

Holarrhena antidysenteric plant, demonstrated an inhibitory activity of the MexABOprM or MexB 

efflux pumps overexpressed in P. aeruginosa. Furthermore, this compound allowed the reduction 

of the minimum inhibitory concentrations encountered of at least 8 times for all the antibiotics 

associated such as cefotaxime, erythromycin, levofloxacin, novobiocin, rifampicin, tetracycline.73 

In a study that targets the inhibition of the archeatypical transporter AcrB of Escherichia coli, a 

series of compounds based on a 2-naphthamide core was designed and evaluated for its ability to 

potentiate antibiotic activity and to oppose the bacterial resistance conferred by the expression of 

AcrAB-TolC efflux pump. Thus, the compound 4-isopentyloxy-2-naphthamide 27 was the most 

effective in reducing the MIC of erythromycin and chloramphenicol in the threshold observed in 

susceptible bacterial strains not expressing efflux pumps. This compound can be considered as a 

specific inhibitor of the AcrB efflux pump, since it shows no effect on the MIC of rifampicin, 

which is not a AcrB substrate.74 

In 2015, a 3.4-dibromopyrrole-2,5-dione compound 28 was identified from marine microbial 

extracts and was able to inhibit efflux pumps and enhance the activity of antibiotics such as 

ciprofloxacin, erythromycin and chloramphenicol against MDR Gram-negative bacterial strains. 

The inhibition was confirmed by its ability to cause a dose-dependent increase in fluorescence due 

to the accumulation of a fluorescent dye (Hoechst 33342) via the AcrAB-TolC efflux pump 

overexpressed in E. coli AG100 and by the non-assignment of H33342 fluorescence in the 

susceptible strain of E. coli AG100A devoid of RND pumps. This clearly shows that the RND 

pump is the target of this compound and that the restoration of sensitivity results from its 

inhibition.75 



In Pseudomonas aeruginosa, the Mex-AB-OprM efflux pump is responsible for the observed 

multi-resistance. A polyphenolic compound, epigallocatechin-3-gallate (EGCG 29) extracted from 

tea, was investigated for its ability to inhibit this type of pump. It appears that this compound is 

able to increase antibiotic susceptibility of 22 multi-resistant P. aeruginosa clinical strains.76 For a 

better understanding of the effect of EGCG on bacterial susceptibility to antibiotics, FIC indexes 

were determined between EGCG and chloramphenicol (or tetracycline) suggesting that EGCG 

improves the sensitivity of P. aeruginosa clinical isolates to chloramphenicol and tetracycline in a 

synergistic manner. At the same time, PAN 30 was demonstrated to be a specific inhibitor of the 

MexAB-OprM efflux pump improving sensitivity of antibiotics to much higher levels than EGCG 

or PAN taken alone.76 

Currently, most of available antibiotics exert their action at the intracellular level, which requires 

their penetration inside the bacterial cell through the cell membrane. Gram-negative bacteria have 

an additional layer of protection represented by the outer membrane.77 

For their penetration into the bacterium, the antibiotics follow two different pathways pre-

dominantly controlled by the chemical composition of the drug molecule: 

Hydrophobic compounds (such as aminoglycosides, macrolides, rifampicin) diffuse 

through the lipid bilayer 

Hydrophilic molecules (such as -lactams, fluoroquinolones and phenicol antibiotics) 

diffuse through porins of the bacterium.77,78 

Thus, the composition of the membrane, the bacterial porins and membrane lipids all contribute to 

the membrane permeability and strongly impact the susceptibility of the bacterium towards the 

antibiotics.  Therefore, it is not surprising that the emerging resistant strains often have lipid or 

membrane protein modifications.77 To date, a better understanding of the membrane structure plays 



a crucial role in the development of new classes of antibiotics79 and a new strategy consists in the 

design and use of compounds that could facilitate the diffusion of antibiotics and increase their 

intracellular concentration.80 

In this context, several chemosensitizers that alter porins and membrane channels have been 

proposed such as detergents, surfactants, polymyxins, and antimicrobial peptides, as well as some 

cyclic lipopeptides polycationic and cationic antimicrobial peptides81,82 have been used in 

combination with antibiotics to control resistant strains.83,84  

Another study aimed at evaluating the antibacterial activity of a glycine basic peptide (GBP) via 

its action on the membrane of E. Coli.  This peptide showed a concentration--dependent 

antibacterial action against E. coli.85 The study of its effect on the morphology of E. Coli cells 

showed that it induces damage to these cells with morphological changes, leading to cells with 

wrinkled external structures and even arriving to GBP-induced fragmentations at a high 

concentration. This cationic peptide destroyed the membrane barrier and disrupted the E. coli ion-

channel resulting in leakage of ions Ca2 +, K+ and Mg2+. This effect is generally observed in 

membrane-targeting peptides that cause cell death by the leakage of ions (Ca2 +, K+ and Mg2+) or 

by affecting the surface tension of the membranes, or by disrupting existing ionic channels or 

causing the formation of new ones.85 

Its effect on the permeability of the outer membrane improved the sensitivity of E. Coli at low 

concentrations of two hydrophobic antibiotics: erythromycin and rifampicin. These are unable to 

penetrate the intact membrane of Gram-negative bacteria, but they are capable of penetrating 

membranes damaged by polycations.  These observations indicated that the GBP damages the outer 

membrane and increases its permeability.85 

In this context, a study was carried out on the evaluation of menadione 31 (vitamin K) (Figure 7, 

Table 3) on the membrane permeability of multi-resistant strains of Staphylococcus aureus, 



Pseudomonas aeruginosa and Escherichia coli. Menadione is a soluble synthetic vitamin 

converted to vitamin K2 at the intestinal level. It showed antibacterial activity only against strains 

of P. aeruginosa but its use in combination with antibiotics from the aminoglycosides family 

allows the reduction of the inhibitory concentration of these antibiotics and suggested a synergistic 

action of this combination therapy.86 

In 2014, a study was carried out on the ethanol extract of Holarrhena antidysenterica, a medicinal 

plant. The plant’s bark is typically used in traditional medicine to treat dysentery, especially 

amoebic dysentery.87 Presenting only low antibacterial activity, this extract was successfully 

combined with novobiocin, a well-known antibiotic active against Gram-positive bacteria, 

allowing the improvement of its activity against XDRAB, MDRAB and non-MDRAB Gram-

negative clinical isolates.87 This reversal of strain resistance to novobiocin was reported to be due 

to the extract’s permeabilizing action on the outer-membrane. 

Endogenous antimicrobial peptides (AMPs) secreted by epithelial cells, neutrophils, and exocrine 

glands represent an important defensive line in innate immunity against invasive pathogens. AMPs 

destabilize the outer membrane of prokaryotes following the formation of an amphipathic alpha or 

short beta sheet.88,89 These peptides represent new antibiotic molecules for their ability to induce 

non-specific membrane dysfunction and for the speed of their action.90,91 Nevertheless, their 

therapeutic use remains questionable mainly due to the prohibitive costs of their large-scale 

production as well as the development of mechanisms of resistance by the bacteria.  Bacterially-

secreted proteases have been shown to neutralize AMPs’ activity.92-94  

To circumvent this problem and based on the advantageous properties of AMPs, a new class of 

Cationic Steroidal Antibiotics (CSA) named "Ceragenins" were designed where aminoalkyl groups 

substituted the alkoxy groups of the considered sterol (Figure 7, Table 3).95,96 Ceragenins are 

resistant to the action of proteases because they are not peptide-based and are easily produced in 



large amounts. Beyond that, they incorporate into membranes in a more stable manner and have an 

unusual ability to form complexes with phospholipids.96,97 On the other hand, the positive charge 

of these cationic antimicrobial lipids ensures their electrostatic attraction to negatively charged 

membranes (bacteria, viruses, fungi and protozoa) and causes cell death through dysfunction of the 

membrane.97 Ceragenins 32-33 synthesized to mimic the cationic structures and amphiphilic 

properties of antimicrobial peptides, share with them the same mechanism of action. They induce 

a rapid depolarization of the bacterial membrane and permeabilize the outer membranes of Gram-

negative bacteria, increasing the susceptibility of microorganisms to hydrophobic antibiotics.98-100 

Thus, although the MIC of erythromycin used alone against a resistant strain of Klebsiella 

pneumoniae is 70 μg/mL its combination with compound CSA-8 (33) demonstrated that the 

concentration required for growth inhibition decreases to 1 μg/mL.92,95,101 

CSA-13 (compound 32) in combination with gentamycin induces an early synergy against 

methicillin- and vancomycin-resistant S. aureus strains isolated from patients in the United States 

PA-VRSA and an early additivity with MI-VRSA. Additionally, an early additivity was observed 

against PA-VRSA in the case of the combinations of CSA-13 with daptomycin, linezolid and 

vancomycin.102 Furthermore, a study carried out on sixty carbapenem-resistant strains of A. 

baumannii reported a bactericidal activity of CSA-13 with similar and independent MICs. 

Nevertheless, by combining CSA-13 with antibiotics, synergy was achieved with colistin (55%), 

and tobramycin (35%) and no antagonism were observed.103  

One study showed that naphthylacetylspermine 34, a synthetic analogue of joro-spider toxin and 

methoctramine (N, N' [6-[[(2-methoxyphenyl) methyl] amino] hexyl]-1,8-octanediamine), initially 

known as antagonist of muscarinic receptors, potentiated the action of hydrophobic antibiotics such 

as novobiocin and erythromycin. Compound 34 acts like a membrane permeabilizer and facilitates 

the diffusion of these antibiotics through the outer membrane of E. coli (Figure 8, Table 4) .104 



These two polyamines were found to cause the release of divalent cations (Ca2+) stabilizing the 

LPS and then stimulating the absorption of a lipophilic tetraphenylphosphonium salt, which is 

usually favored by outer membrane disruption.105 

This mechanism of action is not specific to these two polyamines since other polycationic peptides 

such as polylysine and protamine105,106 and antimicrobials such as chlorhexidine and 

polyhexamethylene biguanide107 have been reported to improve membrane permeability too.  

Recently, new compounds isolated from the dogfish shark such as the water-soluble cationic 

aminosterol squalamine, was found to potentiate the activity of antibiotics by targeting the outer 

membrane of Gram-negative bacteria. Squalamine has demonstrated an interesting potent 

permeabilizing effect of the bacterial membrane of Gram-negative bacteria.108 In a first approach, 

the results suggested that this compound disrupted the membrane integrity leading to an exhaustion 

of 80% of intracellular ATP for a concentration of squalamine of 20 µg/mL (Figure 8, Table 4).108  

More recently, its chemosensitizing action was evaluated by determining the MICs of antibiotics 

combined with sub-inhibitory concentrations of squalamine. Squalamine exerted a synergistic 

effect on all classes of antibiotics such as chloramphenicol, tetracycline and ciprofloxacin with a 

significant reduction in the MIC observed against strains with over-expressed efflux pumps.109 

The potentiation of antibiotic activity against susceptible and resistant bacterial strains (E. 

Aerogenes, P. aeruginosa, E. coli, E. coli AG100, E. coli AG100a) suggested that the action exerted 

by squalamine is strongly linked to the diffusion of the antibiotic and not necessarily linked to a 

mechanism of resistance. This feature allows the chemosensitization of the membranes of the 

susceptible strains and therefore enables a reduction in antibiotic dose. All these results make 

squalamine an excellent candidate for combinations with antibiotics, especially those targeting the 

MDR bacteria.110  



Recently, the design and biological evaluation of new polyaminosterol derivatives was reported. 

Thus, claramine A1 is the first member of a new family of compounds structurally analogous to 

squalamine exerting a bactericidal activity against a wide range of both Gram-positive and Gram-

negatives bacteria, and even against those presenting a multiple antibiotic resistant profile (MDR) 

with MICs varying from 2 to 32 µg/mL. Furthermore, as an adjuvant to antibiotics, it showed very 

good results. The compound allowed for the restoration of the antibacterial activity of doxycycline 

against P. aeruginosa PAO1 and E. aerogenes EA289 by reducing its MIC from 16 and 40 µg/mL 

to 2 and 0.5 µg/mL, respectively. In addition, 4 µg/mL of claramine A1 was sufficient to restore 

the efficacy of chloramphenicol against P. aeruginosa PAO1 (Figure 8, Table 4).111  

With the objective of developing chemosensitizers that can increase the efficacy of conventional 

antibiotics by improving membrane permeability, a study has focused on the evaluation of a series 

of polyamino motuporamine derivatives initially extracted from the marine sponge Xestospongia 

exigua.112 Thus, combination therapies of these polyamine derivatives as adjuvant with 

doxycycline demonstrated that some of them were able to allow the restoration of the antibiotic 

activity against resistant E. aerogenes EA289, P. aeruginosa PAO1 and K. Pneumonia 

KPC2ST258 even at low concentrations (2 µg/mL). Several of them also reacted in synergy with 

chloramphenicol and erythromycin especially against PAO1 but at a lower level against EA289 

and KPC2-ST258.112 The compounds 38 and 39 were the most effective as an adjuvant to 

doxycycline, during an ATP release assay. Thus, MOTU-N44 39 caused a disruption of the 

bacterial membrane affecting its permeability. Membrane depolarization which deenergizes the 

efflux pump was also observed leading to an increase of the activity of the associated antibiotic.110 

Finally, the results of various tests concluded that the permeabilization of the bacterial membrane 

in E. aerogenes EA289 by motuporamine derivatives was related to the change in the 

transmembrane electrical potential leading to altered proton homeostasis.112 



In this same area, a series of ianthelliformisamines A, B, and C (40-42) were identified, synthesized 

and used to enhance Gram-negative bacteria susceptibility to hydrophobic antibiotics.113 Thus, 

natural and synthetic derivatives were used to restore the activity of doxycycline against 

Enterobacter aerogenes EA289, P. aeruginosa PAO1, and K. pneumoniae KPC2 ST258. On a 

mechanistic point of view, the absence of ATP efflux observed with the association of doxycycline 

and of the most efficient derivative 43 suggests that the integrity of the outer membrane of the 

bacteria is intact, whereas depolarization of the PAO1 membrane is consistent with a proton 

gradient disturbance. 

Extending this approach to other hydrophobic substituents, polyamino-isoprenyl derivatives have 

been reported to reduce the resistance levels in multi-resistant enterobacteria towards nalidixic acid 

and chloramphenicol.114 Additionally, another study demonstrated that derivative 44, when used in 

combination with doxycycline, completely abolished bacterial growth with a Fractional Inhibitory 

Concentration (FIC) index of 0.09. This result suggested a strong synergy exists between the 

considered antibiotic and the associated polyaminoisoprenyl chemosensitizing agent. Thus, 

compound 44 allows the reduction of resistance in MDR bacteria against two antibiotics belonging 

to two different families: doxycycline and chloramphenicol.115 Furthermore, this suggests that 

compound 44 can overcome the natural resistance of P. aeruginosa given its polyamino-farnesyl 

structure which facilitates the diffusion of the molecule through the external membrane of P. 

aeruginosa.  This membrane is known for its high impermeability due to the presence of a highly 

hydrophobic double lipid layer. Moreover, the positively charged spermine group could interact 

with the negative charge of the external bacterial membrane leading to its perturbation and 

embrittlement. Finally, it was shown that compound 44 could inhibit P. aeruginosa efflux pumps 

by decreasing the proton gradient energy source.115 



 

Conclusion 

In summary, multiple approaches have been developed to combat bacterial resistance. In general, 

amphiphatic molecules like 39 and 43 provide the opportunity to target difficult-to-traverse 

bacterial membranes by providing both hydrophilic substituents (polyamines), which interact with 

negative charges present in the surface of the membrane as well as hydrophobic substituents which 

interact with and disrupt the organization of lipid chains in the bacterial membrane. This adjuvant 

design provides an opportunity to perform polypharmacy on bacteria by not only providing greater 

internal access to the co-dosed antibiotics but also by de-energizing the efflux pumps used by the 

bacteria to escape antibiotic action. In conclusion, the solution to emerging antibiotic resistance 

will likely involve combination therapies of existing antibiotics and smart adjuvants, which re-

empower the antibiotic agent to become efficacious against the resistant strain of interest. 
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Adjuvant Ref Bacterial strain 

Enhanced 

antibiotic 

β-lactamase MICa     MICb (ADJ) 

1652 

S. aureus 

S. pyogenes 

E. coli 

P. aeruginosa 

AMP ND 

>200    3.13 (ND) 

>200    1.56 (ND) 

100      6.25 (ND) 

>200     6.25 (ND) 

(µ
g
/ m

L
) 

1753 

S. aureus 01A400 

S. epidermidis 01B116 

H. influenzae 54A042 

B. fragilis 78C004 

PENI G 

Penicillinase 

N.D 

N.D 

N.D 

200      1.56 (3.12) 

>25      1.56 (3.12) 

200      1.56 (1.56) 

200      3.12 (0.78) 

(µ
g
/m

L
) 

1854 

E. coli GN5482 

K. pneumoniae  IP1 

K. pneumoniae 25637 

E. coli CF3 

K. pneumoniae IP86 

E. coli KB10 

CAZ 

TEM-1 (A) 

TEM-2 (A) 

TEM-4 (A) 

TEM-8 (A) 

SHV-2 (A) 

PER-1 (A) 

4             0.5 (ND) 

16           0.5 (ND) 

32           0.5 (ND) 

64              2 (ND) 

64              1 (ND) 

>64            4 (ND) 

( µ
g
/m

L
 ) 

2055 

E. coli (EC113) ST 

131 

AMP 

PIP 

AZT 

FAZ 

CRO 

CAZ 

FEP 

CTX-M-27 

(A) 

>16             ≤8 (10) 

> 64          ≤16 (10) 

> 16            ≤1 (10) 

> 16              4 (10) 

> 32         <0.5 (10) 

8                 ≤1 (10) 

> 32            ≤4 (10) 

(µ
g
/m

L
 ) 



aMIC of the antibiotic alone; bMIC of the antibiotic in the presence of the adjuvant at the requested 

concentration (μg/mL in parentheses); AMP: ampicillin; PENI G: Benzylpenicillin; CAZ: 

ceftazidime; PIP: piperacillin; AZT: aztreonam; FAZ: cefazolin; CRO: ceftriaxone; FEP : 

cefepime ; IMP: imipenem; MEM: meropenem; ND: not determined. 

Table1. Mics of antibiotics in the presence of adjuvants 16-23 against Gram-negative bacteria 

2160 

K. pneumoniae N11-

2218 

MEM NDM-1 (B) 32                    1 (8) 
(µ

g
/m

L
 ) 

2361 

K. pneumoniae 

P. aeruginosa 

IMP 

KPC-2 (A) 

AmpC 

ND       4(12.5µM) 

ND        4(4.7 µM) 

(µ
g
/m

L
 ) 



 

aMIC of the antibiotic alone; bMIC of the antibiotic in the presence of the adjuvant at the 

requested concentration (μg/mL in parentheses); NOR: Norfloxacin; TET: Tetracycline; CHL: 

Chloramphenicol; CTX: Cefotaxime; Ery: Erythromycin; LEV: Levofloxacin; NOV: 

Novobiocin; RIF: Rifampicin; CIP: Ciprofloxacin; KAN: Kanamycin; OXA: Oxacillin; PIP: 

Piperacillin; CBN: Carbenicillin ; TRM: Trimethoprim; ND: not determined. 

Table 2. MIC of antibiotics in the presence of adjuvants 25-29 against E. aerogenes, E. coli and 

P. aeruginosa strains 

Adjuvant Ref 
Bacterial 

strain 

Targeted efflux 

pump 
Antibiotic 

MICa     MICb (ADJ) 

(µg/mL) 

2572 
E. aerogenes 

EA3  
AcrAB–TolC 

NOR 

TET 

CHL 

256   16 (0.2 mM) 

8      0.5 (0.2 mM) 

512     2 (0.2 mM) 

(µ
g
/m

L
) 

 

2673 

P. aeruginosa 

K1455 (PAO1-

nalβ)  

MexAB-OprM   

CTX 

ERY 

LEV 

NOV 

RIF 

TET 

64             8 (20) 

256         32 (20) 

2          0.25 (20) 

>2048   256 (20) 

16             2 (20) 

64             8 (20) 

(µ
g
/m

L
) 

 

2774 E. coli AcrAB-TolC 
ERY 

CHL 

128       16 (256) 

8             2 (256) 

(µ
g
/m

L
) 

 

2875 E. coli AG102 
 

AcrAB-TolC 

  

CHL 

CIP 

ERY 

KAN 

LEV 

OXA 

PIP 

TET 

24              6 (64) 

0.13        0.06 (2) 

128        16 (128) 

16                4 (2) 

0.13    0.03 (128) 

>650     650 (32) 

4               2 (32) 

8               2 (64) 

(µ
g
/m

L
) 

 

2976 
P. aeruginosa 

PAO1   
Mex-AB-OprM 

CBN 

CHL 

CIP 

NOV 

TET 

TRM 

64          64 (128) 

64          16 (128) 

1           0.5 (128) 

512       128(128) 

8              2 (128) 

128         32 (128) 

(µ
g
/m

L
) 

 



 

 

 

 

 

 

 

aMIC of the antibiotic alone; bMIC of the antibiotic in the presence of the adjuvant at the 

requested concentration (μg/mL in parentheses); AMI: Amikacin; GEN: Gentamicin; NEO: 

Neomycin; ERY: Erythromycin; NOV: Novobiocin. 

Table 3. MIC of antibiotics in the presence of adjuvants 31-33 against E. coli and P. aeruginosa 

strains 

 

 

Adjuvant Ref 

 

Bacterial strain 

 

Antibiotic 

 

MICa    MICb (ADJ) 

3186 

 

S. aureus 358 

 

 

 

P. aeruginosa 03 

 

 

 

E. coli 27 

AMI 

GEN 

NEO 

 

AMI 

GEN 

NEO 

 

AMI 

GEN 

NEO 

 

156.2      2.4 (64) 

312.5      2.4 (64) 

156.2      2.4 (64) 

 

312.5      2.4 (32) 

625         2.4 (32) 

78.1        2.4 (32) 

 

156.2      2.4 (64) 

625         2.4 (64) 

312.5      2.4 (64) 

(µ
g

/m
L

)      (µ
g

/m
L

)     (µ
g

/m
L

) 

32102 

E. coli ATCC 10798 

 

P. aeruginosa ATCC 27853 

ERY 

NOV 

 

NOV 

70               1(1.5) 

>500           1(0.8) 

 

70                  1(2) 

(µ
g

/ m
L

) 

33102 

E. coli ATCC 10798 

 

P. aeruginosa ATCC 27853 

ERY 

NOV 

 

NOV 

70                 1(5) 

>500          1(14) 

 

70               1(13) 

(µ
g

/ m
L

) 



 

 



aMIC of the antibiotic alone; bMIC of the antibiotic in the presence of the adjuvant at the 

requested concentration (μg/mL in parentheses); NOV: Novobiocin; ERY: Erythromycin; 

CHL: Chloramphenicol; CIP: Ciprofloxacin; TET: Tetracycline; FEP: cefepime; DOX:  

Doxycycline; ND: not determined. 

Table 4. Mics of antibiotics in the presence of adjuvants 34-44 against Gram-negative bacteria 

Adjuvant Ref Bacterial strain Antibiotic MICa      MICb (ADJ) 

34104 

 
E. coli 

NOV 

ERY 

128           1 (64) 

64             4 (64) 

µ
g

/m
L

 

35104 E. coli 
NOV 

ERY 

128            16 (8) 

64             16 (8) 

µ
g

/m
L

 

36110 

 

E. coli AG100 

 

 

 

 

P. aeruginosa PA01 

 

 

 

 

 

E. aerogenes ATCC 13048 

CHL 

CIP 

TET 

FEP 

ERY 
 

CHL 

CIP 

TET 

FEP 

ERY 
 

CHL 

CIP 

TET 

FEP 

ERY 

8            0.5 (0.4) 

0.25     0.03 (0.4) 

2        0.125 (0.4) 

0.5       0.06 (0.4) 

512       256 (0.4) 
 

512         16 (3.2) 

16           <1 (3.2) 

16             4 (3.2) 

8               1 (3.2) 

512       256 (3.2) 

  

4         0.25 (1.6) 

0.5     0.015 (1.6) 

2          0.25 (1.6) 

0.25     0.03 (1.6) 

512       128 (1.6) 

  µ
g

/m
L

                µ
g

/m
L

                 µ
g

/m
L

 

37111 
P. aeruginosa PAO1 

E. aerogenes EA289 
DOX 

16                 2 (2) 

40              0.5 (2) 

  µ
g

/m
L

 

38112 

 

E. aerogenes EA289 

P. aeruginosa PAO1 

K. pneumoniae KPC2   

DOX 

 

40      2 (2.5 µM) 

20      2 (2.5 µM) 

10       2 (2.5 µM) 

µ
g

/m
L

 

39112 

 

E. aerogenes EA289 

P. aeruginosa PAO1 

K. pneumoniae KPC2   

DOX 

 

40          2 (5 µM) 

20     2 (1.25 µM) 

10       2 (2.5 µM) 

µ
g

/m
L

 

43113 

E. aerogenes EA289 

P. aeruginosa PAO1 

K. pneumoniae KPC2   

DOX 

 

25        2 (6.25µM) 

50       2 (3.12 µM) 

ND     2 (3.12 µM) 

µ
g

/m
L

 

44115 P. aeruginosa PAO1  DOX 32            2 (1.22) 

µ
g

/m
L

 

 



 

Figure 1. Structure of -lactam antibiotics (1-2), streptomycin 3, erythromycin 4, sulfamidochrysoidine 5 

and vancomycin 6 

 



 

Figure 2. Antibiotics bacterial resistance mechanisms. A) The reduction of the membrane 

permeability prevents the entry of the antibiotic. B) Overexpression of pumps that expel the antibiotic 

outside of the cell. C) Modification of the antibiotic's target makes it unable to recognize it. D) Enzymatic 

inactivation of the antibiotic and loss of its activity 

 

 



 

Figure 3. Mechanisms of action of beta-lactams, their inhibitors and their adjuvants 



 

Figure 4. Structure of lactams 7-15 

 



 

Figure 5. Structure of derivatives 16-23 

 



 

Figure 6. Structure of derivatives 24-30 

 



 

Figure 7. Structure of Menadione 31, CSA-13 32 and CSA-8 33 



 

Figure 8. Structure of polyamino derivatives 34-44. 


