
HAL Id: hal-02288608
https://amu.hal.science/hal-02288608

Submitted on 15 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Photochemistry of methyl hypobromite (CH 3 OBr):
excited states and photoabsorption spectrum

Ljiljana Stojanović, Gessenildo Pereira Rodrigues, Saadullah G Aziz, Rifaat H
Hilal, Mario Barbatti

To cite this version:
Ljiljana Stojanović, Gessenildo Pereira Rodrigues, Saadullah G Aziz, Rifaat H Hilal, Mario Barbatti.
Photochemistry of methyl hypobromite (CH 3 OBr): excited states and photoabsorption spectrum.
RSC Advances, 2015, 5 (117), pp.97003-97015. �10.1039/C5RA18578E�. �hal-02288608�

https://amu.hal.science/hal-02288608
https://hal.archives-ouvertes.fr


1 

 

Photochemistry of methyl hypobromite 
(CH3OBr):  

excited states and photoabsorption spectrum 

Ljiljana Stojanović
b*

, Gessenildo Pereira Rodrigues
b,c

, 

Saadullah G. Aziz
a
, Rifaat H. Hilal

a,d*
, and Mario Barbatti

b,e*
 

a 
Chemistry Department, Faculty of Science, King Abdulaziz University,  

Jeddah B.O. 208203, Saudi Arabia.
 

b 
Max-Planck-Institut für Kohlenforschung,  

Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
 

c 
Universidade Federal da Paraiba,  

58059-900, João Pessoa-Paraíba, Brazil. 

d 
Chemistry Department, Faculty of Science, Cairo University,  

Giza, Egypt. 

e
 Aix Marseille Université, CNRS, ICR UMR7273, 13397 Marseille, France.

 

*
Corresponding authors; E-mails: stojanovic@kofo.mpg.de (LS), rhilal@kau.edu.sa (RH), 

mario.barbatti@univ-amu.fr (MB)  

mailto:stojanovic@kofo.mpg.de
mailto:rhilal@kau.edu.sa
mailto:mario.barbatti@univ-amu.fr


2 

 

ABSTRACT 

The singlet and triplet excited states of CH3OBr with the excitation energies up to ~9.5 eV are 

studied using multi-reference configuration interaction with singles and doubles method (MRCI-SD) 

and several single-reference methods, including time-dependent density functional theory (TD-DFT), 

coupled-cluster (linear-response CC2 and equation-of-motion CCSD), and algebraic diagrammatic 

construction (ADC(2)). Among the single-reference methods, CCSD gives vertical excitation energies 

and oscillator strengths comparable to the MRCI-SD values for the majority of excited states. The 

absorption cross section in the gas phase in the region between 2 and 8.5 eV was simulated with CCSD 

using the nuclear ensemble approach. The computed spectrum predicts two intense absorption bands. 

The first band, peaked at ~7.0 eV, is induced by Rydberg excitation. The second band has a strong 

overlap between a broad σσ* transition and three Rydberg transitions, resulting in two peaks at 7.7 and 

7.9 eV. The spectrum also features a low-intensity band peaked at ~4.5 eV due to n* excitation. The 

intensity of this band is influenced by spin-orbit coupling effects. We analyzed the dissociation 

pathways along O-Br and C-O coordinates by computing rigid potential energy curves of the ground 

and the lowest-lying singlet and triplet excited states, and discussed the possible dissociation products. 

Due to the specific electronic structure of the excited states, characterized by multireference, double 

excitations, and Rydberg states occurring in the low-energy region, their correct description along 

dissociation coordinates is feasible only with MRCI-SD.  

 

Keywords: methyl hypobromite, excited states, photoabsorption spectrum. 

 

  



3 

 

INTRODUCTION 

The discovery of the stratospheric ozone depletion in the late 1970s has brought a lot of attention to the 

photochemistry of chlorine and bromine organic compounds, as they have been noticed to play a 

significant role in stratospheric and tropospheric ozone depletion events. For instance, bromine 

compounds released from the Earth's surface reach the stratosphere, where they undergo 

photodissociation producing highly reactive species, such as atomic bromine (Br) or bromine monoxide 

(BrO). These reactive species interfere with natural ozone cycle, taking part as catalysts in the main 

chemical reactions in which ozone is depleted.
1-3

 Even though bromine compounds are much less 

abundant than chlorine ones, it is estimated that they are more efficient in ozone destruction, causing 

significant fraction of the overall ozone loss.
4-6

 In addition to its importance for ozone depletion 

processes, bromine radicals can also induce DNA damage.
7, 8

 According to one of the proposed 

mechanisms, bromine radicals, which are usually formed in a tissue by reduction of bromate ions 

(BrO3
-
) by glutathione and Cystein (GSH/Cys), can induce one-electron oxidation of guanine. In this 

way cation radical of guanine are formed, and it is further subjected to a reaction with a water molecule 

and oxidation, yielding oxygenated derivatives of guanine.
7
  

Methyl hypobromite (CH3OBr), as a potential source of atomic bromine and bromine 

monoxide, is a molecule of interest for both ozone depletion and DNA damage. It is also the simplest 

prototype for organic hypobromites investigations. In spite of that, only a small number of theoretical 

and experimental studies have been devoted to elucidation of its electronic structure, absorption 

spectrum, and photochemical mechanisms.  

In the first theoretical study on CH3OBr, Guha and Francisco
9
 investigated the geometry, 

vibrational spectrum, and energetics of CH3OBr in the ground state using density functional theory 

(DFT), and computed vertical excitation energies to the six lowest-lying singlet excited states using 
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configuration interaction with singles (CIS). In their next computational study,
10

 these authors reported 

vertical excitation energies to the five lowest-lying singlet and five lowest-lying triplet states computed 

with multi-reference configuration interaction with singles and doubles (MRCI-SD), as well as 

potential energy curves for these states along the O-Br coordinate computed with multi-configurational 

self-consistent field (MCSCF). 

Later, Papayannis et al.
11

 proposed six possible mechanisms for CH3OBr decomposition. Based 

on unrestricted Møller-Plesset perturbation theory to the second order (UMP2), they optimized 

geometries and computed vibrational frequencies for reactants, transition structures, and products 

involved in the proposed decomposition channels. Finally, they also computed G2MP2 potential energy 

surfaces and used Rice-Ramsperger-Kassel-Marcus (RRKM) theory to estimate the microcanonical rate 

constants for each mechanism; concluding that the most important decomposition pathways are O-Br 

bond cleavage and 1,2-elimination pathway leading to HCHO and HBr. 

To our knowledge, in the only existing UV-VIS spectroscopic study of CH3OBr, Benter et al.
12

 

reported the gas-phase absorption spectrum restricted to the UVA region, between 230 and 400 nm, 

observing a week band with a peak at ~280 nm (~4.4 eV).   

This series of physical-chemical studies have been of fundamental importance to our current 

understanding of the photochemistry of organic hypobromites. This investigation field, however, has 

been dormant for the last ten years and revisiting the photochemical properties of these compounds in 

terms of new methods and higher computational levels is especially timely.   

Some of us have already taken the first steps in this direction. In a recent computational study, 

Aziz et al.
13

 performed high-level coupled cluster (CCSD(T)), MP2, and DFT studies on the geometric 

features of tautomeric CH3OBr/CH3BrO/BrCH2OH and HCOBr(cis)/HCOBr(trans)/BrCHO systems. 

The latter tautomeric system is derived from the decomposition products of the former. Vibrational 
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frequencies were computed for all species and the topology of the electron density was analyzed using 

quantum theory of atoms in molecules (QTAIM). 

In the present study, we turn to the excited-state properties, and investigate singlet and triplet 

excited states of CH3OBr with the excitation energies up to ~9.5 eV, employing different correlated 

multi-reference and single-reference approaches. We compare the results obtained with single-

reference methods and analyze their applicability for description of the excited states in the Franck-

Condon region and along the O-Br dissociation coordinate. Since the CCSD describes correctly the 

vertical excitation energies of the molecule (except for few specific states, which will be discussed 

later), we employ this method together with the nuclear ensemble approach for the simulation of the 

UV photoabsorption cross section and action spectrum in the gas phase up to 8.5 eV. Furthermore, we 

study dissociation pathways of the molecule along O-Br and C-O bonds by computing the rigid 

potential energy curves of the ground and the low-lying excited states at MRCI-SD level. 

This benchmark investigation not only provides significantly improved information about 

electronic structure and photochemistry of CH3OBr, but it also reveals several challenges that further 

computational theoretical investigations must face for adequately describing the excited states of 

organic hypobromites. These challenges include low-energy double-excitations, bright valence states 

very sensitive to active spaces definition, innumerous very diffuse Rydberg states, and strong 

correlations out of the Franck-Condon region. 

COMPUTATIONAL DETAILS 

The ground state geometry of CH3OBr molecule was optimized at the Møller-Plesset perturbation 

theory at the second order
14-17

 (MP2) with aug-cc-pVTZ basis set
18, 19

. The Cs symmetry, theoretically 

confirmed in earlier studies
9, 11

, was imposed in the geometry optimization and in all further 
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computations (except those for the absorption cross section). The optimized geometry of the molecule 

is given in the Supporting Information, Section S1. The molecule has trans (gauche) conformation. It is 

oriented such that Br, O, C, and one of the hydrogen atoms (H1) lie in the xy-plane, which coincides 

with the mirror plane, whereas the other two hydrogen atoms (H2 and H3) lie on the opposite sides of 

the xy-plane (Figure 1). The oxygen atom has a lone electron pair in a 2pz orbital (out-of-plane), 

whereas two in-plane 2p orbitals take part in σ(O-Br) and σ(C-O) bonds. The bromine atom has two 

lone electron pairs, one in a 4pz orbital (out-of-plane) and another one in an in-plane 4p orbital (a linear 

combination of 4px and 4py orbital). The other in-plane 4p orbital is involved in the σ(O-Br) bond. 

We performed state-averaged multi-configurational self-consistent field (SA-MCSCF)
20, 21

 

computations of the ground and excited singlet and triplet electronic states. Separately one from 

another, fourteen singlet and fourteen triplet states (7A' and 7A'') were computed at the SA-MCSCF 

level, averaging all states with equal weights. The diagonalization of the Hamiltonian was performed in 

the basis of configuration state functions (CSFs). 

After a set of preliminary SA-MCSCF computations of potential energy curves of the ground 

and excited states along O-Br coordinate, we concluded that the CSFs formed by excitations of 12 

active electrons within the active space composed of 11 orbitals [SA-MCSCF(12,11)] are necessary to 

describe the excited states of interest. The state-averaged molecular orbitals include seven valence and 

four Rydberg orbitals (within Cs group the occupied orbitals are 5a'', 17a', 18a', 6a'', and 19a', and the 

virtual orbitals are 20a'', 21a'', 8a'', 22a', and 23a'). The σ(C-H) orbital, two linear combinations of σ(C-

O) and σ(O-Br) orbitals, the symmetric and antisymmetric linear combination of 4pz (Br) and 2pz (O) 

orbitals (denoted further as n' and n''), the in-plane 4p orbital of Br (denoted as nBr), and the σ*(O-Br) 

orbital comprise valence orbitals; and the Rydberg orbitals are mainly represented by 5s (Br), 5pxy (Br), 

5p'xy (Br), 5pz (Br) orbitals (5pxy and 5p'xy are two linear combinations of bromine 5px and 5py orbitals). 
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A graphical representation of molecular orbitals in the active space and their compositions are given in 

the Supporting Information, Figure S1 and Table S1. 

Analyzing the compositions of the electronic MCSCF wave functions, we have found that the 

CSFs obtained by double excitations to Rydberg orbitals do not contribute significantly to the 

composition of the excited states’ wave functions for the studied O-Br stretching geometries. For this 

reason, we restricted the maximum number of excitations to these orbitals to one, reducing significantly 

computational time. 

The state-averaged MCSCF wave functions were used as reference functions in the subsequent 

internally-contracted multi-reference configuration interaction with singles and doubles (MRCI-SD) 

computations
22-25

. Within MRCI-SD computations, the closed-shell orbitals were doubly occupied in 

all CSFs and they were not correlated through single and double excitations. The contribution of higher 

excitations corrections were taken into account by generalized Davidson's method (designated as 

MRCI-SD+Q). MCSCF and MRCI-SD computations were performed with MOLPRO 2012.1 code.
26

  

We have computed spin-orbit matrix elements between fourteen singlet ((1-7)
1
A′ and (1-7)

1
A′′) 

and fourteen triplet states ((1-7)
3
A′ and (1-7)

3
A′′) employing state-interacting method implemented in 

MOLPRO code. The method implies the diagonalization of the sum of electronic and Breit-Pauli (BP) 

operator ( BPel HH ˆˆ  ) in the basis composed of MRCI-SD electronic wave functions. The transition 

dipole moments between the ground state and the obtained spin-orbit coupled excited states are 

computed. 

Besides the multi-reference approach, we have tested the performance of single-reference 

methods, namely the full time-dependent density functional theory (TD-DFT) and Tamm–Dancoff 

approximation to the TD-DFT (TDA-DFT), three coupled cluster methods, and an algebraic 

diagrammatic construction method in the description of the excited states of CH3OBr. 
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Linear-response (LR) TD-DFT and TDA-DFT computations were performed employing the 

long-range corrected density functionals CAM-B3LYP
27

 and ωB97XD
28

, which are proven
29, 30

 to be 

more suitable for modeling electron excitations to delocalized orbitals, compared to hybrid functionals. 

These functionals are constructed to improve the long-distance behavior of the non-Coulombic part of 

the exchange functional. Moreover, the ωB97XD functional also includes dispersion correction, which 

may be important for description of the molecule in regions in which photodissociation occurs. 

Among the coupled cluster methods, linear-response coupled cluster with approximated doubles 

and resolution-of-identity approximation (CC2)
31-33

, equation-of-motion (EOM) coupled cluster singles 

and doubles (CCSD)
34-37

, and completely renormalized equation of motion coupled cluster singles and 

doubles with noniterative triples correction (CR-EOM-CCSD(T))
38-40 

computations were performed. 

Furthermore, computations were carried out with the linear-response algebraic diagrammatic 

construction method to approximated second order (ADC(2))
41, 42

, using MP2 energies as the reference 

ground state. The CC2 and ADC(2) excited-state energies were computed with TURBOMOLE
43, 44

. 

TD-DFT, TDA-DFT, and CCSD computations as well as the geometry optimization at MP2 level were 

performed with Gaussian 09 software.
45

 CCSD(T) computations were performed with GAMESS 

code.
46, 47

 

Dunning’s generally contracted aug-cc-pVTZ basis set was chosen for description of H, C, and 

O atoms, whereas in the case of bromine atom, the aug-cc-pVTZ basis set was augmented by a set of 

diffuse s, p, d, and f functions added in an even-tempered manner. The exponents for the additional 

diffuse functions are computed in the same way as in the case of Dunning’s d-aug-cc-pVTZ set
48

, 

which is developed for the elements of the first three rows of the periodic table. These exponents form 

a geometric progression with the exponents of the two most diffuse functions of the series, i.e. they are 

computed as αβ, where α is the exponent of the most diffuse function in the corresponding series of the 

aug-cc-pVTZ set and β is the ratio of the two most diffuse functions of the set.  
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The mentioned methods were used to compute the vertical excitation energies, oscillator 

strengths, and the O-Br potential energy curves of the ground and excited singlet and triplet states. C-O 

potential energy curves were also computed with MRCI-SD with the reference space discussed later. 

Besides that, the spatial extents (the expectation value of the operator   2r  in the electronic wave 

function (    2222 zyxr  )) of each of the studied electronic states were also computed using 

MCSCF and MRCI-SD wave functions at the ground state equilibrium geometry.  

Finally, the UV photoabsorption cross section of the molecule was simulated using the nuclear 

ensemble approach
49

 as implemented in the Newton-X code
50, 51

. 500 different nuclear geometries were 

sampled using a harmonic oscillator Wigner distribution (at 0 K) computed from harmonic normal 

modes in the ground state. Vertical excitation energies and oscillator strengths into eight excited singlet 

states were computed with EOM-CCSD method for each geometry in the ensemble. This information 

was used to compute the photoabsorption cross section, which was convoluted with normalized 

Lorentzian functions with a phenomenological width of 0.05 eV. 

RESULTS AND DISCUSSION 

In first three subsections, we present and discuss the vertical spectrum computed with different classes 

of methods. The focus of these sections is more technical, emphasizing the suitability of each method 

for dealing with this molecule. In the subsequent subsection, a more spectroscopic discussion is done. 

The last two sections deal with the photodissociation problem. 
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Vertical excitations with MCSCF and MRCI-SD 

We present in Table 1 the results for the vertical excitation energies, oscillator strengths (for singlet 

states), main configuration weights, and   2r  values obtained at MCSCF and MRCI-SD levels, as well 

as vertical excitation energies obtained employing Davidson's correction for the singlet excited states of 

the CH3OBr molecule. The results for the triplet states are presented in Table 2. Only the leading 

configurations with weights larger than 15% are shown and we simplify the states’ assignment by not 

distinguishing between the different orbitals of the same type (for instance, both non-bonding n' and n'' 

orbitals are designated as n orbitals). A more detailed description of the excited states’ wave functions 

in terms of configuration weights is given in the Supporting Information (Tables S2 and S3). 

According to the MRCI-SD results, several intense electronic transitions are expected in the far-

UV region, from 7 to 8 eV (Table 1). They correspond to the transitions to the ns Rydberg state (3
1
A''), 

to the Rydberg states with mixed ns and np characters (4
1
A' and 5

1
A'), and to the σσ* state (6

1
A').  

Most of the excited states are dominated by one configuration, for instance, the first several 

valence excited states (as 1
1
A'', 2

1
A'', 1

3
A', 2

3
A', and 1

3
A'') and the highest Rydberg states (as 7

1
A', 

6
1
A'', 7

3
A', 7

3
A''). On the other hand, other states (for instance, 4

1
A' and 5

1
A') have multi-

configurational character. The mixing of valence and Rydberg configurations occurs in the case of 

several excited states on MCSCF level, but the inclusion of additional correlation through MRCI-SD 

leads to a pure valence (for instance, 6
1
A') or pure Rydberg character (7

1
A'). 

One of the most interesting features of the computed excited states is the occurrence of doubly-

excited states even in a low-energy region, such as the 3
1
A' and 5

1
A'' in the singlet manifold and the 

5
3
A', and 4

3
A'' in the triplet. These states are dominated by various valence n

2
σ*

2
 configurations, 

including all possible combinations of double excitations from n' and n'' orbitals to σ*(O-Br) orbital. 

Moreover, the wave functions of these states also include up to the 15% of mixed valence-Rydberg 
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doubly-excited configurations, n
2
σ*p and n

2
σ*s (see Table S2 and S3 in the Supporting Information). 

A large number of the remaining excited states also have up to 10% of double excitations. The 

existence of the excited states with significant contributions from double excitations in a low-energy 

region is not exclusive of this molecule and has also been predicted for other organic conjugated 

systems
52, 53

. 

On a more technical note, the effect of the dynamical correlation on the vertical excitation 

energies and wave functions of excited states can be elucidated comparing the results obtained with 

MCSCF and MRCI methods. The nature of the several excited singlet states changes upon inclusion of 

dynamical correlation at MRCI level. For instance, the 3
1
A' state changes its character from npz (within 

MCSCF) to the doubly-excited valence excited state (n
2
σ*

2
) (within MRCI), whereas the 5

1
A' state, 

which is a doubly-excited valence state at MCSCF level, obtains a mixed ns-npz Rydberg character at 

MRCI-SD level. The changes of the wave functions’ compositions are accordingly reflected in the 

corresponding changes of   2r  values. Since Rydberg excited states generally have larger spatial 

diffuseness compared to valence states, their   2r  values are larger. Therefore, the change of the 3
1
A' 

state’s character from Rydberg to valence is accompanied by significant decreasing of the   2r  value.  

The calculated MRCI-SD correlation energies, defined approximately by the differences 

between MRCI-SD and MCSCF energies (            -            ), are given in Table S2 

and Table S3 of the Supporting Information. The MRCI-SD correlation energies of the ground and 

valence excited states are larger than those of the states with mixed valence-Rydberg and Rydberg 

character. The valence excited states are more stabilized by additional dynamic correlation obtained 

within MRCI-SD than the Rydberg excited states, because in their case the larger number of electrons 

is correlated comparing to the Rydberg ones. The inclusion of additional electronic correlation through 

the MRCI-SD reduces the vertical excitation energies of valence excited states (for instance, 2
1
A' and 
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1
1
A''), and significant raises (from ~0.04 to ~0.88 eV) the vertical excitation energies of the excited 

states with Rydberg character, compared to the MCSCF results. Similarly, in the case of triplet states, 

additional correlation included by MRCI-SD mostly decreases the vertical excitation energies of the 

valence excited states and doubly-excited states, and increases the excitation energies of Rydberg 

states.  

The extensivity correction included through the MRCI-SD+Q level does not significantly 

influence the excitation energies. The root-mean-square deviation (RMSD) between MRCI-SD+Q and 

MRCI-SD energies is 0.1 eV. 

We show in the next sections that the MRCI-SD method predicts singlet and triplet * 

energies that are 0.5 to 1.0 eV larger than those predicted by all other tested methods. It also predicts an 

oscillator strength for the singlet  excitation that is about half of that given by the other methods. 

This deviation in the * estimate can be noticed in the comparison between the MRCI-SD results and 

the single-reference methods in Figure 2-top. The good agreement between coupled-cluster, ADC, and 

TD-DFT methods for these quantities indicates that MRCI-SD may be providing inferior results for the 

* state. Unfortunately, there are no available experimental results for comparison. Although we have 

not investigated this feature in detail, we have evidences (see next section) that the usage of a reduced 

active space, instead of the full valence space (which would be too computationally demanding), may 

be the reason underlying this problem.  

Apart from the * mismatch, the multireference character of the MRCI-SD, built upon active 

and reference spaces systematically deduced from a series of preliminary MCSCF computations, 

supports using the MRCI-SD results as the reference ones for the comparison with results of single-

reference methods. 
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Spin-orbit coupling  

As a relatively heavy atom, Br may induce spin-orbit coupling (SOC) effects in the electronic states. To 

assess them, we have computed the couplings between fourteen singlet ((1-7)
1
A', (1-7)

1
A'') and 

fourteen triplet states ((1-7)
3
A', (1-7)

3
A'') at MRCI-SD level. A summary of the spin-orbit effects on 

the singlet states after coupling to triplet states is provided in Table 3. Full information for all states is 

given in Table S4 of the Supporting Information.  

The inclusion of spin-orbit coupling lifts the degeneracy of the triplet states; the initial fourteen 

triplet states result in 42 spin-orbit coupled states, where the energy separation between states arising 

from the same triplet state is ~10
-3

 – 10
-2

 eV (Table S4). The spin-orbit interaction affects the vertical 

excitation energies of the majority of singlet states by less than 0.25 eV, except in the case of the 

highest states in the considered domain, whose energy shifts are very pronounced, up to 1.1 eV for the 

6
1
A' state and 1.6 eV for 7

1
A' state. (The spin-orbit shifts of the triplet states follow similar trend.) 

These very large deviations for the high states, however, are most likely artifacts of the method and we 

will not draw any physical-chemical conclusion out of them. 

Considering the values of oscillator strengths, the distribution of transition intensities among 

states is not changed significantly upon inclusion of spin-orbit effects. Transitions to the triplet state 

components have negligible oscillator strength values, except in the case of m = -1 component of 5
3
A'' 

state, for which the relatively large oscillator strength (f = 0.0110, Table S4) is induced by the singlet-

triplet interaction with the close-lying 4
1
A'' state. The oscillator strengths for transitions to the singlet 

states are not significantly changed, except in the two anomalous cases of the 6
1
A' and 7

1
A' states. The 

effects of spin-orbit coupling on the photoabsorption spectrum of CH3OBr will be further discussed in 

the “Photoabsorption spectrum simulation” Section. 
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Vertical excitations with TD-DFT 

Since single-reference methods are widely used for describing excited states in general, we have tested 

their applicability for describing the excited states of CH3OBr. We start by the popular LR TD-DFT, 

even though the occurrence of low-lying double excitations revealed by MRCI-SD preannounces the 

limitations of the method.  

The results of the vertical excitation energies, oscillator strengths (for singlet states), and 

approximate configuration weights obtained with TD-DFT are shown for singlet excited states in Table 

4 and for triplet excited states in Table 5. In the cases where it is not possible to quantify the 

contributions of individual configurations due to significant mixing of orbitals of different types 

(typically σ* and Rydberg s and p), only qualitative contributions are given. Moreover, we compare the 

vertical excitation energies and oscillator strengths for the transitions to excited states obtained by 

different methods in Figure 2 (top), and we show the correlation between the reference MRCI-SD 

vertical excitation energies of the singlet states and vertical excitation energies obtained using single-

reference methods in Figure 2 (bottom).  

As expected, the most striking discrepancy between TD-DFT and MRCI-SD results is the 

inability of TD-DFT method to reproduce doubly-excited states (7
1
A', 5

1
A'', 5

3
A', and 6

3
A'' according 

to MRCI-SD results). Within the linear-response approximation, the susceptibility of a real interacting 

system is calculated from the susceptibility of its non-interacting Kohn-Sham counterpart and Hartree-

exchange-correlation kernel
54

. The susceptibility of the Kohn-Sham system has poles only at single 

excitations, and in the adiabatic approximation (A) the Hartree-exchange-correlation kernel is 

frequency independent. Therefore, within LR ATD-DFT the susceptibility of the interacting system has 

poles only at single excitations and it is not able to reproduce the excited states with double excitation 

character
55

. 
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In general, the vertical excitation energies and oscillator strengths of most of valence and low-

lying Rydberg states obtained with TD-DFT are in a good agreement with MRCI-SD results. However, 

the vertical excitation energies of the highest Rydberg states (6
1
A', 4

1
A'', 5

1
A'', and 6

1
A'') are 

significantly underestimated. Even though range separated functionals are constructed to give better 

description of delocalized states (as the Rydberg ones) by improving the asymptotic behavior of the 

exchange-correlation potential
56

, they do not describe well these high-lying Rydberg states.  

TD-DFT vertical excitation energies of σσ* states are significantly smaller than the 

corresponding MRCI-SD values (1.00 eV for 
1
σσ* state and 1.09 eV for 

3
σσ* state). TD-DFT also 

predicts significantly larger value of the oscillator strength for the transition to this state, compared to 

MRCI-SD value. As we already mentioned, in this case, we favor the TD-DFT results over those from 

MRCI-SD. Even though the σσ* character of this state is predicted by both TD-DFT and MRCI-SD, 

there is an important difference in compositions of the corresponding MRCI-SD and TD-DFT σ and σ* 

orbitals, which helps to understand the discrepancies in excitation energies and oscillator strengths. 

Within MRCI-SD, the σ orbitals are linear combinations of σ(O-Br) and σ(C-O) orbitals, whereas in 

the case of TD-DFT, the corresponding Kohn-Sham σ orbitals are more delocalized and have more 

complex compositions. This indicates that the active and reference spaces chosen for the MRCI-SD 

computations might not encompass all the orbitals relevant for description of σ orbitals, leading to the 

overestimation of the vertical excitation energies of σσ* states. Overall, ωB97XD performs slightly 

better than CAM-B3LYP. Excluding high Rydberg 5
1
A'' and 6

1
A'' states (according to TD-DFT 

assignation), the RMSD of the vertical excitation energies for the singlet states between TD-ωB97XD 

and MRCI-SD is 0.36 eV, whereas between TD-CAM-B3LYP and MRCI-SD it is 0.42 eV.  

The vertical excitation energies of triplet states obtained with TD-DFT have significantly larger 

deviations from corresponding MRCI-SD results compared to the singlet states. The RMSD of the 
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vertical excitation energies for the triplet states obtained with ωB97XD functional and with MRCI-SD 

is 0.56 eV and the corresponding value for CAM-B3LYP functional is 0.61 eV.  

The results of the TDA-DFT computations with CAM-B3LYP and ωB97XD are compared to 

the full TD-DFT results in Tables S5 and S6 in the Supporting Information. Even though it has been 

claimed that Tamm-Dancoff approximation to the full TD-DFT method could improve the description 

of triplet states,
57, 58

 the obtained TDA-DFT vertical excitation energies of both singlet and triplet 

excited states are very close to their TD-DFT counterparts. For both functionals, the RMSD is only 

0.05 eV for the singlet manifold and 0.12 eV for the triplet. 

Vertical excitations with ADC(2), CC2, CCSD, CCSD(T) 

The vertical excitation energies, oscillator strengths (for singlet states), and approximate configuration 

weights obtained with ADC(2), CC2, and CCSD are shown for singlet excited states in Table 6, and for 

triplet excited states in Table 7. Like for TD-DFT, wherever it is not possible to quantify the 

contributions of individual configurations due to the mixing of orbitals of different types, only the 

qualitative contributions are given. 

ADC(2) and CC2 give very similar results for the vertical excitation energies and oscillator 

strengths of the studied excited states (the largest difference between corresponding vertical excitation 

energies obtained with ADC(2) and CC2 is ~0.04 eV). They describe well the several low-lying 

valence states with single excitation character (2
1
A', 1

1
A'', and 2

1
A''). Just like TD-DFT, they also 

predict vertical excitation energy for the 
1
σσ* state smaller (by ~0.6 eV) than that given by MRCI-SD. 

The remaining states, which are mostly of Rydberg character and have partial doubly-excited character, 

are poorly described by both ADC(2) and CC2. Their vertical excitation energies and oscillator 

strengths remarkably deviate from the corresponding MRCI-SD values (see Figure 2). Furthermore, 

both ADC(2) and CC2 are not able to reproduce purely doubly-excited states. 
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One of the reasons for discrepancy between ADC(2)/CC2 and MRCI-SD vertical excitation 

energies for the states with partial doubly-excited character is that, within the ADC(2) and CC2, double 

excitations are treated approximately. In CC2, the doubles equations taken from CCSD are 

approximated by truncation to the first order of the fluctuation potential.
59

 In the case of the ADC(2), it 

can be shown that its results are equivalent to those of the symmetrized Jacobian of the configuration 

interaction singles with iterative variant of the doubles correction (CIS(D∞))
60

. Since CIS(D∞) method 

is hierarchically lower than CC2, the approximations applied to the description of the double 

excitations within ADC(2) should be even stronger than in CC2.  

Another pitfall that we have identified is that pure Rydberg 4
1
A'', 5

1
A'', and 6

1
A'' states are 

mainly described as mixed valence-Rydberg states with significant contribution of nσ* configurations 

(~20%) within ADC(2) and CC2, leading to a large deviation of their vertical excitation energies 

compared to the MRCI-SD values. As in the case of TD-DFT, the vertical excitation energies of triplet 

states have even larger deviations from their MRCI-SD counterparts. 

CCSD brings significant improvement over ADC(2) and CC2 in the description of the excited 

states in the Franck-Condon region. The vertical excitation energies of the majority of the singlet states 

are in excellent agreement with MRCI-SD results. The mean deviation of the vertical excitation 

energies for the first nine CCSD singlet excited states from the corresponding MRCI-SD values is only 

0.12 eV. The treatment of the states with partial doubly-excited character is improved compared to the 

CC2 method. However, as the other single-reference methods, CCSD is not able to predict the 

existence of pure doubly-excited states. This happens because while CCSD is correct to second order 

for single-electron excitations, it is correct only to the first order for double-electron excitations
59

. 

The vertical excitation energy of the σσ* state is also lower than the corresponding MRCI-SD 

value by ~0.5 eV. The computed CCSD oscillator strength value (0.1467) is much closer to the 

corresponding TD-DFT (0.1321) and CC2 (0.1360) values, than to the MRCI-SD value (0.0636). 
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The vertical excitation energies of the highest Rydberg 5
1
A'' and 6

1
A'' states (according to the 

CCSD assignment) are significantly underestimated compared to the MRCI-SD values.  

A number of benchmark studies on organic molecules (for instance, on the set of organic 

chromophores
61

, DNA nucleobases
62-64

) have shown that the EOM-CCSD(T) method gives correct 

descriptions of both localized and delocalized excited states. Comparing the vertical excitation energies 

of the singlet excited states obtained with CR-EOM-CCSD(T) and EOM-CCSD methods (Table 6), we 

conclude that triplet corrections do not affect significantly vertical excitation energies, except in the 

cases of the highest Rydberg 7
1
A' and 7

1
A'' states, where it increases vertical excitation energies for 

0.13 and 0.19 eV, respectively. The RMSD between CCSD and CCSD(T) energies is only 0.07 eV. 

Photoabsorption spectrum simulation 

Due to the high computational cost, which requires single point calculations of the vertical excitation 

energies and oscillator strengths for 500 molecular geometries distributed around the equilibrium 

geometry, we could not employ the MRCI-SD method in the photoabsorption cross section simulation. 

Instead, the simulation was done at CCSD level without including the spin-orbit coupling effects, 

which performs well near the Franck-Condon region. As already explained, the doubly-excited singlet 

n
2
σ*

2
 states (which correspond to the 3

1
A' and 5

1
A'' states within Cs symmetry) could not be 

reproduced by this method. Because the oscillator strengths for excitations into these states are 

negligible, their absence among the CCSD excited states does not influence significantly the simulated 

spectrum. 

The photoabsorption cross section of CH3OBr simulated at CCSD level in the region from 2.5 

to 8.5 eV is shown in Figure 3, including the contributions from the transitions to nine excited states 

((2-5)
1
A' and (1-4)

1
A''). We did not include the highest Rydberg states (5

1
A'' and 6

1
A''), whose vertical 

excitation energies are underestimated, in the spectrum simulation. 
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The absorption spectrum has two high-intensity bands. The first intense band is peaked at ~7.0 

eV and it is mostly induced by n-s (+n-p) excitation (transition to 3
1
A'' state according to CCSD 

results). The intense transition to the σσ* state gives a very broad contribution extending from 7 to 7.7 

eV. The features at 7.35 and 7.5 are due to this transition, although they are most likely artifacts caused 

by statistical noise in the Monte-Carlo integration. The second intense band is mostly induced by an 

overlap of four transitions. The peak at 7.7 also has a large contribution from *. The peak at ~7.9 eV 

is due three Rydberg states with mixed ns-np character (they are the 4
1
A', 5

1
A', and 5

1
A'' CCSD states 

within the Cs group).  

Furthermore, in the low-energy region, the spectrum features a very low-intensity band with a 

peak at ~4.6 eV (it is shown in the inset of the Figure 3). Comparing the peak positions with the 

vertical excitation energies, one could conclude that the low-intensity band at ~4.6 eV is due to the nσ* 

excitation (transition to 2
1
A' state).  

We compared the obtained results in low-energy region with the experimental UV/VIS 

absorption spectrum
12

 of CH3OBr in the range from 400 to 230 nm (corresponding to ~3.1 to ~5.4 eV). 

They are shown together in the inset of the Figure 3. The experimental results reveal a very weak 

absorption band at 280 nm (4.43 eV) and 0.0016 Å
2
.molecule

-1
 (52 M

-1
.cm

-1
). The position and width, 

and intensity of the low-intensity peak associated with nσ* transition obtained in the simulation agree 

very well with the experimental results, but the intensity of the simulated peak (0.0035 Å
2
.molecule

-1
) 

is overestimated by approximately a factor two compared to the experimental intensity. We will discuss 

the reason for this overestimation later in this section. 

Under normal terrestrial irradiance, photoactivation of CH3OBr should be restricted to the n* 

band at 4.6 eV. It is possible, however, that in extraterrestrial environments excitation of high-energy 

bands also contributes to the photoactivation. In fact, the action spectrum for extraterrestrial irradiance, 

computed as the product of the extraterrestrial solar irradiance
65

 and the simulated absorption cross 
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section, shows that the ns+np band at 7 eV strongly contributes to the photoactivation too (Figure 3-

bottom). 

We analyze the effect of spin-orbit coupling on photoabsorption spectrum comparing the 

MRCI-SD vertical excitation energies and oscillator strengths of the eight excited states included in 

spectrum simulation in the cases with and without spin-orbit coupling (Table 3).   

Mostly, the spin-orbit interaction induces the change of vertical excitation energies by less than 

~0.2 eV. The spin-orbit interaction slightly increases the vertical excitation energy of 2
1
A' state (~0.15 

eV) and decreases its oscillator strength by approximately factor two. Thus, although the effect of the 

spin-orbit coupling on the position of the band at 4.6 eV (induced by the transition to 2
1
A' state) is 

minor, it may substantially affect its intensity, reducing it by approximately factor two. Thus, the 

overestimation of the simulated intensity compared to the experimental intensity mentioned above can 

be attributed the lack of spin-orbit coupling effects in the CCSD photoabsorption spectrum simulations. 

The first intense absorption band (peaked at ~7 eV) is not importantly affected by spin-orbit 

coupling, since the vertical excitation energy and oscillator strengths for the transition to 3
1
A'' state are 

not changed significantly upon inclusion of spin-orbit effects. Together with the reduction of the band 

intensity at 4.6 eV, we may expect a change of the relative importance of the two bands in the action 

spectrum shown in Figure 3-bottom, with lower intensity at 4.6 eV relative to the intensity at 7 eV.    

Dissociation through O-Br and C-O cleavages 

We investigated the mechanism of CH3OBr decomposition that occurs through O-Br bond dissociation, 

by computing MRCI-SD stretching curves for the ground state and the thirteen lowest-lying singlet and 

triplet excited states ((1-4)
1
A', (1-4)

3
A', (1-3)

1
A'', and (1-3)

3
A'') of CH3OBr.  
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As in the case of CH3OCl (Ref.
66

), most of the computed excited states of CH3OBr are strongly 

repulsive along the O-Br coordinate, indicating that O-Br bond cleavage is one of the favorable 

mechanisms, and agreeing with the conclusions of Papayannis et al.
11

 based on chemical kinetics 

modeling.  

The ground state and the first eleven excited states (2
1
A', 3

1
A', (1-3)

1
A'', (1-3)

3
A', (1-3)

3
A'') 

converge to the same dissociation limit, yielding the CH3O radical in the ground 1
2
E state and Br atom 

in the ground 
2
P state. The photodissociation in the higher 4

1
A' and 4

3
A' states yields CH3O radical in 

the excited 1
2
A1 state and Br atom in the ground 

2
P state (Figure 4). The computed excited states do not 

cross along the O-Br coordinate. Some of the pairs of singlet and triplet excited states (like 2
1
A' and 

2
3
A'', and 2

1
A'' and 2

3
A') are quasi-degenerate along the O-Br coordinate. 

Since among the suggested photodissociation mechanisms of CH3OBr, the cleavage of the C-O 

bond has been also proposed
11

, we also examined the behavior of the excited singlet and triplet states 

along C-O coordinate. The active space that has been chosen to describe the energies of excited states 

along the O-Br bond was not sufficient in the case of the C-O stretching. Therefore, we use somewhat 

larger active space composed of 13 active orbitals with 14 active electrons. Even at this level of theory, 

we could describe only the ground and the seven lowest-lying singlet and triplet states.  

The rigid potential energy curves of five states (1
1
A', 2

1
A', 1

1
A'', 1

3
A', 1

3
A''), computed with 

MRCI-SD method, are shown in Figure 4. The ground and the first three excited states (1
1
A'', 1

3
A', 

1
3
A'') exhibit the same dissociation limit producing CH3 radical in the ground 1

2
A'' state and BrO 

radical in the ground 1
2
Π state. In the dissociation limit, the higher 2

1
A' state produces CH3 radical in 

the ground 1
2
A'' and BrO radical in the 1

2
Σ

- 
state.  

Contrary to the potential energy curves along the O-Br coordinate, the lowest-lying excited 

states show minima along the C-O coordinate, indicating that in the case of photodissociation 
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mechanism that occurs through C-O bond cleavage, a potential energy barrier has to be overcome (the 

potential energy curves of CH3OCl show similar behavior
66

). This fact implies that the C-O bond 

cleavage is a less probable mechanism compared to the O-Br cleavage. 

Taking together these dissociation curves and the results for the absorption and action spectra, 

under terrestrial solar irradiation, where only the 4.6 eV band contributes to CH3OBr photoactivation, 

we may expect CH3O radicals to be formed exclusively in the 1
2
E state. Above the ozone layer, 

however, under extraterrestrial irradiance, the action spectrum shows that the 7 eV band should also 

contribute to photoactivation. In this case, we may expect CH3O radicals to be formed in both 1
2
E and 

1
2
A1 states. In any case, atomic Br should be released exclusively in the 

2
P state. 

Methods benchmark: O-Br cleavage 

In the next subsections, we discuss the suitability of the applied single-reference methods for the 

description of excited states along O-Br stretching coordinate. MRCI-SD is taken as the reference 

method in all of the following comparative analysis. The potential energy curves of the first seven 

singlet and seven triplet excited states computed with MRCI-SD are shown in Figure 4. We restricted 

our computations to fourteen electronic states, because of root-flipping problems occurring in the SA-

MCSCF computations of the potential energy curves, when higher electronic states intrude in state 

averaging.  

O-Br dissociation with TD-DFT 

The results for the potential energy curves computed with TD-ωB97XD method are shown in Figure 5 

(the TD-CAM-B3LYP results are given in Figure S2 of the Supporting Information). Not surprisingly, 

TD-DFT does not describe correctly most of excited states in their dissociation limit (for example, 

3
1
A', 3

1
A'', 3

3
A', and 3

3
A''), and the obtained potential energy curves exhibit incorrect topography. For 
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example, TD-DFT predicts an energy barrier for the dissociation in 4
1
A' and 4

3
A' states, states that are 

purely repulsive along O-Br coordinate according to MRCI-SD. TD-DFT also predicts the existence of 

several intersections in the singlet and triplet manifolds (for example, between 1
3
A' and 1

3
A'' at 2.2 Å, 

Figure 5-bottom-left), which do not appear in MRCI-SD computations. 

It is well-known
67, 68

 that the description of excited states along dissociation coordinates poses a 

serious challenge to TD-DFT. These problems arise because the states gain more multi-reference 

character as the dissociation limit is approached and LR TD-DFT is not suited to deal with that. In fact, 

even the ground state along dissociation coordinate is already a challenge for DFT. The correlation 

effects in DFT are included through the xc-functional. In the cases of strong static correlations, such as 

the dissociation of bonds when near degeneracy effects arise, hybrid xc-functionals usually 

underestimate electronic correlation energy
69

. Since the description of the excited states within TD-

DFT relies on description of the ground state, most of the excited states are not described correctly.  

We analyzed the compositions of MRCI-SD electronic wave functions of the ground and 

excited singlet electronic states along the O-Br coordinate. An interesting feature is that the 

contribution of the doubly-excited CSFs to the ground state at the final point of the curve becomes 

significant (it reaches ~14%). Obviously, the electronic ground state becomes strongly correlated along 

O-Br coordinate, with doubly-excited configurations being of non-negligible importance, leading to the 

failure of the method. 

These problems with strong correlation can be in principle alleviated by spin-unrestricted TD-

DFT computations
70

. With this in mind, we computed the potential energy curves of the studied 

electronic states with TD-UDFT (ωB97XD) starting from broken-symmetry orbital guesses. As the 

potential energy curves for the singlet and triplet states show (Figure S3 of the Supporting 

Information), the additional electronic correlation recovered through spin-unrestricted approach does 

not significantly improve the description of the studied states.  
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O-Br dissociation with ADC(2), CC2, and CCSD  

The corresponding potential energy curves computed with CC2 method are shown in Figure 5, whereas 

the results of ADC(2) and CCSD are shown in Figure S4 and Figure S5 of the Supporting Information. 

ADC(2), CC2, and CCSD, as single-reference methods, also experience problems with description of 

bond dissociations. Like TD-DFT, they all predict incorrect asymptotic behavior of several excited 

states and their potential energy curves exhibit incorrect topographies. This also includes the prediction 

of intersections along the stretching of the O-Br coordinate, which do not occur in the MRCI-SD 

results. 

This behavior can also be explained by inability of these methods to describe correctly 

correlations appearing in the ground state along the dissociation curve. ADC(2) method is constructed 

upon MP perturbation theory, and thus it is expected that it can yield reasonable results only if the 

electronic ground state is described reasonably at the MP2 level, which excludes cases when ground 

state has pronounced multi-reference character. Likewise, the ability of CC2 and CCSD to describe the 

excited states relies on the performance of these methods for the description of the ground state.  

The conclusions that ADC(2) and CC2 are not suitable for the computation of excited states 

along O-Br dissociation are supported by the D1 diagnostic
71

. The D1 values along the O-Br coordinate 

computed for MP2 and CC2 ground states are compared with their recommended limits in the Figure 

S6 in the Supporting Information. D1 becomes very large along the O-Br coordinate (an order of 

magnitude larger than the recommended limit), which indicates that the ground state is not described 

well on MP2/CC2 levels. 
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CONCLUSIONS 

In this study, the electronic structure of the CH3OBr molecule is investigated by correlated single-

reference and multi-reference methods. The excited singlet and triplet electronic states are computed at 

the equilibrium geometry of the ground state and along O-Br dissociation coordinate employing multi-

reference configuration interaction with singles and doubles method, time-dependent density functional 

theory with range-separated functionals, algebraic-diagramatic-construction method, and coupled 

cluster methods. Spin-orbit coupled states are also computed at the multi-reference configuration level. 

Most of the excited electronic states of CH3OBr exhibit complex electronic structure, 

characterized by a mixing of several configurations. Moreover, doubly-excited configurations 

contribute significantly to the wave functions of several excited states even in a low-energy region. For 

these reasons, the correct description of the excited states in Franck-Condon region and beyond is a 

true challenge for the majority of the single-reference methods.  

Among applied single-reference methods, CCSD describes the best most of the states 

dominated by single excitations in Franck-Condon region, with an exception of the highest Rydberg 

states lying above 8.5 eV (5
1
A'' and 6

1
A'' according to the MRCI-SD assignation). ADC(2) and CC2 

methods describe correctly the lowest-lying valence states, but underestimate the vertical excitation of 

the majority of the Rydberg states. TD-DFT, tested with two range-separated functionals, describes 

well most of the valence and the low-lying Rydberg excited states, but underestimates the excitation 

energies of the highest Rydberg states. All single-reference methods have failed to describe states with 

pure doubly-excited character. All these methods also provide very similar excitation energies and 

oscillator strengths for the bright *, whose values are significantly different from those predicted by 

MRCI-SD. We believe that in this case MRCI-SD is providing the poorer results.  
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We simulated the UV photoabsorption cross section simulation with the nuclear ensemble 

approach, using vertical excitation energies and oscillator strengths into nine excited states computed 

with CCSD at the geometries sampled from a Wigner distribution. The inability of CCSD to reproduce 

the doubly-excited 3
1
A' state does not significantly affect the simulated spectrum, since the predicted 

oscillator strength for the transition to this state is negligible. The computed photoabsorption cross 

section of the molecule is characterized by two intense bands in the region from 6.5-8.5 eV, and a low-

intensity band with a peak at 4.6 eV. The position and width of peak at 4.6 eV is in excellent agreement 

with the available experimental spectral data, but its intensity is overestimated by a factor two, due to 

spin-orbit coupling effects. The simulated action spectrum for extraterrestrial solar irradiance indicates 

while near Earth surface photoactivation of CH3OBr should be restricted to the 4.6 eV band, in the 

upper atmosphere the 7.0 eV bands should also significantly contribute to photoactivation.  

Additionally, we investigated the dissociation pathways in the low-lying excited states along the 

O-Br and C-O bond cleavages using MRCI-SD method. The studied excited states are repulsive along 

the O-Br coordinate, implying that dissociation of O-Br bond occurs without energy barrier, and that 

decomposition after excitation should occur fast along this coordinate. On the other hand, most of the 

electronic states have minima along C-O coordinate, implying that this mechanism for dissociation is 

less probable compared to O-Br cleavage, because certain energy barrier to dissociation has to be 

surpassed to dissociate C-O bond. The analysis of dissociation curves together with the action spectrum 

indicates that while under terrestrial solar irradiation CH3O radicals should be formed in a single state 

upon Br elimination, above the ozone layer this radical may be formed in two distinct electronic states.   

Not surprisingly, the aforementioned pitfalls of single-reference methods to describe the vertical 

excitations become even more pronounced in the description of the potential energy curves of the 

excited states along the O-Br stretching coordinate. All methods provided very poor results compared 

to those at MRCI-SD. The reason for their inadequacy is the strong electronic correlations occurring in 
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the ground electronic state along the stretching. The inapplicability of single-reference methods in this 

case has been confirmed earlier for diverse other systems
72, 73

. For the correct description of the excited 

states in wide geometry range, a multi-reference method as the MRCI-SD seems to be mandatory. 
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TABLES 

 

Table 1 SA-MCSCF, MRCI-SD, and MRCI-SD+Q results for vertical excitation energies (Ev in 

eV), spatial extent (  2r  in a0
2
), main configuration weights, and oscillator strengths (f) of the ground 

and excited singlet electronic states. 

 

State 

SA-MCSCF 

 

MRCI-SD 

 

MRCI-SD+Q 

 

Ev weights   
2r  f Ev weights   

2r  f Ev 

1
1
A' 0.00 0.95 gs 62.3 -- 0.00 0.89 gs 64.1 -- 0.00 

2
1
A' 4.91 0.76 nσ* 66.2 0.0055 4.77 0.74 nσ* 67.4 0.0012 4.70 

3
1
A' 7.10 0.78 np 131.6 0.0114 7.40 0.72 n

2
σ*

2
 68.3 0.0003 7.39 

4
1
A' 7.20 0.80 ns 112.4 0.0840 7.88 0.46 np + 0.27 ns 116.9 0.0301 8.01 

5
1
A' 7.31 0.71 n

2
σ*

2
 70.4 0.0000 7.95 0.52 ns + 0.35 np 118.6 0.0435 8.08 

6
1
A' 7.93 0.54 np + 0.26 σσ* 113.1 0.0566 8.14 0.57 σσ* 75.3 0.0636 8.12 

7
1
A' 8.05 0.34 np + 0.42 σσ* 93.2 0.0563 8.77 0.81 np 137.5 0.0007 8.92 

1
1
A'' 3.69 0.80 nσ* 65. 6 0.0016 3.71 0.76 nσ* 66.3 0.0000 3.68 

2
1
A'' 6.21 0.64 nσ* 70.5 0.0000 6.25 0.70 nσ* 66.4 0.0012 6.20 

3
1
A'' 6.34 0.81 ns 105.5 0.0766 7.04 0.84 ns 107.2 0.0439 7.16 

4
1
A'' 7.05 0.89 np 139.3 0.0000 7.81 0.72 np 126.5 0.0000 7.93 

5
1
A'' 7.77 0.72 n

2
σ*

2
 67.5 0.0000 7.90 0.58 n

2
σ*

2
 77.9 0.0004 7.89 

6
1
A'' 7.97 0.93 np 138.8 0.0066 8.82 0.88 np 137.2 0.0052 9.00 

7
1
A'' 9.00 0.85 ns 110.4 0.0385 9.55 0.77 ns 107.2 0.0113 9.58 
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Table 2  SA-MCSCF, MRCI-SD, and MRCI-SD+Q results for vertical excitation energies (Ev in 

eV), spatial extent (  2r  in a0
2
), and main configuration weights of the excited triplet electronic states. 

 

State 

SA-MCSCF 

 

MRCI-SD 

 

MRCI-SD+Q 

 

Ev weights   2r  Ev weights   2r  Ev 

1
3
A' 4.46 0.85 nσ* 65.8 4.11 0.85 nσ* 66.2 3.97 

2
3
A' 6.13 0.89 σσ* 64.7 6.35 0.85 σσ* 64.8 6.37 

3
3
A' 7.15 0.93 np 113.6 7.85 0.86 np 104.2 7.98 

4
3
A' 7.17 0.90 np 124.7 7.91 0.84 np 130.3 8.05 

5
3
A' 7.94 0.93 np 133.1 8.69 0.79 n

2
σ*

2
 69.2 8.72 

6
3
A' 8.43 0.85 ns 125.8 8.70 0.87 np 130.5 8.81 

7
3
A' 8.57 0.83 n

2
σ*

2
 70.3 9.02 0.83 ns 131.2 9.09 

1
3
A'' 3.30 0.88 nσ* 65.5 3.11 0.85 nσ* 65.5 3.02 

2
3
A'' 6.10 0.78 nσ* 67.3 5.89 0.79 nσ* 66.0 5.76 

3
3
A'' 6.37 0.99 np 104.8 6.99 0.82 np 103.0 7.11 

4
3
A'' 7.19 0.90 np 132.7 7.75 0.68 n

2
σ*

2
 76.7 7.73 

5
3
A'' 7.51 0.83 ns 125.6 7.88 0.74 np 124.0 7.94 

6
3
A'' 7.88 0.76 n

2
σ*

2
 72.6 8.07 0.78 ns 129.7 8.11 

7
3
A'' 8.07 0.93 np 132.4 8.85 0.88 np 132.0 9.01 
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Table 3 Vertical excitation energies (eV) and oscillator strengths for pure singlet states and for 

singlet states spin-orbit coupled to triplets. The same information for triplet states coupled to singlets is 

provided in the Supporting Information, Table S4. 

 Without SOC With SOC 

State Ev f Ev
SOC

 f 

1A' 0.00 - 0.00 - 

1A'' 3.71 0.0000 3.73 0.0000 

2A' 4.77 0.0012 4.93 0.0005 

2A'' 6.25 0.0012 6.23 0.0009 

3A'' 7.04 0.0439 7.05 0.0432 

3A' 7.40 0.0003 7.45 0.0001 

4A' 7.88 0.0301 7.94 0.0075 

4A'' 7.81 0.0000 8.01 0.0000 

5A' 7.95 0.0435 8.11 0.0433 

5A'' 7.90 0.0004 8.13 0.0032 

6A'' 8.82 0.0052 9.00 0.0014 

6A' 8.14 0.0636 9.25 0.0100 

 7A'' 9.55 0.0113 9.60 0.0178 

7A' 8.77 0.0007 10.35 0.1020 
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Table 4  TD-CAM-B3LYP and TD-ωB97XD results for vertical excitation energies (Ev in eV), 

configuration weights, and oscillator strengths (f) of the ground and excited singlet electronic states.  

 

State 

TD-CAM-B3LYP 

 

TD-ωB97XD 

 

Ev weights f Ev weights f 

1
1
A' 0.00 gs -- 0.00 gs -- 

2
1
A' 4.37 0.98 nσ* 0.0010 4.43 0.98 nσ* 0.0009 

3
1
A' 7.14 0.92 σσ* 0.1297 7.19 0.92 σσ* 0.1321 

4
1
A' 7.524 ns + np 0.0550 7.60 ns + np 0.0486 

5
1
A' 7.64 ns + np 0.0111 7.62 ns + np 0.0195 

6
1
A' 8.30 ns + np 0.0040 8.37 ns + np 0.0211 

7
1
A' 8.34 ns + np 0.0380 8.38 ns + np 0.0190 

1
1
A'' 3.45 0.98 nσ* 0.0000 3.49 0.98 nσ* 0.0000 

2
1
A'' 6.01 0.96 nσ* 0.0003 6.03 0.95 nσ* 0.0003 

3
1
A'' 6.74 ns + np 0.0563 6.83 ns + np 0.0591 

4
1
A'' 7.40 ns + np 0.0005 7.51 ns + np 0.0000 

5
1
A'' 7.58 ns + np 0.0093 7.59 ns + np 0.0065 

6
1
A'' 8.17 ns + np 0.0000 8.20 ns + np 0.0007 

7
1
A'' 8.30 ns + np 0.0091 8.32 ns + np 0.0091 
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Table 5  TD-CAM-B3LYP and TD-ωB97XD results for vertical excitation energies (Ev in eV) 

and configuration weights of excited triplet electronic states.  

State 

TD-CAM-B3LYP 

 

TD-ωB97XD 

 

Ev weights Ev weights 

1
3
A' 3.38 0.96 nσ* 3.45 0.96 nσ* 

2
3
A' 5.26 0.96 σσ* 5.37 0.94 σσ* 

3
3
A' 7.40 ns + np 7.48 ns + np 

4
3
A' 7.57 ns + np 7.52 ns + np 

5
3
A' 8.21 ns + np 8.23 ns + np 

6
3
A' 8.28 ns + np 8.26 ns + np 

7
3
A' 8.29 ns + np 8.38 ns + np 

1
3
A'' 2.54 0.97 nσ* 2.62 0.96 nσ* 

2
3
A'' 5.18 0.92 nσ* 5.23 0.92 nσ* 

3
3
A'' 6.64 ns + np 6.76 ns + np 

4
3
A'' 7.33 ns + np 7.42 ns + np 

5
3
A'' 7.55 ns + np 7.54 ns + np 

6
3
A'' 8.08 ns + np 8.10 ns + np 

7
3
A'' 8.26 ns + np 8.26 ns + np 
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Table 6 ADC(2), CC2, and CCSD results for vertical excitation energies (Ev in eV), 

configuration weights, and oscillator strengths (f) of the ground and excited singlet electronic states. 

The vertical excitation energies obtained with CCSD(T) are given as well.  

State 

ADC(2) 

 

CC2 

 

CCSD 

 

CCSD(T) 

 

Ev weights f Ev weights f Ev weights f Ev 

1
1
A' 0.00 gs -- 0.00 gs -- 0.00 gs -- 0.00 

2
1
A' 4.66 0.65 nσ* 0.0018 4.62 0.60 nσ* 0.0014 4.64 0.69 nσ* 0.0013 4.62 

3
1
A' 7.21 0.60 np 0.0204 7.21 0.60 np 0.0226 7.60 σσ* + ns 0.1467 7.60 

4
1
A' 7.52 0.56 σσ* 0.1387 7.53 0.56 σσ* 0.1360 7.90 ns + np 0.0354 7.91 

5
1
A' 7.74 0.43 nσ*+0.17 ns 0.0658 7.74 0.43 nσ*+0.17 ns 0.0674 7.92 ns + np 0.0430 7.91 

6
1
A' 7.99 0.72 np 0.0285 7.98 0.71 np 0.0347 8.68 ns + np 0.0439 8.66 

7
1
A' 8.52 0.46 np+0.08 ns 0.0018 8.51 0.45 np+0.07 ns 0.0027 8.76 ns + np 0.0007 8.89 

1
1
A'' 3.63 0.57 nσ* 0.0000 3.61 0.57 nσ* 0.0001 3.68 0.65 nσ* 0.0000 3.68 

2
1
A'' 6.29 0.35 nσ*+0.28 σσ* 0.0016 6.27 0.33 nσ*+0.29 σσ* 0.0008 6.29 nσ*+σσ* 0.0005 6.29 

3
1
A'' 6.42 0.28 nσ*+0.13 ns 0.0380 6.41 0.29 nσ*+0.14 ns 0.0403 6.97 ns + np 0.0562 6.97 

4
1
A'' 7.06 0.46 np+0.22  nσ* 0.0002 7.05 0.46 np+0.21 nσ* 0.0000 7.70 ns + np 0.0000 7.69 

5
1
A'' 7.24 0.46 ns + 0.25 nσ* 0.0046 7.23 0.44 ns+0.24 nσ* 0.0061 7.87 ns + np 0.0103 7.86 

6
1
A'' 7.87 0.28 nσ*+0.13 np 0.0002 7.86 0.28 nσ*+0.13 np 0.0001 8.49 ns + np 0.0000 8.47 

7
1
A'' 7.96 0.41 nσ* 0.0067 7.95 0.41 nσ* 0.0075 8.63 ns + np 0.0103 8.82 
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Table 7  ADC(2), CC2, and CCSD results for vertical excitation energies (Ev in eV), 

configuration weights of the excited triplet electronic states.  

 

State 

ADC(2) 

 

CC2 

 

CCSD 

 

Ev weights Ev weights Ev weights 

1
3
A' 3.80 0.59 nσ* 3.77 0.59 nσ* 3.78 0.67 nσ* 

2
3
A' 5.95 0.57 σσ* 5.94 0.56 σσ* 5.82 0.59 nσ* 

3
3
A' 7.18 0.70 np 7.17 0.68 np 7.75 ns +np 

4
3
A' 7.61 0.44  nσ* + 0.16 ns 7.61 0.44  nσ* + 0.16 ns 7.80 ns +np 

5
3
A' 7.95 0.67 np 7.94 0.70 np 8.60 ns + np 

6
3
A' 8.44 0.44 np + 0.15 ns 8.43 0.44 np + 0.15 ns 8.64 ns +np 

7
3
A' 8.47 0.70 np 8.46 0.71 np 8.79 ns +np 

1
3
A'' 2.87 0.56 nσ* 2.87 0.56 nσ* 2.90 0.64  nσ* 

2
3
A'' 5.62 0.37 nσ* + 0.31 σσ* 5.61 0.37 nσ* + 0.31 σσ* 5.66 nσ* + σσ* 

3
3
A'' 6.33 0.33  nσ* + 0.15 ns 6.32 0.33  nσ* + 0.15 ns 6.85 nσ* + ns  + np 

4
3
A'' 7.00 0.44 np 6.99 0.44 np 7.61 ns +np 

5
3
A'' 7.23 0.43 ns 7.21 0.43 ns 7.84 ns +np 

6
3
A'' 7.82 0.14 nσ* + 0.15 np 7.81 0.15 nσ* + 0.15 np 8.40 ns +np 

7
3
A'' 7.93 0.42 nσ* 7.92 0.42 nσ* 8.58 ns +np 
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FIGURE CAPTIONS 

Figure 1. Molecular structure of CH3OBr alongside the atom labels. 

Figure 2. Comparison of the vertical excitation energies and oscillator strengths of the excited 

singlet states obtained with different methods (top). Correlation between vertical excitation energies 

obtained with MRCI-SD (
MR

vE ) and diverse single-reference methods (
SR

vE ) (bottom). The results of an 

ideal SR method would lie on the diagonal. 

Figure 3. Top: The simulated UV photoabsorption cross section of CH3OBr. The first ionization 

potential (IP) computed with ωB97XD/aug-cc-pVTZ method is 10.06 eV. Inset: simulated cross 

section in low-energy region (black line) alongside the experimental result (red line). Bottom: Action 

spectrum for extraterrestrial solar irradiance. 

Figure 4. The potential energy curves of the excited singlet and triplet states along O-Br (top) and 

C-O coordinate (bottom) computed with MRCI-SD. The initial geometry corresponds to the 

equilibrium geometry of the ground state. 

Figure 5. The potential energy curves of the excited singlet (top) and triplet (bottom) states along 

O-Br coordinate computed with TD-ωB97XD method (left) and CC2 method (right). The initial 

geometry corresponds to the equilibrium geometry of the ground state.  
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