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Abstract  

Tuning electron transfer (ET) rates from catalysts to substrates is important for modulating 

photocatalytic organic reactions. In this work, we have taken pyrene-based photocatalysts 

(Py) for photocatalytic hydrodefluorination of polyfluoroarenes (FA) as model systems, and 

conducted a first-principle study on modulating ET rates from Py to FA via chemical 

modification of Py with different electron donating/withdrawing groups (EDGs/EWGs). The 

computed spatial distributions of frontier Kohn-Sham orbitals suggest that ET is energetically 

more favorable for Py-EDGs than for Py-EWGs. The estimated ET rates by a simplified 

Marcus model show that they are appreciably enhanced by EDGs substitution and weakened 

by EWGs substitution. Noticeably, the associated Gibbs free energy change plays a dominant 

role. Our findings of tuning ET rates for Py-FA complexes via chemical group modifications 

cast new insight into the rational design of metal-free photocatalysts for organic 

transformations. 
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Light-driven organic transformations have been a vibrant area in photocatalysis towards quite 

a few challenging synthetic goals.1-5 Generally, they involve energy and matter conversion 

accompanied by a series of electron processes, including photo-induced electronic excitation, 

excitation energy transfer, and electron transfer (ET).6-7 Noticeably, in photocatalytic organic 

reactions, ET from photocatalysts to substrates is a central step, which activates reactants and 

generates reactive species.8 Therefore, the mechanistic understanding of the ET and 

subsequent modulation of ET rates have drawn intensive attention in recent years.9-15 In 

present work we will demonstrate how different types of functionalization of a promising 

class of metal-free organic chromophores can control the ET process.  

Metal-free photosensitizers and photocatalysts are promising alternatives to conventional ones 

for photocatalytic organic synthesis, which usually comprise inorganic semiconductors16 or 

organometallic compounds17, because they may be inexpensive for scaling-up production, 

easily tunable in light adsorption, structurally flexible, and most importantly, environmentally 

friendly. These features have made metal-free organic chromophores appealing in recent 

years, drawing increasing attention in an active research field.4, 7 For example, Miyake and 

co-workers successfully developed a couple of tunable organic photosensitizer based on the 

dihydrophenazine and phenoxazine.18-20 Further, Lu et al. performed the challenging 

hydrodefluorination of polyfluoroarenes (FA) using pyrene-based photocatalysts (Py), which 

are not only purely organic but also plays the dual role of photosensitizer and catalyst in a 

single compound.14 Importantly, they proposed that the “π-hole—π” interaction between Py 

and FA plays a crucial role in overcoming otherwise unfavorable energetic ET reaction that 

activates the C-F bond of FA. Despite of these successful examples, metal-free organic 

photosensitizers and photocatalysts are still scarce and not well understood yet. Therefore, it 

is urgent to conduct comprehensive study of the basic physical chemistry of such compounds, 

as we have delivered in our work. Specifically, Lu et al.’s discovery motivated us to conduct a 

theoretical study towards a comprehensive understanding of the mechanism of ET from Py to 

FA and the subsequent modulation of ET through molecular design.  

ET reactions have been subjected to many theoretical studies.21 Here we are interested in a 

qualitative description of the tuning effect on the ET rate due to the addition of different 
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chemical groups to the catalyst, which can be gauged through Marcus theory.22 Nevertheless, 

in the framework of conventional density functional theory (DFT), the tendency of 

delocalization of the electron density makes it difficult to clearly define the initial and final 

electronic diabatic states for an ET reaction. To address this type of challenge, Van Voorhis 

and co-workers developed constrained density functional theory (CDFT),23 which enables 

building approximate diabatic states to model the initial and final states of ET and calculate 

the ET rate. Therefore, we used the CDFT method in conjunction with a simplified Marcus 

model to describe the thermodynamics and kinetics of the ET reaction of non-bonded Py-FA 

complexes.  

Chemical modifications with different functional groups have been a common strategy for 

tuning electronic properties of a molecular catalyst. Herein we selected a couple of 

representative electron donating groups (EDGs: –OH and –NH2) and electron withdrawing 

groups (EWGs: –CN, –NO2, –CHO), all of which possess smaller steric hindrance compared 

to –C≡C–C(CH3)3 used in the previous experimental study.14 To have a more comprehensive 

understanding of the impact of functional groups on ET rates of Py-FA complexes, we also 

studied Py with substitution of –C≡C–C(CH3)3, –C≡C–CH3, and –CH=CH2. The schematic 

model of Py derivatives with various substitutions (X) is depicted in Figure 1.  

Figure 1. The model structure of the photocatalyst molecules, Py(X). (X = (–H, –OH, –NH2; –CH=CH2, 

–C≡C–CH3, –C≡C–C(CH3)3; –NO2, –CN, –CHO).) 

We built a simplified model system consisting of one Py and two FA, i.e., Py-(FA)2, which 

resembles the crystal structure reported in the Lu et al.’s work. To model the ET using CDFT 

framework, we specifically assign one of FA molecules as the electron acceptor and the other 

serves as an environmental factor that keeps the activated FA from moving (Figure S1).  
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According to Lu et al.’s report, the whole process of the photoinduced hydrodefluorination of 

FA catalyzed by Py can be expressed as in the chart flow in Scheme 1, which is divided into 

three stages: (1) formation of the reactive anion [Py-(FA)2]
−; (2) electron transfer from Py to 

FA; (3) the hydrodefluorination of FA. In the present work, we have mainly investigated step 

2, with the focus on how the substitution of different chemical groups will affect the electron 

transfer between Py and FA in the anionic complex. 

 

Scheme 1. The chat flow of the photoinduced hydrodefluorination of FA catalyzed by Py 

We first studied the light absorption of Py(X) and Py(X)-FA2, and the formation and electron 

affinities of [Py(X)-FA2]
− anions. Then, we studied the spatial distribution of frontier Kohn-

Sham orbitals (FMOs) of these anions. Finally, we computed Gibbs free energy change 

(∆G0), reorganization energy (λ), and electron coupling (Vif) using the CDFT method, which 

were used to estimate the corresponding ET rate. We have found that the substitution of 

selected EDGs appreciably strengthens the ET from Py to FA, while the substitution of EWGs 

(including alkynyl and alkenyl groups) remarkably restrains the ET. In both cases, the 

underlying reason for the rate variation is linked with the relative values of the free energy 

change.  

Effective light absorption by Py(X) is the prerequisite for the photocatalytic HDF of FA. We 

found that both EDGs and EWGs can cause a measurable red shift of the maximum 

absorption of Py(X) towards the visible light region and enhanced absorbance, compared to 

unmodified Py (Table S1). Particularly, Py with alkynyl groups exhibits an appreciable 

visible light absorption around 395 nm, in good agreement with experimental data in Lu et 

al.’s work. They suggest two parallel routes of the formation of excited Py-FA complexes:  

I. Py → Py* + (2 FA) → [Py-(FA)2]*;  

II. Py + (2 FA) → Py-(FA)2 → [Py-(FA)2]*.  
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All Py-(FA)2 complexes of interest are found to have a negative binding energy ranging from 

-0.61 to -0.88 eV at the B97XD/6-311+G(d,p) level, suggesting that they are non-covalent 

van der Waal’s (vDW) complexes and the interaction is not significantly affected by the 

identity of the added group (Table S3). Further, the light absorption of each Py species is 

almost unchanged as it forms Py-(FA)2, indicating that the substrate has little impact on the 

light absorption of the photocatalyst (Table S1 and Table S2). Therefore, both pathways are 

equivalent for preparing the complex, which is ready for subsequent ionization. 

As Lu et al. proposed, the excited Py-FA complex is then reductively quenched by a 

sacrificial electron donor and becomes an anion.14 All excited Py-(FA)2 complexes undergo a 

substantial exothermic relaxation as they receive an electron (Table S4). Specifically, EWGs 

increases the electron affinity of the excited complex, while EDGs reduces it, compared to 

unmodified Py. This result suggests that EWGs tend to stabilize the excess electron attached 

to the complex, while EDGs have the opposite effect. Further, we compared the energy 

change for losing the excess electron on these relaxed Py(X)− anions. Since the ET can be 

viewed as transition from the state of [Py]−-(FA)2 to the state of Py-[FA]−FA], we calculated 

the energy ( 1E ) needed to detach the excess electron from the anions, to compare the 

tendency of ET of different Py(X):    1 catalyst catalystE E E
−

 = − . The values of 1E  in 

Figure 2 are indicative of the electronegativity of Py(X), which is appreciably strengthened as 

EWGs are added and weakened as EDGs are added. This distinction causes a drastic change 

in the subsequent ET reaction, as we shall see. 
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Figure 2. The energy needed for removing an electron from various [Py(X)]− anions. 
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Figure 3. The spatial distribution of frontier Kohn-Sham orbitals of all [Py-(FA)2]
− complexes. For the 

complexes structure, the lower part is the Py molecule and the upper part is the FA molecule.  

To further understand the impact of different functional groups on the electronic structure of 

the catalyst-substrate complex, we analyzed the spatial distributions of frontier Kohn-Sham 

orbitals of all [Py-(FA)2]
− (Figure 3). The singly occupied Kohn-Sham orbitals (SOMO) of all 

anions is distributed at the Py moiety, while the lowest unoccupied Kohn-Sham orbital 

(LUMO) can be located on different parts of the complex that depends on which specific 

functional group is added. For the pristine Py, Py–OH, and Py–NH2, the LUMO is distributed 

over the FA moiety. For other Py(X), the LUMO is distributed over the Py moiety, and only 

higher virtual Kohn-Sham orbitals have been found in the FA part, e.g., LUMO+1 for Py–

CH=CH2, Py–C≡C–CH3, and Py–C≡C–C(CH3)3; LUMO+3 for Py–CN and Py–CHO; and 

LUMO+4 for Py–NO2 (Figure S2). Given these spatial distributions of frontier Kohn-Sham 

orbitals, it is more difficult for an electron in the SOMO of a Py(EWGs) to jump to FA than it 

is for an electron in the SOMO of a Py(EDGs). Therefore, we can conclude from this analysis 

that the ET process from Py(X)− to FA will be energetically more favorable for Py-EDGs than 

for Py-EWGs.  

As mentioned, to simulate the ET process from Py(X) to FA, the initial and final states are 

assigned as [Py(X)]−-(FA)2 and Py(X)-[FA]−[FA], respectively. The computed Gibbs free 

energy change between the minimum of each state, 
0G , have been collected in Table 1. This 

dataset clearly shows that the variation of 
0G  goes in two opposite directions: taking 

pristine Py as the reference point (
0 0.03G =  eV), EDGs shift 

0G  to negative values, while 

EWGs shift 
0G  to more positive values, with strong EWGs (–NO2, –CN) being more 

positive than weak EWGs (alkynyl and alkenyl groups). We note that Lu et al. reported a 

ETG  (equivalent to 
0G ) of 0.36 eV for Py–C≡C–C(CH3)3 using experimental data and 

Weller’s equation,14 which is appreciably lower than 0.67 eV by direct calculation using 

CDFT method. This difference may be due to our simplified model system, which ignores the 

explicit solvent environment and adopts an incomplete basis set to describe the anion.  
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We analyzed the ET reaction using a simplified Marcus model. To do so, we noted that a 

specific C-F bond is longer and deviated more from the FA plane at the final state (Figure 

S4). This is indicative of the C-F bond activation that may initiate the subsequent HDF 

reaction. Using the vertical distance change of the activated C-F bond of FA as the one-

dimensional reaction coordinate driving the ET, we obtained the potential energy profiles for 

the initial and final states of [Py-(FA)2]
−, as shown in Figure 4 and Figure S3. The potential 

energy profiles of both states are near parabolic, which is a requirement to describe the ET 

with a Marcus model. Obviously, the ET reactions in all these vdW complexes belong to the 

normal region,[21] where the ET rate decreases with the increase of the Gibbs free energy 

change. 

 

Figure 4: The one-dimensional potential energy profiles of the initial state (black dots) and the final 

state (red dots) of the catalyst-reactant complex as a function of the reaction coordinate for the ET 

reaction. E denotes potential energies of the catalyst-reactant complex calculated by CDFT method at 

B97XD/6-311+G** level. R denotes the reaction coordinate for the ET reaction defined in Figure S4. 

The initial and final states refer to the states with the excess electron constrained in the catalyst and the 

reactant, respectively. The solid curves are parabolic fitting of the data included only to guide the eyes. 
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We then computed the inner-sphere reorganization energies   associated with each ET 

reaction using the four-point method,24 Eqn. (1). 

 ( ) ( ) ( ) ( ) + + + +1
D A |DA D A |D A DA|D A DA|DA

2
E E E E − − − −   = − + −
   

  (1) 

where ( )X|YE  stands for the potential energy of electronic state X at the optimized geometry 

of electronic state Y, D refers to the electron donor, and A refers to the electron acceptor. The 

electron coupling coefficients were computed with the direct coupling method implemented 

in Q-Chem.25  

Based on the calculated 
0G ,  , and ifV , we computed the ET rate ( ETk ) using Eqn. (2).  
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where h  is the reduced Planck constant, kB is the Boltzmann constant, and T is the 
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‡G  is the activation energy given as ( )
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These results have been collected in Table 1. Note that this simplified formulation of the 

Marcus model is intended only to provide a qualitative estimate of the ET rates, indicating the 

general effect of adding an EDG or EWG to the catalyst (See note in the “Computational 

Method” section). Therefore, the relative ET rates is more important for understanding the 

impact of added chemical groups than their absolute rate values. Table 1 shows that the ET 

time (
1

ETk−
) for pristine Py falls in the microsecond regime. The rate is significantly altered as 

substitution groups are added to Py. While Py-EDGs substantially boost the ET rate, by up to 

a factor 1000 in –NH2, Py-EWGs dramatically restrain it. The trend is line with what we 

found in the electron binding energy of Py(X)− anions and their frontier Kohn-Sham orbital 

distributions as presented above. Importantly, this comparison suggests that chemical group 

modification can be an effective knob to tune the ET property of organic photocatalysts. 

Among all quantities contributing to the rate, the free energy change of ET plays a dominant 



10 

role in determining the relative value of ETk , indicating that it can be used as a descriptor that 

facilitates us to study the modulation of a specific type of ET reaction. 

Table 1. Comparison of reorganization energies, free energy changes, activation energies, electron 

coupling coefficients, the absolute and relative ET rates for various of Py(X)-(FA)2 anionic complexes. 

Py(X)-(FA)2  /eV 0G /eV 
‡G /eV ifV /eV 

ETk /s−1 relk  

–H 1.43 0.03 0.38 -0.03 7.28×106 1 

–OH 1.55 -0.27 0.27 -0.06 1.73×109 2.37×102 

–NH2 1.54 -0.58 0.15 -0.03 3.96×1010 5.44×103 

–CH=CH2 1.58 0.53 0.71 0.02 5.13 7.05×10-7 

–C≡C–CH3 1.51 0.66 0.78 -0.09 8.44 1.16×10-6 

–C≡C–C(CH3)3 1.52 0.67 0.79 0.002 1.90×10-3 2.61×10-10 

–CN 1.52 1.50 1.50 0.15 1.61×10-11 2.21×10-18 

–CHO 1.51 1.37 1.37 0.05 2.09×10-10 2.87×10-17 

–NO2 1.67 1.91 1.92 -0.15 1.24×10-18 1.71×10-25 

 

In the framework of the search for metal-free organic photosensitizers and photocatalysts, the 

lack of physical-chemical knowledge on the ET mechanism has been a handicap in the 

rational design of new metal-free photocatalysts. For this reason, we have taken 

photocatalytic hydrodefluorination of polyfluoroarenes (FA) by pyrene-based photocatalysts 

as a representative model system and conducted a first-principle study on the modulation of 

ET rates in the framework of Marcus theory. We demonstrate how the chemical modification 

of Py can affect the ET from Py to FA, a key step in the photochemical process.  

The modifications of Py with both electron donating/withdrawing groups can cause a red shift 

of the maximum absorption wavelength. For Py-(FA)2 complexes, the light absorption is 

almost unchanged in regardless of group modifications, suggesting that light harvesting in this 

system is solely determined by the photocatalyst. All excited Py-(FA)2 complexes undergo a 

substantial exothermic relaxation upon receiving an excess electron, which is primarily 

distributed at the Py moiety. The added EDGs (EWGs) decrease (increase) the electron 

binding ability of Py− anion, which substantially affects the subsequent ET reaction.  

For Py(X)-(FA)2 anions, the LUMO is distributed over the FA moiety for Py and Py-EDGs 

(EDGs: –OH and –NH2), but it stays at the Py moiety for Py-EWGs (EWGs: –CN, –NO2, –
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CHO, etc.), indicating that the ET from Py to FA is energetically more favorable for Py-

EDGs than for Py-EWGs. The estimated ET rates show that ET in pristine Py should occur in 

the microsecond regime. An EDG substitution may increase the ET rate by hundreds or even 

thousands of times. An EWG substitution, on the other hand, inhibits the ET. We note that

0G  plays a decisive role in determining the trend of ET among different complexes, while 

the inner-sphere   is insensitive to chemical modification and ifV ’s variation with 

substitution is negligible. We propose that the electron binding energy of catalyst and the free 

energy change of ET can be used as descriptors for the estimation of relative ET rates for a 

family of similar species.  Finally, we also note that the qualitative differences in the ET rates 

between the two classes of chromophores is so striking that it implies that adoption of more 

involved computational models than the bare Py-FA2 used in our simulations should not 

significantly change the finds reported here.  

In short, our findings provide a comprehensive understanding on the tuning of ET rates for 

Py-(FA)2 complexes using chemical group modifications. The information derived from our 

work can set heuristic rules to be applied to other classes of metal-free organic systems. By 

exploring more organic chromophores using the same strategy, we are on the way of rational 

design of new organic photocatalysts. 

Computational Method 

Density functional theory (DFT) and linear-response time-dependent density functional 

theory (TDDFT), as implemented the Gaussian 09 program26, were used to study the ground 

and excited states of Py, FA, and their complexes. To study the ET from Py to FA, the CDFT 

method was employed using Q-Chem 5.0 program25, to model the approximate diabatic states 

in which the excess electron is explicitly constrained in either Py or FA. All geometry 

optimizations and single-point energy calculations employed the range-separated and 

dispersion-corrected ωB97XD functional27 with the 6-31G(d)28 (for optimization) and 6-

311+G(d,p)29 (for single points) basis sets. Normal mode analysis was also carried out at the 
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same level of geometry optimization to obtain Gibbs free energy for all converged structures. 

The electronic coupling was calculated with the direct coupling method.30 The solvent effect 

of dieethylacetamide, which was used as the solvent in Lu et al.’s experimental work, was 

implicitly included by using the corresponding polarizable continuum model (PCM).31 

For the use of simplified formulation of the semiclassical Marcus model, we keep in mind 

that it intends only to provide a big picture of the impact of adding an EDG or EWG to the 

catalyst on the ET rates. This approach will serve as the starting point of future work of 

accurate calculation of quantitative ET rates involved in organic photocatalytic systems. In 

addition to the uncertainties in the free energy changes already mentioned, our estimates also 

do not account for entropic and enthalpic effects in the reorganization energies and 

completely neglects the outer-sphere variations. The model is also only valid for parabolic 

potentials sharing comparable harmonic frequency in both states (Table S5), and with this 

frequency being smaller than the thermal energy. Albeit these latter conditions are all 

approximately satisfied (see discussion of Table S5), we think the relative ET rates is more 

important for understanding the impact of added chemical groups than their absolute rate 

values. For systems with larger frequencies, the rates can be estimated with the help of the 

Bixon-Jortner model.32 

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publication 

website at DOI: 10.1021/xxxx. 

Chemical structure of the Py-(FA)2 complexes (Figure S1); light absorption properties of all 

Pyrene derivatives (Table S1) and all complex composed of Pyrene derivatives and FA molecule 

(Table S2); the computed binding energy of each Py-(FA)2 complex (Table S3); the energy change 

for the excited complex receiving an excess electron (Table S4); the spatial distribution of higher 

virtual molecular orbitals of [Py-(FA)2]- complexes (Figure S2); the one-dimensional potential 

energy profiles of the initial and final state of the catalyst-reactant complex as a function of the 

reaction coordinate for the ET reaction (Figure S3); the reaction coordinate for the ET reaction, 

R.(Figure S4); the harmonic frequency of the normal mode of the initial state and final state 

associated to the ET coordinate depicted in Figure 4 (Table S5); The Becke populations of the 

final state of ET of each [Py(X)–FA2]- complex given by CDFT calculations (Table S6); and 
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