

The multiple facets of the Hsp90 machine

Laura Blair, Olivier Genest, Mehdi Mollapour

▶ To cite this version:

Laura Blair, Olivier Genest, Mehdi Mollapour. The multiple facets of the Hsp90 machine. Nature Structural and Molecular Biology, 2019, 26 (2), pp.92-95. 10.1038/s41594-018-0177-7. hal-02273116

HAL Id: hal-02273116 https://amu.hal.science/hal-02273116

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The multiple facets of the Hsp90 machine 1 2 3 4 Laura J. Blair¹, Olivier Genest², Mehdi Mollapour^{3,4,5} 5 ¹Department of Molecular Medicine, USF Health Byrd Institute, University of South Florida, 6 Tampa, FL 33613, USA ²Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille, 7 8 France ³ Department of Urology, 9 ⁴ Department of Biochemistry and Molecular Biology, 10 ⁵ Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA 11 12 Correspondence: lblair@health.usf.edu; ogenest@imm.cnrs.fr; mollapom@upstate.edu 13 14

The Ninth International Conference on the Hsp90 Chaperone Machine concluded in October 2018, in Leysin, Switzerland. The program highlighted findings in various areas, including integrated insight into molecular mechanism of Hsp90, cochaperones, and clients' structure and function.

19 Heat shock protein-90 (Hsp90) is a molecular chaperone critical for the folding, stability, and activity of client proteins ¹. Hsp90 and its orthologs, including bacterial HtpG, mitochondrial 20 21 TRAP1 and endoplasmic reticulum Grp94, exist as dimers, hydrolyze ATP, and cycle between 22 distinct conformational states. Hsp90 preferentially binds proteins in near native states facilitating their remodeling for protein interactions and signaling. At the 9th International 23 Conference on the Hsp90 Chaperone Machine approximately one-third of the attendees shared 24 25 their data on Hsp90 structure and function through short talks (Figure 1). Here, we distill and 26 summarize their findings.

28 Keynote Speaker

To open the meeting, the keynote speaker Paola Picotti (Institute of Molecular Systems Biology, Zurich, Switzerland), presented a recently developed mass spectrometry method that enables analysis of protein structural changes on a proteome-wide scale in complex biological extracts. The approach can detect subtle alterations in secondary structure content, larger scale movements such as domain motions, and more pronounced transitions between folding states and aggregation events ². Hsp90 chaperone machinery appears to be a good candidate for further analysis by this method.

37 Hsp90 Dynamics

38 Carefully orchestrated conformational changes in Hsp90 are essential for its association with 39 cochaperones and client proteins. David Agard (University of California, San Francisco, 40 California, USA) provided the first atomic details for the Hsp90/Hsp70/HOP/glucocorticoid 41 receptor (GR) client-loading complex. Unexpectedly, this heterocomplex contains two Hsp70s 42 both in the ADP-bound state, one of which appears to be involved in the delivery of GR, while 43 the other supports the cochaperone HOP. GR is largely intact, but like in the Hsp90:Cdc37:kinase complex³, part of GR is unfolded, and threaded through the lumen of a 44 45 partially closed Hsp90 dimer, where it interacts with a newly revealed client binding site on 46 HOP. Together this suggests a common mechanism for Hsp90:client recognition.

47 Stefan Rüdiger (Utrecht University, the Netherlands) revealed that Hsp70 binds clients 48 through highly hydrophobic regions that provide protection from misfolding. Subsequently, 49 Hsp90 breaks this interaction and allows clients to self-fold into a native state. Cochaperones are 50 not necessary for folding, but mainly work to slow this process. Thorsten Hugel (University of 51 Freiburg, Germany) described cooperation between nucleotide and the two amino-terminal ATP-52 binding pockets in an Hsp90 dimer using multicolor, single-molecule Förster resonance energy 53 transfer (FRET). This novel technique adds an additional dimension that allowed for the 54 discovery that ATP and Aha1 independently, but synergistically, promote closing of the nucleotide pocket, but work antagonistically to affect subsequent reopening ⁴. Katarzyna Tych 55 56 from Matthias Rief's Lab (Technische Universität München (TUM), Munich, Germany) 57 described the dynamics of Hsp90 carboxy-terminal dimerization using single molecule optical 58 tweezers. Interestingly, Hsp90 carboxy-terminal association has three dissociation rates that are 59 controlled by the presence of ATP, which stabilizes this interaction by eliminating the weakest

60 interaction state.

61 Vinay Dahiya from Johannes Buchner' group (TUM, Munich, Germany) described the chaperoning mechanism of Hsp70 and Hsp90 for "the guardian of the genome," p53. Hsp70 62 63 together with Hsp40 unfolds and inactivates p53. The Hsp70 NEF, Bag1 supports the release of 64 p53 from Hsp70 and, in coordination with HOP, Hsp90 and ATP promotes the folding of p53 65 and restores its DNA binding activity. Shannon Doyle from Sue Wickner's Lab (NCI, NIH, 66 Bethesda, Maryland, USA) showed that Hsp90 and Hsp70 directly interact in both Escherichia 67 coli (E. coli) and yeast. The region of interaction on Hsp90 involves residues in the middle-68 domain that also interact with several cochaperones and clients, while the interaction region on Hsp70 utilizes residues in the J-protein binding region of Hsp70⁵. 69

70

71 Hsp90 Phosphorylation and Regulation

Hsp90 and its cochaperones are subject to post-translational modifications (PTMs) including phosphorylation. Ioannis Gelis (University of South Florida, Tampa, Florida, USA) demonstrated that during the chaperone cycle, Hsp90 phosphorylation occurs in a cochaperone regulated manner. This is exemplified by the Hsp90/Cdc37 heterocomplex, in which the phosphorylation of Cdc37 primes Hsp90 for phosphorylation of tyrosine 197, and controls disassembly of the client recruitment complex. Thus, Hsp90 cochaperone complexes are highly dynamic and highly regulated at many steps throughout the chaperone cycle ⁶.

Matthias Mayer (Universität Heidelberg, Germany) revisited previous works on PTMs of Hsp90 and how they fine tune Hsp90 function. His data based on yeast growth assays revealed that some phosphomimetic mutations of Hsp90 grow more efficiently than the wild-type Hsp90 and more potently activate steroid hormone receptors, apart from GR. This supports the idea that

PTMs can tune Hsp90 specificity for chaperoning specific clients, even those that evolved fromthe same gene.

85

86 Structure and function of Hsp90 Orthologs

Dan Gewirth (Hauptman-Woodward Institute, Buffalo, New York, USA) presented data on the structure of the Pre-amino (Pre-N) domain of Grp94, the endoplasmic reticulum (ER) Hsp90, along with functional data showing its role in client protein maturation. The Pre-N domain regulates the ATPase activity of the chaperone and appears to functionally substitute for cochaperones of Hsp90, which are missing in the ER⁷.

92 Olivier Genest (CNRS, Aix Marseille University, France) showed that Hsp90 is essential 93 under heat stress in the aquatic bacterium *Shewanella oneidensis*⁸. He found that TilS, a tRNA 94 modifier, is a client of Hsp90 and that an interplay takes place between folding by Hsp90 and 95 degradation by the protease HslUV to finely regulate the level of TilS.

96

97 Modulation of Hsp90 by Cochaperones

The chaperone function of Hsp90 is tightly regulated by cochaperones. Pierre Goloubinoff (University of Lausanne, Switzerland) proposed Hsp70 as the major cochaperone of Hsp90. Deletion studies in *E. coli* demonstrate that, unlike the deletion of Hsp70/Hsp40, which upregulated many chaperones and proteases while suppressing metabolic and respiratory enzymes, deletion of *E. coli* Hsp90 did not dramatically impact protein levels. This work also revealed that Hsp90 promotes the degradation of aggregation-prone clients of Hsp70/Hsp40 through the HsIUV protease.

105

Kaushik Bhattacharya from Didier Picard's group (University of Geneva, Geneva,

Switzerland) addressed the question of the importance of the HOP protein in eukaryotes ⁹. He 106 107 found that the complex Hsp70-HOP-Hsp90 physically interacted with the proteasome. Although 108 in the absence of HOP the proteasome activity is reduced, he showed that proteostasis is 109 maintained by a "super-chaperone" complex minimally consisting of Hsp90, Hsp70, a J-protein 110 and a nucleotide exchange factor, resembling the chaperone complex found in prokaryotes. 111 Michael Reidy from Dan Masison's group (NIDDK, NIH, Bethesda, Maryland, USA) reported 112 that Sti1 (HOP) has two distinct functions for yeast Hsp90. The first function is to connect 113 Hsp70 to Hsp90 by binding directly to both chaperones. The second function is to facilitate 114 transfer of clients from Hsp70 to Hsp90 by priming Hsp90 for client loading.

115 The R2TP complex is a cochaperone of Hsp90 that includes RuvBL1 and RuvBL2, two AAA+ proteins involved in cancer progression ¹⁰. Walid Houry (University of Toronto, Toronto, 116 117 Canada) developed a screen to find inhibitors of the RuvBL2 protein. He successfully identified 118 a compound that inhibits RuvBL2. Chris Prodromou (University of Sussex, Brighton, UK) 119 described the 3D structure of the yeast and human R2TP complex that was recently solved using X-ray crystallography and single-particle EM¹¹. These structures revealed the importance of the 120 121 Hsp90 cochaperone complex as a hexamer-ring and that in yeast, binding of a single Tah1 122 coupled to Pih1 could promote Rvb1p-Rvb2p ATPase activity. Philippe Meyer (Sorbonne 123 Université, CNRS, Paris, France) presented the crystal structure of the human RPAP3 in 124 complex with PIH1D1, important cochaperones in the R2TP complex that regulate Hsp90 125 activity. This work revealed that the TPR2 domain in RPAP3 recruits Hsp90, which stimulates 126 Hsp90 ATPase activity in synergy with Aha1. This stimulation activity is abolished if the amino-127 terminus of RPAP3 is deleted.

128

Markus Zweckstetter (DZNE, Göttingen, Germany) described the 3D structure of Hsp90

129 in complex with misfolded transthyretin, which was similar to the binding previously described for tau¹². The impact of cochaperones on Hsp90 structure was also described using the example 130 of FKBP51, which binds to all three domains of Hsp90 with varying affinities and results in 131 132 reduced ATPase activity by stabilizing an open conformation of the amino-terminal domain. 133 When bound to Hsp90, the catalytic site of FKBP51 remains accessible supporting the idea that 134 Hsp90 likely acts as a scaffold to support the functional interaction of misfolded proteins with 135 cochaperones. Mehdi Mollapour (SUNY Upstate Medical University, Syracuse, New York, 136 USA) described the cooperative function of new cochaperones, Tsc1 and FNIP1/2. They work 137 cooperatively to decelerate Hsp90 chaperone cycle and play a role in the chaperoning of both kinase and non-kinase clients ¹³. He also showed how phosphorylation, SUMOylation and 138 139 ubiquitination of the cochaperone Protein Phosphatase-5 (PP5) regulate its activation, substrate 140 binding and degradation in cancer.

142 Moonlighting Functions of Hsp90

Several newly emerged moonlighting functions of Hsp90 at the nucleus and plasma membrane were revealed at this meeting. Brian Freeman (University of Illinois, Urbana, Illinois, USA), using an elegant single cell approach with a fluorescently marked DNA locus, demonstrated how Hsp90 is involved in chromosome motion within interphase cells. He showed that Hsp90 and p23 keep ARP-containing chromatin remodelers in a dynamic state allowing them to interact with target gene promoters, in turn directing actin polymer formation and chromosome motion.

149 Gergely Lukacs (McGill University, Montreal, Canada) showed that both eukaryotic 150 (Hsc70 and Hsp90) and prokaryotic chaperone (DnaK) systems can reshape the conformational 151 energetics of mutant CFTR channel final fold towards that of the wild-type at the single 152 molecule level and in cells. This mechanism has implications in the regulation of metastable 153 ABC-transporters and other membrane proteins. Dragana Vidovic, from Ineke Braakman's group 154 (Utrecht University, The Netherlands) reported that Hsp90 is required for a crucial step in 155 folding of CFTR. More specifically Hsp90 is involved in folding of the CFTR nucleotide-156 binding domain. Wild-type CFTR in the presence of compromised Hsp90 function is folded like 157 the pathogenic mutant CFTR Δ F508. Michael Heider and Vanesa Fernandez-Saiz from Florian 158 Bassermann's Lab (TUM, Munich, Germany) described Cereblon (CRBN), the target of 159 immunomodulatory drugs (IMiDs), as a novel regulator of the Hsp90-Aha1 axis that mediates 160 maturation of transmembrane proteins such as CFTR. They also showed that Hsp90-CRBN 161 interaction was abrogated upon IMiD-treatment, thus explaining CRBN-dependent IMiD 162 induced destabilization of its transmembrane clients.

163 Shiran Dror from Anat Ben-Zvi's group (Ben-Gurion University of the Negev, Beer 164 Sheva, Israel) presented his work on the role of Hsp90 in myosin assembly in *C. elegans*. He

165 showed that knockout or overproduction of Hsp90 and some of its cochaperones resulted in loss 166 of motility phenotypes due to myosin filament disorganization. Looking at chaperone 167 localization patterns in the sarcomere, he proposed that Hsp90 machinery is important for 168 regulating myosin translocation across the sarcomere allowing the formation of proper filaments 169 of myosin. Yu-Chun Wang from Patrik Verstreken's lab (VIB, Leuven, Belgium), showed a 170 previously unexpected role of Hsp90 in membrane remodeling. In vitro and in vivo evidence 171 indicated that Hsp90 interacts with membranes via an amphipathic helix, deforms the 172 membranes and allows exosome release. This activity can be inhibited by Hsp90 inhibitors¹⁴.

173 Christine Queitsch (University of Washington, Seattle, Washington, USA) described that 174 the effects of Hsp90 on the evolutionary rate of protein kinases is comparable to effects of gene 175 expression and protein interactions. She showed that a single mutation can render a non-client 176 transcription factor Hsp90-dependent and that Hsp90-dependent *de novo* mutations do not 177 account for most Hsp90-dependent phenotypes.

178

179 Hsp90 in Maladies

180 Hsp90 is involved in various maladies including cancer, neurodegenerative diseases, and 181 pathogenic infections. Laura Blair (University of South Florida, Tampa, Florida, USA) 182 demonstrated that Aha1 increases tau aggregation. In contrast, cyclophilin 40 (CyP40) disrupts tau fibrils reducing neurotoxicity in vivo¹⁵. These findings provide strong rationale to develop 183 184 therapeutics for tauopathies by targeting molecular chaperones. Aaron Voigt (RTWH Aachen 185 University, Germany) demonstrated that mitochondrial Hsp90 TRAP1 is an important player in 186 Parkinson's disease (PD) and his data suggest that enhancing TRAP1 abundance or activity in 187 neurons might be an avenue for future PD therapies.

188 Oliver Krämer (Johannes Gutenberg University Mainz, Germany) presented his work on 189 the involvement of Hsp90 and the histone deacetylase 6 (HDAC6) in acute myeloid leukemia 190 (AML) cells. He showed that a combination of inhibitors directed towards HDAC6 and Hsp90 191 triggered apoptosis of AML cells, providing new promising ways to treat AML. Ramona Schulz-192 Heddergott (University Medical Center of Göttingen, Germany) described that stabilization of a 193 cancer-relevant Hsp90 client p53-R248Q contributes to STAT3 hyper-activity. Vice versa, 194 Hsp90 inhibition by 17AAG leads to degradation of the p53 mutant and thus, down-regulation of 195 p-STAT3. This data suggests that the cancer-relevant Hsp90 client p53 mutants represent an 196 actionable drug target for treatment with Hsp90 inhibitors.

197 Stephanie Diezmann (University of Bristol, Bristol, UK) described how Hsp90 and lack 198 of the cochaperone Sti1 (HOP) enables phenotypic variation via loss-of-heterozygosity and 199 aneuploidy in the ameiotic human fungal pathogen Candida albicans. She proposed the 200 environmentally responsive chaperone Hsp90 as a novel mechanism for the creation of genetic 201 diversity in C. albicans. Harriet Mok from Jason Mercer's group (University College London, 202 UK) highlighted the importance of Hsp90 in the life cycle of a poxvirus family member, vaccinia 203 virus (VACV). Using microscopy and virus-specific assays, she showed that multiple isoforms 204 of Hsp90 are required during late stages of vaccinia infection including successful genome 205 release into the host cytoplasm and replication.

Joachim Clos (Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany) discussed the translatome changes in *Leishmania donovani* following Hsp90 inhibition. This protozoan parasite showed increased synthesis of proteins that are involved in oxidative stress protection, proteolysis, chromatin assembly, and chaperoning following Hsp90 inhibition. These results underscore the importance of Hsp90 in the control of the parasite's life cycle.

211

212 Hsp90 in the Extracellular Environment

213 The extracellular molecular chaperone Hsp90 (eHsp90, released or surface-bound) is responsible 214 for chaperoning clients outside the cell. Wei Li (University of Southern California, Los Angeles, 215 California, USA) provided a remarkable overview of the roles of extracellular Hsp90 α in 216 repairing injured tissues and in supporting tumorigenesis. During wound healing, secreted 217 Hsp90a interacts with the extracellular domain of a receptor (LRP-1) that is stabilized by 218 Hsp90ß inside the cell. Hsp90a protects cells from hypoxia-triggered apoptosis and promotes 219 cell motility to close the wound. Surprisingly, the activity of Hsp90 α is independent of its 220 ATPase activity and can be fulfilled by a short region of Hsp90 α of only about 115 amino acids, called fragment-5 16 . These properties of secreted Hsp90 α have been taken advantage of by 221 222 tumor cells to gain invasion and metastasis, representing an alternative target for anti-tumor 223 therapeutics. Natasha Boel from Adrienne Edkins' group (Rhodes University, Grahamstown, 224 South Africa) investigated the role of Hsp90 in the dynamics of the fibronectin (FN) matrix. She 225 showed that Hsp90 interacts with FN, and that inhibition of Hsp90 by novobiocin resulted in FN 226 turnover via a LRP-1 receptor mediated response¹⁷.

Patricija van Oosten-Hawle (University of Leeds, Leeds, UK) explained how a proteotoxic stress perceived in one tissue induces a response in other tissues leading to molecular chaperone activation via a pathway termed transcellular chaperone signaling (TCS). Using *C. elegans*, she showed that the zinc finger transcription factor PQM-1 is involved in mediating TCS ¹⁸. Importantly, she found that activating Hsp90 by TCS reduced the formation of toxic amyloid beta aggregates.

234 Small molecule inhibitors of Hsp90

235 Hsp90 inhibitors that target the ATP binding pocket in the amino-terminal domain are currently 236 evaluated in cancer patients. Brian Blagg (University of Notre Dame, Notre Dame, Indiana, 237 USA) presented the design and development of two new scaffolds that selectively inhibit the Hsp90ß isoform ¹⁹. As a result of these studies, new isoform-dependent substrates were 238 239 identified that can be selectively modulated via inhibition of Hsp90ß. In addition, it was 240 observed that selective inhibition of Hsp90ß induces the degradation of HSF1, and thus, there is 241 no induction of the heat shock response. Initial studies suggest that Hsp90B-selective inhibition 242 may overcome some of the obstacles encountered with the pan-Hsp90 inhibitors that have 243 struggled in clinical trials. Timothy Haystead (Duke University, Durham, North Carolina, USA) 244 presented data on tethered inhibitors of Hsp90 amino-terminal domain causing aggregation and 245 reinternalization of the Hsp90 protein such that it accumulates intracellularly at high 246 concentration. This observation led to development of a series of imaging agents for the 247 detection of early metastatic disease as well as imaging of inflammatory responses to immune 248 challenge.

249

250 Understanding Hsp90 Function Through Artificial Intelligence

William E. Balch (The Scripps Research Institute, La Jolla, California, USA) used a new Gaussian Process-based machine learning approach referred to as Variation Spatial Profiling (VSP) to show that diversity at the population level is sensitive to the buffering capacity of the proteostasis program. Based on Spatial CoVariance (SCV), genetic diversity contributing to misfolding disease found in the population can be displayed as high-dimensional phenotype landscapes. Application of these technologies reveal a map of the specific sequence-to-function257 to-structure features of the client protein fold that are responsive to Hsp70-Hsp90 chaperone/cochaperone management at molecular resolution²⁰. Gennady Verkhivker (Chapman 258 259 University School of Pharmacy, Irvine, California, USA) described the step-wise fashion by which the Hsp90-Cdc37 heterocomplex recognizes client kinases through differential 260 261 stabilization of kinase lobes. This work revealed that Hsp90 binds after Cdc37 and helps shed 262 light on unique dynamics signatures of protein kinase clients/nonclients that dictate chaperone 263 addiction and explain divergences in the regulatory mechanisms among structurally similar 264 kinases.

265

266 Recognition of Colleagues in the Hsp90 Field

For the past sixteen years two leaders in the field, Didier Picard (University of Geneva, Switzerland) and Johannes Buchner (TUM, Munich, Germany), have organized the Hsp90 conference biannually. At this 9th International Conference, they were recognized for their valuable contribution and outstanding service to the Hsp90 field and community. They were both acknowledged and thanked for their continuous support of students, post-doctoral fellows and new group leaders (Figure 1).

274 **References**

- Schopf, F.H., Biebl, M.M. & Buchner, J. The HSP90 chaperone machinery. *Nat Rev Mol Cell Biol* 18, 345-360 (2017).
- 2. Schopper, S. et al. Measuring protein structural changes on a proteome-wide scale using
 limited proteolysis-coupled mass spectrometry. *Nat Protoc* 12, 2391-2410 (2017).
- 279 3. Verba, K.A. & Agard, D.A. How Hsp90 and Cdc37 Lubricate Kinase Molecular
 280 Switches. *Trends Biochem Sci* 42, 799-811 (2017).
- 4. Götz, M., Wortmann, P., Schmid, S. & Hugel, T. Using Three-color Single-molecule
 FRET to Study the Correlation of Protein Interactions. *J Vis Exp* (2018).
- 5. Kravats, A.N. et al. Functional and physical interaction between yeast Hsp90 and Hsp70. *Proc Natl Acad Sci U S A* 115, E2210-E2219 (2018).
- Bachman, A.B. et al. Phosphorylation induced cochaperone unfolding promotes kinase
 recruitment and client class-specific Hsp90 phosphorylation. *Nat Commun* 9, 265 (2018).
- Huck, J.D., Que, N.L., Hong, F., Li, Z. & Gewirth, D.T. Structural and Functional Analysis of GRP94 in the Closed State Reveals an Essential Role for the Pre-N Domain and a Potential Client-Binding Site. *Cell Rep* 20, 2800-2809 (2017).
- 8. Honoré, F.A., Mejean, V. & Genest, O. Hsp90 Is Essential under Heat Stress in the
 Bacterium Shewanella oneidensis. *Cell Rep* 19, 680-687 (2017).
- Bhattacharya, K., Bernasconi, L. & Picard, D. Luminescence resonance energy transfer
 between genetically encoded donor and acceptor for protein-protein interaction studies in
 the molecular chaperone HSP70/HSP90 complexes. *Sci Rep* 8, 2801 (2018).
- Houry, W.A., Bertrand, E. & Coulombe, B. The PAQosome, an R2TP-Based Chaperone
 for Quaternary Structure Formation. *Trends Biochem Sci* 43, 4-9 (2018).
- Rivera-Calzada, A. et al. The Structure of the R2TP Complex Defines a Platform for
 Recruiting Diverse Client Proteins to the HSP90 Molecular Chaperone System. *Structure* 299 25, 1145-1152 e4 (2017).
- 300 12. Oroz, J. et al. Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex. *Nat Commun* 9, 4532 (2018).
- 302 13. Sager, R.A., Woodford, M.R. & Mollapour, M. The mTOR Independent Function of
 303 Tsc1 and FNIPs. *Trends Biochem Sci* (2018).
- Lauwers, E. et al. Hsp90 Mediates Membrane Deformation and Exosome Release. *Mol Cell* **71**, 689-702 e9 (2018).

- Baker, J.D. et al. Human cyclophilin 40 unravels neurotoxic amyloids. *PLoS Biol* 15, e2001336 (2017).
- Cheng, C.F. et al. A fragment of secreted Hsp90alpha carries properties that enable it to
 accelerate effectively both acute and diabetic wound healing in mice. *J Clin Invest* 121,
 4348-61 (2011).
- 311 17. Boel, N.M., Hunter, M.C. & Edkins, A.L. LRP1 is required for novobiocin-mediated
 312 fibronectin turnover. *Sci Rep* 8, 11438 (2018).
- 313 18. O'Brien, D. et al. A PQM-1-Mediated Response Triggers Transcellular Chaperone
 314 Signaling and Regulates Organismal Proteostasis. *Cell Rep* 23, 3905-3919 (2018).
- 315 19. Khandelwal, A. et al. Structure-guided design of an Hsp90beta N-terminal isoform316 selective inhibitor. *Nat Commun* 9, 425 (2018).
- Wang, C. & Balch, W.E. Bridging Genomics to Phenomics at Atomic Resolution through
 Variation Spatial Profiling. *Cell Rep* 24, 2013-2028 e6 (2018).

319

321 Figure legend

- 322
- 323 Figure 1. Above- Participants of the Ninth International Conference on the Hsp90 Chaperone
- 324 Machine. Below- Brian Freeman (far left) and Mehdi Mollapour (far right) presented recognition
- 325 trophies to the meeting organizers, Johannes Buchner, Didier Picard (middle). Photos by
- 326 Abhinav Joshi.

