

Successful treatment and digestive decolonization of a patient with osteitis caused by a Carbapenemase-producing Klebsiella pneumoniae isolate harboring both NDM-1 and OXA-48 enzymes

Sophie Alexandra Baron, Nadim Cassir, Thibaut Mékidèche, Kodjovi Dodji Mlaga, Philippe Brouqui, Jean-Marc Rolain

▶ To cite this version:

Sophie Alexandra Baron, Nadim Cassir, Thibaut Mékidèche, Kodjovi Dodji Mlaga, Philippe Brouqui, et al.. Successful treatment and digestive decolonization of a patient with osteitis caused by a Carbapenemase-producing Klebsiella pneumoniae isolate harboring both NDM-1 and OXA-48 enzymes. Journal of Global Antimicrobial Resistance, 2019, 10.1016/j.jgar.2019.06.001. hal-02263571

HAL Id: hal-02263571 https://amu.hal.science/hal-02263571

Submitted on 20 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	Title: Successful	treatment and	digestive	decolonization	of a	patient w	ith osteitis	caused b	v a

- 2 Carbapenemase-producing Klebsiella pneumoniae isolate harboring both NDM-1 and OXA-
- 3 48 enzymes.
- 4 **Running title:** double carbapenemase-producing *K. pneumoniae* in osteitis
- 5 Authors: Sophie Alexandra Baron^{1,2,3}, Nadim Cassir^{1,2,3}, Thibaut Mékidèche^{1,2}, Kodjovi
- 6 Dodji Mlaga^{1,2}, Philippe Brouqui^{2,3,4} and Jean-Marc Rolain^{*1,2,3}.
- 7 Affiliations: ¹ Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie,
- 8 Marseille, France.² IHU Méditerranée Infection, Marseille, France.³ Assistance Publique des
- 9 Hôpitaux de Marseille, Marseille, France. ⁴ Aix Marseille Univ, IRD, VITROME, Faculté de
- 10 Médecine et de Pharmacie, Marseille, France.
- ^{*} Corresponding author: Jean-Marc Rolain, Aix Marseille Univ, IRD, APHM, MEPHI, IHU
- 12 Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin,
- 13 13385 Marseille CEDEX 05, France. Phone: (33) 4 91 32 43 75. Email: jean-
- 14 <u>marc.rolain@univ-amu.fr</u>
- 15 Keys words: Carbapenem-resistant Enterobacteriaceae, osteitis, NDM, OXA-48, Klebsiella
- 16 pneumoniae.
- 17 Summary word count: 208 <250
- 18 Word count: 1610 <2500
- 19 **References: 20 < 20**
- 20 Total <3
- 21 **Table: 1**
- 22 **Figures: 2**
- 23

- 24 Summary
- 25

26 **Objectives:** Carbapenem resistance in *Klebsiella pneumoniae* (CRKP) is an increasing problem worldwide and infections caused by this bacterium can be difficult to treat. Here we 27 28 reported the case of a patient from Romania hospitalized in Bulgaria after an accident trauma 29 that came in France for the treatment of an osteitis caused by a K. pneumoniae carrying both 30 *bla_{NDM-1}* and *bla_{OXA-48}*. 31 Method: The resistome of this extremely-drug-resistant bacterium was analyzed both with 32 phenotypic (large antibiotic susceptibility testing) and genomic method (genome sequencing). 33 The genetic environment of the two carbapenemases was studied. 34 **Results:** *K. pneumoniae* ST307 carrying both a *bla_{NDM-1}* gene and a *bla_{OXA-48}* gene located on 35 two different plasmids, an Inc L/M and an IncFII. Patient was successfully treated by a 36 combination of intravenous colistin (9 MUI, then 4.5 MUI 2 times/day), intravenous fosfomycin (4 g 3 times/day) and oral doxycycline (100 mg 2 times/day) for 3 months. Fecal 37 38 microbiota transplantation was successfully conducted for a stool carriage. 39 **Conclusion:** The ST307 type is becoming endemic in hospital environment and is frequently 40 associated with carbapenem resistance. Treatment of infection caused by multi-drug resistant 41 bacteria are a clinical challenge and the use of old antibiotics associated with a screening and 42 decolonization of the reservoirs can be an efficient therapeutic alternative.

43

44 **1. Introduction**

45 Carbapenemase producing Enterobacteriaceae (CPE) have become, in the last decade, a 46 major concern worldwide, particularly in healthcare settings (1). Carbapenemases are the 47 most powerful β -lactamases, being able to hydrolyze almost all β -lactams. Of all the 48 carbapenemases, the OXA-48 carbapenemase is currently the one that is spreading the most 49 rapidly in many European countries (1). In France, the first OXA-48-producing isolate was a Klebsiella pneumoniae identified in Paris in 2009 from the sputum of a Tunisian patient (2). 50 51 Subsequently, OXA-48-producing Enterobacteriaceae isolates were found in patients 52 transferred from countries around the Mediterranean sea (1), causing large hospital outbreaks 53 in western-European countries (1). 54 Otherwise, isolates containing New Delhi metallo-β-lactamase (NDM-1) were circulating in 55 India as early as 2006, two years before the first European case was identified (3). Since 2008, 56 there has been repeated import of NDM-1-positive bacteria from the Indian subcontinent to 57 Europe, in addition to being endemic in the Middle East, Northern Africa, and the Balkans 58 (3). The first identification of NDM-1 in France was in 2009, corresponding to an imported 59 *Escherichia coli* isolate from India (4). Two years later, the first reported case of community 60 acquired NDM-1 was identified in southern France, highlighting the risk of autochthonous 61 acquisition (5).

We report here the case of a patient who traveled for medical care from Bulgaria to France. This patient had an osteitis caused by a carbapenemase-producing *K. pneumoniae* harboring both *bla_{NDM}* and *bla_{OXA-48}* genes. He also had a stool carriage of a *K. pneumoniae* that was also carrying the two genes. Genome of this extremely-drug-resistant isolate was sequenced and analyzed. The management of the infection included surgical and antibiotic treatment and a fecal microbiota transplantation which are reported here.

68

69 2. Material and methods

70 **2.1. Case report**

71 At the end of 2015, a 43-year-old man was admitted to our hospital in the south of France 72 suffering from septic pseudarthrosis of his left arm and left femur. Three years before, in 73 Romania, the patient had had a car accident that resulted in both left humeral and open left 74 femoral fractures. He underwent a humeral plate osteosynthesis and external fixation of his 75 femur. Fifteen days later, the patient was transferred to a tertiary hospital in Bulgaria for fever 76 and suppuration of the leg wound (Figure 1). He then underwent a second surgical 77 intervention for debridement and external fixation replacement. Two months before his 78 admission in France, due to an infection of the pin site, a second external fixation replacement 79 was performed. Despite several lines of empirical antibiotic therapy, the infection persisted, 80 and the patient decided to travel to France for medical care. In our hospital, all osteosynthesis 81 material was removed and bone samples were taken and cultured in the laboratory with 82 standard procedures.

83

2.2. Microbiological procedures

84 Samples were inoculated on blood agar medium (Biomérieux, Marcy l'Etoile, France) and 85 chocolate polyvitex agar under aerobic atmosphere at 37°C for 48h. Additionally, one blood 86 agar plate was inoculated under anaerobic conditions for 10 days at 37°C. Screening for stool 87 carriage was done using the ChromeID CARBA SMART medium (Biomérieux, France). 88 Bacterial identification was performed by Matrix Assisted Laser Desorption Ionisation - Time 89 of Flight (MALDI-TOF) as previously described (6). Antimicrobial susceptibility testing 90 testing was performed according the European Committee on Antimicrobial Susceptibility 91 Testing (EUCAST) recommendation. Minimum Inhibitory Concentration (MIC) of tigecycline and minocycline, doxycycline and Imipenem were determined using E-test 92 93 (Biomérieux, France) while colistin MIC was obtained using the UMIC microdilution method 94 (Biocentric, Bandol, France). Real-time PCR of the carbapenemase genes (*blaoxA-48, blaNDM*,
95 *bla_{KPC}*) was performed on every strain. Conjugation test was performed in an azide-resistant
96 *E. coli* J53 strain. Transconjuguants selection was done on Luria Bertani agar (Beckton
97 Dickinson, Le Pont de Claix, France) supplemented with 120µg/mL sodium azide and
98 4µg/mL ertapenem. Carbapenemases PCR performed on transconjuguants confirmed the
99 presence of the two carbapenemase genes.

100

2.3. Genome sequencing and analysis

101 The genome of one multi-drug-resistant (MDR) K. pneumoniae KP_DC isolated from the 102 articular liquid (GenBank accession no. NJGM0000000) was sequenced by Miseq 103 technology (Illumina Inc, San Diego, CA, USA) with a paired-end strategy. Genome was 104 assembled with A5 software (7), aligned with Mauve (8) to the reference strain ATCC43816 105 KPRR (genbank accession number CP009208.1) and annotation was performed using Prokka 106 (9) and Arg-annot (10) for the research of antibiotic resistance genes. Plasmid were found 107 using PlasmidSeeker (11) and then reconstitute by mapping the reads of our genome with the 108 reference sequence found with PlasmidSeeker using CLC Genomics Workbench version 7.5 109 (Qiagen, Hilden, Germany). The FAB formula of the IncF plasmid was determined using the 110 Center for Genomic Epidemiology platform (https://cge.cbs.dtu.dk/).

111 **3. RESULTS**

Both bone biopsies from the humerus and the femur were positive for a carbapenemase-

113 producing K. pneumoniae. Screening for stool carriage also found a carbapenemase-

114 producing K. pneumoniae. All isolates remained susceptible to fosfomycin, nitrofurantoin,

- 115 tigecycline, minocycline and colistin (Table 1). All these isolates harbored both NDM and
- 116 OXA-48 genes, confirmed by PCR (Table 1). We started a treatment combining intravenous
- 117 colistin (9 MUI, then 4.5 MUI 2 times/day), intravenous fosfomycin (4 g 3 times/day) and

118 oral doxycycline (100 mg 2 times/day) for 3 months (Figure 1). No adverse effects were 119 observed during the treatment. The kidney and liver functions, which were normal before 120 treatment, remained unchanged. Fecal microbiota transplantation (FMT) was performed on 121 day 10 of hospitalization in our ward. In brief, as previously described (12), an anonymous, 122 fully screened, stool donor was used for FMT. The patient was administered a bowel lavage 123 followed by four doses of oral gentamicin (100 mg) and colistin (2.5 MIU) over 24 h prior to 124 FMT. Fifty grams of donor stool was homogenized and diluted in 0.9% NaCl, and 400 mL 125 was administered by nasogastric tube. No adverse events were observed. The patient was 126 placed under contact precaution until three consecutive weekly collected stool samples were 127 negative for carbapenemase-producing isolate. Control stool samples were still negative 12 128 months later. The patient recovered with bone consolidation and wound healing after a 12-129 months follow-up.

130 The genome of the *K. pneumoniae* KP_DC isolate was assembled into 71 contigs with lengths 131 ranging from 919 to 733,430 bp and a GC content of 57.4 %. 92.3% was found to be genomic 132 DNA but 7.4% of the contig did not map with the reference strain K. pneumoniae MGH78578 133 (NC_009648.1). In silico Multi Locus Sequence Typing (MLST) showed that this strain 134 belonged to the ST307 type. MLST sequencing of the four other isolates with no available 135 genome shows they also belonged to ST307. An IncFII and an IncL/M plasmids were found 136 using PlasmidSeeker (11). Conjugation tests were positive for the two carbapenemase genes 137 as well as for *blactx-m-15* and *blashy-28* genes.

138 The IncL/M conjugative plasmid that harbored the *bla*_{OXA-48} gene was 61,682 bp length, with

an average G+C content of 51.02% (p2G1140) (Figure 2a). Comparison with the reference

140 plasmid pOXA-48 (accession number JN626286) found 98% identity and 98% query

141 coverage. The genetic environment of the bla_{OXA-48} gene includes a *Tn1999*-like transposon

142 inserted within a *tir* gene, flanked on both sides by a direct repeat sequence of 9 bp

143	(CGTTCAGCA). In the 3'-5' direction from the <i>blaoxA-48</i> gene, we found the usual <i>mucB</i> -
144	mucA-pemK-pemI gene pattern. The Tn1999-like transposon was flanked on either side by
145	two imperfect insertion sequences (IS): two copies of IS10A on the left and both IS10A and
146	IS1 on the right (Figure 2a).
147	The conjugative IncFII plasmid (p1G1140) was a IncFII Y4:A-:B36 carrying a <i>bla_{NDM-1}</i> gene
148	(Figure 2b). This plasmid shared 99% cover and 99% identity with the reference plasmid
149	(pRJF866) for a 110,787 bp length, with an average G+C content of 54.72%. The genetic
150	environment of bla_{NDM-1} gene was made by two IS5 genes with several insertion sequences on
151	each extremity. This transposon also carried a dihydropteroate synthase (Sul1) involved in
152	sulfonamide resistance, a 16S rRNA methyltransferase (RmtC) responsible for

aminoglycoside resistance and a *ble_{MBL}* gene leading to bleomycin resistance (Table 1).

154 **4. DISCUSSION**

153

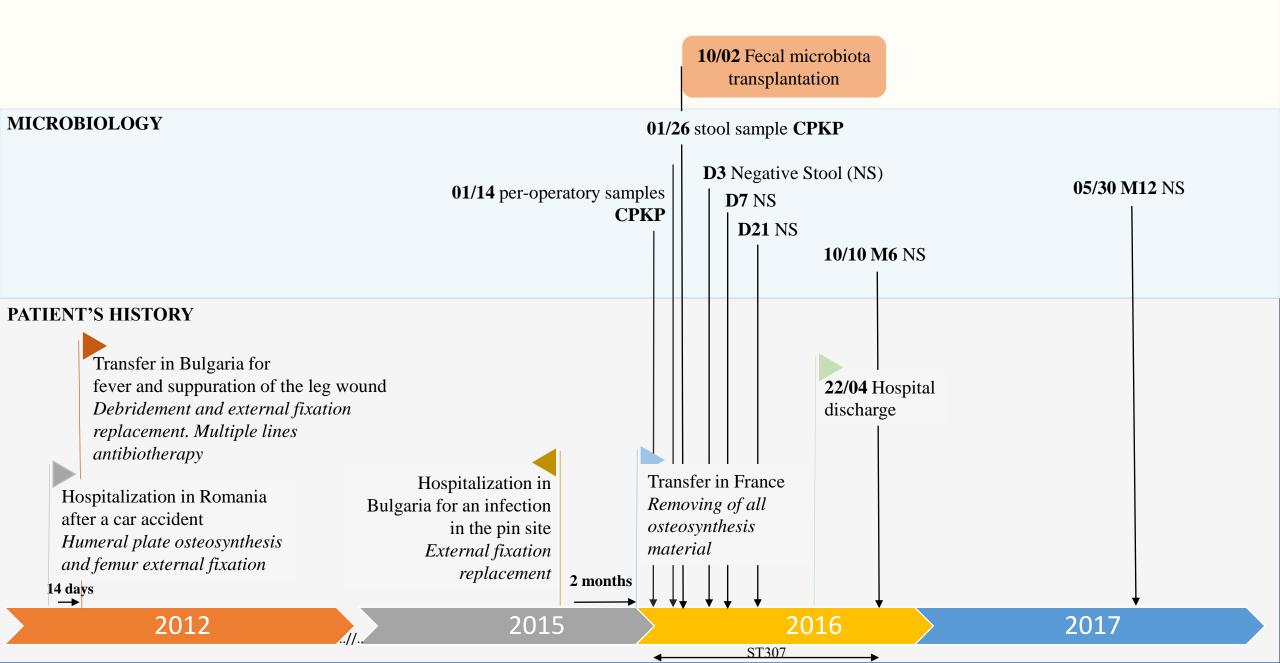
155 Prior surgery and extended hospital stays in countries with high levels of antimicrobial 156 resistance, as well as the presence of wounds, are recognized as risk factors for MDR 157 organisms acquisition (1,13). Antibiotic selection pressure may be an additional factor that 158 influences colonization with these organisms. In a recent case-control study, prior use of 159 piperacillin-tazobactam, a carbapenem, a quinolone, or metronidazole was significantly 160 associated with infections caused by carbapenemase-producing enterobacteria (14). However, 161 the cumulative number of prior antibiotic exposures appears to be more critical than the use of 162 a specific class of antibiotics (13). This highlights the importance of screening the digestive 163 colonization by MDR organisms directly upon admission to hospitals for high risk patients, 164 especially in patients who have received healthcare in endemic countries or epidemic facilities 165 (13).

Old antibiotics (*i.e.*, colistin, fosfomycin, tetracyclines, mecillinam, temocillin, thiamphenicol,
pristinamycin...) have been increasingly reused in the last few years, with rising numbers of

168	clinical studies evaluating their efficacy for the treatment of multidrug-resistant bacterial
169	infections, and pharmacokinetic/pharmacodynamic studies reassessing their optimal dosing
170	(15). But despite the evidence that these old antibiotics are still effective, mostly available as
171	generics, they are not universally marketed (16). Our patient was successfully treated with
172	Fosfomycin despite the presence of a fosfomycin resistance gene <i>fosA</i> in the genome of the
173	sequenced isolate. The fosA gene is widely distributed in the Klebsiella pneumoniae species
174	and conferred a Fosfomycin MIC to approximatively 24 mg/L, allowing its use in clinical
175	practice (MIC cut-off according to EUCAST guidelines = 32 mg/L)
176	It has been shown that stool carriage of CPE could be extended for as long as 40 months (17).
177	Fecal microbiota transplantation has been proposed as an efficient way of reducing the
178	duration of colonization by CPE, as it has emerged as therapy for MDR bacterial
179	decolonization (12). It was successfully used in our case, since fecal samples were still
180	negative one year later.
180 181	negative one year later. The ST307 appeared in literature in 2013 from strains isolated from clinical samples between
181	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between
181 182	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s
181 182 183	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s and spread worldwide (18). This clone has been frequently associated with ESBL and
181 182 183 184	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s and spread worldwide (18). This clone has been frequently associated with ESBL and carbapenemase genes (18) and is becoming prevalent in hospital environment.
181 182 183 184 185	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s and spread worldwide (18). This clone has been frequently associated with ESBL and carbapenemase genes (18) and is becoming prevalent in hospital environment. Double carbapenemases-producing bacteria have been increasingly reported in the world (19).
181 182 183 184 185 186	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s and spread worldwide (18). This clone has been frequently associated with ESBL and carbapenemase genes (18) and is becoming prevalent in hospital environment. Double carbapenemases-producing bacteria have been increasingly reported in the world (19). This acquisition of more than one carbapenemase seems to increase MIC of imipenem (19),
181 182 183 184 185 186 187	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s and spread worldwide (18). This clone has been frequently associated with ESBL and carbapenemase genes (18) and is becoming prevalent in hospital environment. Double carbapenemases-producing bacteria have been increasingly reported in the world (19). This acquisition of more than one carbapenemase seems to increase MIC of imipenem (19), limiting its use even in synergistic association with another antibiotic. However, the presence
181 182 183 184 185 186 187 188	The ST307 appeared in literature in 2013 from strains isolated from clinical samples between 2007 and 2010 in Texas but recent analyzes showed that this clone emerged in the mid-1990s and spread worldwide (18). This clone has been frequently associated with ESBL and carbapenemase genes (18) and is becoming prevalent in hospital environment. Double carbapenemases-producing bacteria have been increasingly reported in the world (19). This acquisition of more than one carbapenemase seems to increase MIC of imipenem (19), limiting its use even in synergistic association with another antibiotic. However, the presence of a double carbapenemase can have no impact on Imipenem MIC (19), as it depends on the

192	Acknowledgments
193	We want to thank the laboratory technicians at the Institut Hospitalo-Universitaire (IHU) for
194	their technical assistance.
195	
196	Declarations
197	Funding: This work was supported by the French Government under the « Investissements
198	d'avenir » (Investments for the Future) program managed by the Agence Nationale de la
199	Recherche (ANR, fr: National Agency for Research), (reference: Méditerranée Infection 10-
200	IAHU-03)
201	Competing Interests: None
202	Ethical Approval: Not required
203	

205		REFERENCES
206		
207 208	1.	Stewart A, Harris P, Henderson A, Paterson D. Treatment of Infections by OXA-48- Producing <i>Enterobacteriaceae</i> . Antimicrob Agents Chemother. 2018 Nov;62(11).
209 210 211	2.	Cuzon G, Naas T, Lesenne A, Benhamou M, Nordmann P. Plasmid-mediated carbapenem-hydrolysing OXA-48 beta-lactamase in <i>Klebsiella pneumoniae</i> from Tunisia. Int J Antimicrob Agents. 2010 Jul;36(1):91–3.
212 213	3.	van Duin D, Doi Y. The global epidemiology of carbapenemase-producing <i>Enterobacteriaceae</i> . Virulence. 2016 Aug 11;8(4):460–9.
214 215	4.	Poirel L, Hombrouck-Alet C, Freneaux C, Bernabeu S, Nordmann P. Global spread of New Delhi metallo- β -lactamase 1. Lancet Infect Dis. 2010 Dec;10(12):832.
216 217 218	5.	Nordmann P, Couard J-P, Sansot D, Poirel L. Emergence of an autochthonous and community-acquired NDM-1-producing <i>Klebsiella pneumoniae</i> in Europe. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012 Jan 1;54(1):150–1.
219 220 221 222	6.	Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009 Aug 15;49(4):543–51.
223 224	7.	Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2015 Feb;
225 226	8.	Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004 Jul;14(7):1394–403.
227	9.	Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul;
228 229 230	10.	Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212–20.
231 232	11.	Roosaare M, Puustusmaa M, Möls M, Vaher M, Remm M. PlasmidSeeker: identification of known plasmids from bacterial whole genome sequencing reads. PeerJ. 2018;6:e4588.
233 234 235	12.	Lagier JC, Million M, Fournier PE, Brouqui P, Raoult D. Faecal microbiota transplantation for stool decolonization of OXA-48 carbapenemase-producing <i>Klebsiella pneumoniae</i> . J Hosp Infect. 2015 Jun;90(2):173–4.
236 237 238	13.	Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in <i>Klebsiella pneumoniae</i> and other <i>Enterobacteriaceae</i> : an evolving crisis of global dimensions. Clin Microbiol Rev. 2012 Oct;25(4):682–707.
239 240 241	14.	Garbati MA, Sakkijha H, Abushaheen A. Infections due to Carbapenem Resistant <i>Enterobacteriaceae</i> among Saudi Arabian Hospitalized Patients: A Matched Case-Control Study. BioMed Res Int. 2016;2016:3961684.


- Cassir N, Rolain J-M, Brouqui P. A new strategy to fight antimicrobial resistance: the
 revival of old antibiotics. Front Microbiol. 2014;5:551.
- Pulcini C, Mohrs S, Beovic B, Gyssens I, Theuretzbacher U, Cars O, et al. Forgotten
 antibiotics: a follow-up inventory study in Europe, the USA, Canada and Australia. Int J
 Antimicrob Agents. 2017 Jan;49(1):98–101.
- Lübbert C, Lippmann N, Busch T, Kaisers UX, Ducomble T, Eckmanns T, et al. Longterm carriage of *Klebsiella pneumoniae* carbapenemase-2-producing *K pneumoniae* after
 a large single-center outbreak in Germany. Am J Infect Control. 2014 Apr;42(4):376–80.
- 18. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR, Judd LM, et al.
 Emergence and rapid global dissemination of CTX-M-15-associated *Klebsiella pneumoniae* strain ST307. J Antimicrob Chemother. 2018 Dec 4;
- Meletis G, Protonotariou E, Papadopoulou D, Skoura L. Comment on: The
 Carbapenemase Menace: Do Dual Mechanisms Code for More Resistance? Infect
 Control Hosp Epidemiol. 2016;37(11):1392–4.
- 256

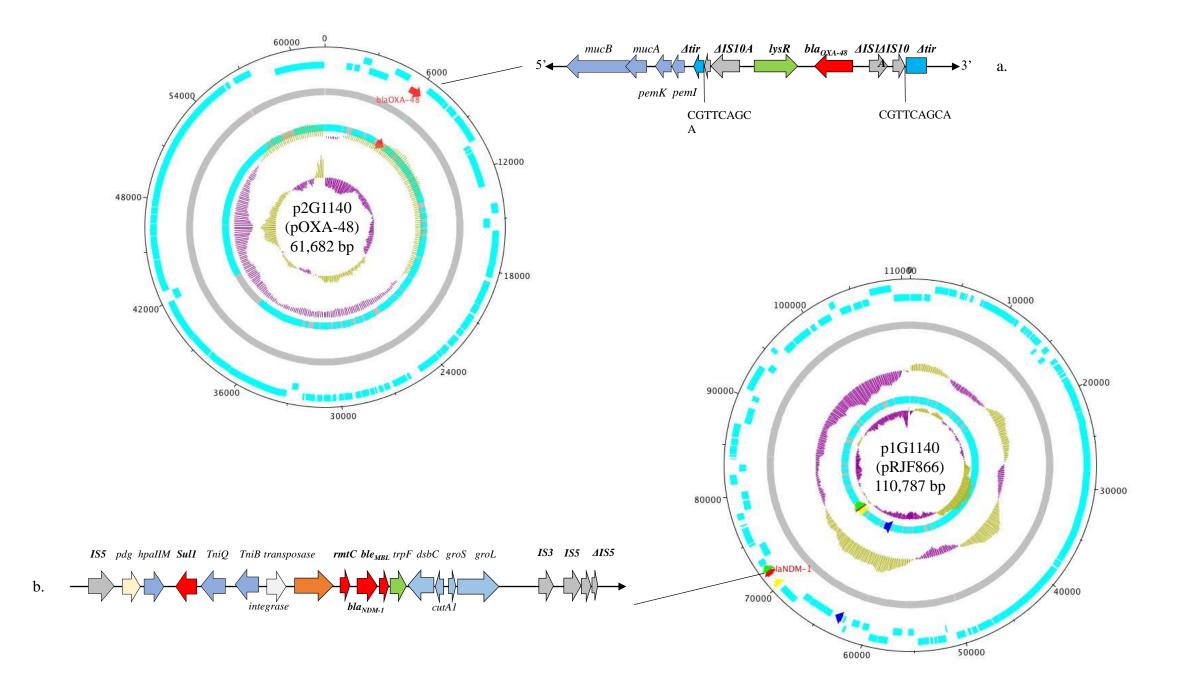

257	TABLES AND FIGURES
258	
259	Number of tables: 1
260	Table 1. Antibiotic susceptibility testing of the five strains of <i>Klebsiella pneumoniae</i> isolated
261	in the per-operatory samples and in stool.
262	Number of figures: 2
263	Figure 1. Timeline of osteoarticular infection in our patient.
264	Figure 2. Representation of plasmids carrying carbapenemase genes compared to plasmids of
265	reference. a. Genetic environment of the plasmid-mediated <i>bla_{oxa-48}</i> gene and comparison with
266	the reference plasmid pOXA-48 (accession number JN626286). b. Genetic environment of the
267	plasmid-mediated bla_{NDM-1} gene and comparison with the reference plasmid pRJF866
268	(accession number KF732966).
269	

Table 1. Antibiotic susceptibility testing, resistance genes and MLST results of the five strains of *Klebsiella pneumoniae* isolated in the per-operatory samples and in stool.

Isolate number	Strain 1 14/01/2016 Humeral bone biopsy 1		Strain 2 14/01/2016 Humeral bone biopsy 2		Strain 3 (genome) 14/01/2016 Humeral bone biopsy 3		Strain 4 14/01/2016 Femoral bone biopsy		Strain 5 26/01/2016 Stool		
Date of isolation											
Nature of sample											
Antibiotic	Ø (mm)	S/I/R	Ø (mm)	S/I/R	Ø (mm)	S/I/R	Ø (mm)	S/I/R	Ø (mm)	S/I/R	
Amoxicillin	0	R	0	R	0	R	0	R	0	R	
Amoxicillin/Clavulanic acid	0	R	0	R	0	R	0	R	0	R	
Piperacillin/Tazobactam	0	R	0	R	0	R	0	R	0	R	
Ceftriaxone	0	R	0	R	0	R	0	R	0	R	
Cefepim	9.9	R	9.9	R	9.9	R	10.4	R	10.8	R	
Ertapenem	13.3	R	12.3	R	12.3	R	13.2	R	13.6	R	
Imipenem	18	Ι	17.4	Ι	18	Ι	18.8	Ι	17.9	Ι	
Gentamicin	13.6	R	0	R	0	R	13.8	R	0	R	
Amikacin	0	R	0	R	0	R	12.7	R	0	R	
Ciprofloxacin	10.3	R	16	R	15.9	R	0	R	16.5	R	
Trimethoprime/Sulfamethoxazole	0	R	0	R	28.1	R	0	R	0	R	
Fosfomycin	21.8	S	19.2	S	20.2	S	20.9	S	22.2	S	
Nitrofurantoin	18.8	S	17.8	S	17.5	S	18.1	S	19.3	S	
MIC Antibiotic (µg/mL)											
Colistin (microdilution method)	0.25	S	0.25	S	0.25	S	0.25	S	0.25	S	
Imipenem (E-test)	8	Ι	8	Ι	6	Ι	1.5	S	8	Ι	
Minocycline (E-test)	2	S	1.5	S	1.5	S	2	S	1	S	
Tigecycline (E-test)	1.5	S	1	S	1	S	1.5	S	1	S	
Doxycycline (E-test)	16	-	2	-	2	-	16	-	2	-	
Resistome											
Carbapenems	blaND	M-1	blaND	blaNDM-1 blaN		blaNDM-1		blaNDM-1		blaNDM-1	
-	blaOXA-48		blaOXA-48		blaOXA-48		blaOXA-48		blaOXA-48		
Other B-lactams	ND		ND		bla _{CTX-M-15}		ND		ND		
					bla _{CTX-M-132}						
					bla _{SH}	V-28					
					amp	Н					
Aminoglycosides	ND	ND		ND		rmtC		ND		ND	
					strl	8					
Fluoroquinolone	ND)	ND)	oqxA/ o	oqxB	NE)	ND		
Sulfamides	ND)	ND)	Sul)	ND		
Fosfomycine	ND		ND		fosA		ND		ND		
Sequence Type ¹	307		307	7	30		307		30)7	

¹ According to the http://bigsdb.pasteur.fr/klebsiella/klebsiella.html database

