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On the Decay of the Triplet State of Thionucleobases 

Shuming Bai* and Mario Barbatti* 

Singlet oxygen production upon photosensitization plays a critical role for drugs based on thionucleobases. While 

for immunosuppressants its yield must be near zero, for phototherapeutic drugs it should be near the unity. In this work, 

we apply high-level quantum chemical modelling to investigate the decay of the triplet state of thionucleobases, a 

main determinant of the singlet oxygen yield. Working on CASPT2 optimizations of two prototypical thiothymines (2-

thiothymine and 6-aza-2-thiothymine), we showed that the T1 state is characterized by two ππ* minima and by the 

intersection of T1 to the singlet ground state. On the basis of this topography, we propose a two-step mechanistic model, 

which, depending on the energetic balance between the two minima, may have as determining step either a slow 

transition between minima or a faster intersystem crossing to S0. Chemical kinetics modelling, as well as simulation 

of transient absorption spectra, confirmed that the two-step model can explain the experimental results available for 

both molecules. Moreover, through additional investigations of 2-thiocytosine and 6-thioguanine, we show that such T1 

topography is a common theme for nucleobases. We also discuss how the triplet-state topography may be used to 

control the singlet oxygen yield, aiming at different medical applications.  

Introduction 

Photoinduced processes in thio-modified nucleobase 

derivatives have become an important investigation topic due 

to, on the one hand, the use of these substances as 

phototherapeutic agents2-5 and, on the other hand, their 

carcinogenic effects on patients taking them as 

immunosuppressants.6-8 In both cases, the key chemical event 

is the production of singlet oxygen species, which is beneficial 

in the former, but harmful in the latter. Thus, from a molecular-

design point of view, a major goal in this field has been to 

synthesize new thiothymine derivatives with tunable singlet 

oxygen yields. Diverse nucleobase analogues, differing by 

number and position of the substitutions, have been intensively 

investigated in both experimentalists and theoreticians, as 

recently reviewed in refs.9, 10 Even when the structures of these 

thionucleobases are similar at a first glance, the substituents 

may significantly impact triplet quantum yields, intrinsic decay 

dynamics of triplet states, and molecular oxygen quenching, 

quantities directly related to the tuneability of the singlet 

oxygen yield. 

In fact, many of the researched thionucleobase derivatives have 

triplet quantum yields near unity,1, 11 with fast population 

transfer into the triplet manifold,12 sometimes occurring in even 

less than 1 ps.13, 14 Naturally, such ultrafast sub-picosecond 

intersystem crossing (ISC) is interesting on itself and has led to 

diverse computational investigations on excited-state 

topography11, 15-21 and dynamics.22, 23 Nevertheless, the 

subsequent steps, especially the decay dynamics of the T1 

triplet state, a property more directly related to the clinical 

application, has still not been addressed by theoreticians, likely 

due to the challenge of describing such long timescale processes 

occurring in the µs scale.1, 24  

Even though thionucleobases tend to have high triplet quantum 

yields, their singlet oxygen yields may substantially differ. For 

instance, while for 2-thiothymine the singlet oxygen yield is 

0.36, for 2,4-dithiothymine it raises to 0.46, and for 6-aza-2-

thiothymine it doubles, reaching 0.69.1, 13 This implies that the 

different singlet oxygen yields of these molecules should arise 

from distinct decay dynamics of their triplet states. Therefore, 

clarifying the mechanism of this dynamics is a fundamental step 

to guide future research on the molecular design of these 

species. Bearing that in mind, we have used high-level quantum 

chemistry and chemical kinetics modelling to unveil the fate of 

the triplet states in model thiothymines.  

In the context of singlet oxygen production, we should first 

bring to attention the two possible fates of the triplet state of a 

photosensitizer (in our case a thionucleobase): the state may 

either decay spontaneously, recovering the singlet ground state 

(intrinsic decay), or it may be quenched by an oxygen molecule 

(quenched decay). Both fates may compete with each other in 

the same timescale.1 However, if the intrinsic triplet decay 

lifetime turns out to be too short, there is not enough time for 

an oxygen molecule to react with the photosensitizer, reducing 

the singlet oxygen yield. The opposite is also true: if the intrinsic 

decay is too long, there is enough time for an O2-photosensitizer 

encounter and reaction, increasing the singlet oxygen yield. 

Therefore, besides the reaction rate of singlet oxygen 

generation, the intrinsic triplet decay is a central chemical step 
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controlling the singlet oxygen yield, and it should be well 

understood as the foundation for the research of oxygen 

quenching step. 

From a more methodological standpoint, when we consider the 

triplet-decay dynamics of these molecules, we should take into 

account the following issues: first, we know from the 

experiments that the triplet lifetime, usually at µs timescale,1, 24 

is much longer than the time for the ultrafast ISC initially 

populating the triplet manifold. Consequently, we may assume 

that the triplet-decay dynamics starts from an equilibrated T1 

state, memoryless of the previous steps. Secondly, the long 

scale of the triplet-decay dynamics renders direct nonadiabatic 

dynamics simulations rather useless, as there is no possibility of 

propagating the equations of motion for micro-seconds. 

Therefore, this is a case where reaction rate theories are much 

more suited for. 

In this work, we focus on the decay dynamics of the T1 state of 

2-thiothymine (2tThy) and 6-aza-2-thiothymine (6n-2tThy). 
Both are shown in Figure 1. These two thiothymines have been 
chosen for the following reasons: first, they are prototypical 
thymine analogues, and conclusions for them can be extended 
to similar species. Secondly, they have been often investigated, 
and we can count on previous experimental results to draw 
comparisons and seek confirmation for our hypotheses.1, 13, 24-26 

Last, although these two molecules are very close in structure—

just a carbon atom replaced by a nitrogen at position 6—they 
have quite different triplet-decay dynamics, both intrinsic and 
quenched.1 Considering these three points, 2tThy and 6n-2tThy 
make excellent subjects to research the mechanism of triplet 
decay in thiothymines.

Starting from CASPT2 optimizations of the T1 state and 
complementing them with computation of reaction paths, 
estimates of activation energies, and simulations of transient 
absorption, we have built a complete mechanistic picture of the 
intrinsic triplet-decay dynamics of 2tThy and 6n-2tThy. It 
allowed us to rationalize the experimentally observed 
differences between them. Even more relevant, this 
mechanistic picture reveals the key elements to control the 
singlet oxygen yield of thiothymines in general, either to shut it 
down or to top it up, depending on the aimed application.

In addition, we also discuss how general our conclusions are, by 
extending the investigation of the triplet state topography to 
two other thionucleobase prototypes, 2-thiocytosine and 6-

thioguanine.

Computational details 

Geometry optimizations and excited states were computed 

with the complete active space perturbation theory to the 

second order (CASPT2) in its multi-state (MS) version.27 The 

active space was composed of 10 electrons in 7 orbitals (1n, 4, 

2*, shown in the ESI, Section S1) using the ANO-RCC-VTZP 

basis set.28 Because, for our purposes, it is enough to consider 

only three states in each multiplicity manifold (S0 to S2 and T1 to 

T3), this active space works well, always reaching good 

convergence. Standard IPEA (0.25 au)29 was globally adopted in 

the CASPT2 calculations, and no level shift was used. Spin-orbit 

coupling (SOC) matrix elements were computed at CASPT2 level 

with an effective one-electron spin-orbit Hamiltonian from 

atomic mean field integrals.30 All these calculations were done 

with Molcas 8.27 Cartesian coordinates for all optimized 

structures are given in the ESI, Section S2. The T1 and T2 states 

at the S0 minimum are also characterized in the ESI (Section S3). 

Transient absorption spectra were simulated with the 

combined density functional theory / multi-reference 

configuration interaction (DFT/MRCI) method, originally 

developed by Grimme and Waletzke.31 This method has been 

proved in a previous work to be an excellent approach for 

thiothymines.15 The DFT calculations were done with 

Turbomole.32 The MRCI calculations were done with the original 

Hamiltonian, using the program developed by Grimme and 

Waletzke31 and recently updated by Lyskov et al.33 The original 

parameters derived for BHLYP functional34 were used. Vertical 

excitation energies and oscillator strengths were convoluted 

with normalized Gaussian functions (0.20 eV standard 

deviation) to obtain the simulated spectra.  

Additional DFT and linear-response time dependent DFT 

(TDDFT) calculations were done with B3LYP,35, 36 CAM-B3LYP,37 

and B97X-D38 functionals based on the 6-311G(d,p) basis set.39 

They were carried out with Gaussian 09.40 Also complementary 

linear-response algebraic diagrammatic construction to second 

order (ADC(2))41 and coupled cluster to approximated second 

order (CC2)42 calculations, both with aug-cc-pVDZ basis set, 

were done with Turbomole.  

Singlet/triplet crossing points were optimized at CASPT2 level 

to an energy gap smaller than 0.02 eV, with an in-house 

modified version of CIOpt program.43   

Phosphorescence (radiative) lifetime was calculated as:44, 45 

𝜏𝑝ℎ𝑜𝑠 =
1

3
∑ (−
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2

𝑐3

𝑓𝑘Δ𝐸𝑘
2)𝑘=0,±1           (1)

where k=0,±1 refers to the three hyperfine components of the 

triplet state, fk is the calculated oscillator computed between 

spin-orbit coupled states, and Δ𝐸𝑘  is the T1k/S0 emission 

energy gap. 

To investigate the rate determining step in our model, we 

needed to estimate the Gibbs free activation energy from the 

experimental rates under two different hypotheses, either 

supposing that the experimental rates corresponded to a 

crossing between T1 minima or supposing that those rates 

corresponded to an ISC process.   

The Gibbs energy for a crossing between minima  (Δ𝐺𝑐𝑟𝑜𝑠𝑠
‡ ) was 

estimated using the Eyring equation:46 

Figure 1 Structure and numbering of 2-thiothymine (2tThy) and 6-aza-2-thiothymine 

(6n-2tThy).
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where kcross is the reaction rate at 300 K. 

The Gibbs energy for ISC ( Δ𝐺𝑖𝑠𝑐
‡ ) was estimated with the 

following quasi-Marcus formula:  

𝑘𝑖𝑠𝑐 =  
2𝜋

ħ
|𝐽𝑠𝑜𝑐|2 1

√4𝜋𝜆𝑘𝑏𝑇
exp (−

Δ𝐺𝑖𝑠𝑐
‡

𝑘𝑏𝑇
) (3) 

where 𝐽𝑠𝑜𝑐  is the SOC at the T1/S0 crossing point and  is the 

reorganization energy, computed as the S0 energy difference 

between the T1 minimum and the S0 minimum geometries (see 

scheme in the ESI, Section S4.) 

The rational for using Eq. 3 is the following. The ISC rate, 

described by the Golden rule, is determined by the SOC and the 

Franck-Condon-weighted density of states.47, 48 If we take the 

harmonic vibrational approximation with the same frequencies 

for donor and acceptor states, this result is simplified to the 

conventional Marcus formula,49 as, for instance, employed by 

Ou and Subotnik45 in the same context as ours, but for 

benzaldehyde. In the Marcus formula, the activation free 

energy at the crossing point is extrapolated in a harmonic model 

with the help of the reorganization energy  and the adiabatic 

free energy gap G0. This procedure renders the well-known 

   
20 / 4G exponential argument. In our case, however, 

the true crossing point can be directly optimized and the true

(at our computational level) activation energy Δ𝐺𝑐𝑟𝑜𝑠𝑠
‡  can be 

used, replacing the approximated exponential argument. Thus, 

Eq. (3) should be especially accurate when the frequencies of 

the initial and final states are different and anharmonic effects 

are relevant. This is exactly the situation here, because, as we 

discuss later, T1 is composed of more than one diabatic 

contribution. 

Results and discussion 

Minimum structures of the T1 state 

The intrinsic decay dynamics of the T1 state is a long time 

process.1, 24 Thus, the first important question we need to 

address is what the T1 optimized structures are. Adopting MS-

CASPT2 to optimize the T1 state of 2tThy and 6n-2tThy, we 

obtained two minimum structures for each of them. Their 

geometries are shown in Figure 2 along with some relevant 

geometric parameters. 

Both molecules show similar minima. The first minimum 

features the sulfur atom strongly displaced out of the ring plane 

(op-S). The second minimum features a slight ring distortion 

with boat conformation involving atoms N3 and C/N6 (B3,6). The 

op-S T1 minimum corresponds to a transition between  and * 

orbitals located at the C-S bond, as shown in Figure 3. The out-

of-plane displacement of the sulfur takes place due to the 

population of the * orbital, which tends to change the 

hybridization character of C2 from sp2 into sp3. In the case of 

the B3,6 T1 minimum, the electronic structure corresponds to a 

* transition mainly located at C5-C/N6 bond (Figure 3). As

usual, the * excitation of the aromatic ring induces an out-of-

plane ring distortion.50

In spite of the qualitative similarity between the minima in the

two molecules, there are some relevant distinctions: the sulfur

displacement out of the ring plane in the op-S minimum is larger

in 6n-2tThy than in 2tThy by 15° (Figure 3); the ring distortion

in the B3,6 minimum, measured by the Cremer-Pople parameter

Q,51 is smaller in 6n-2tThy than in the 2tThy by 0.133 Å.

These optimized triplet geometries are somewhat different

from those described by Cui and Fang52 and Gobbo and Borin,21

but very close to the results of Mai et al.17 (In all these

references, the triplet minima are discussed only in the context

of the initial ultrafast ISC process; the T1-state decay is not

addressed.) Cui and Fang52 optimized 2-thiouracil (2tUra) under

Cs constraint at CASSCF(16,11)/6-31+G* and obtained a planar

structure for T1, involving a * excitation at the C-S bond.

Planar structures were also obtained by Gobbo and Borin,21 who

optimized 6n-2tThy with CASSCF(16,11)/ANO-L-VDZP, to find

two * triplet minima, one at the C-S another at the C5-N6

sites. The MS-CASPT2 optimizations of Mai et al.,17 with (12,9)

active space and cc-pVDZ basis set, resulted in two non-planar

T1 minimum structures for 2tUra, completely analogous to our

op-S and B3,6 minima. Moreover, T1 optimizations with TD-

B3LYP, ADC(2), and CC2 methods (geometries are given in the

ESI, Section S6) also predict two non-planar structures similar to

those obtained at CASPT2 level.

The reason we provide such a detailed account of the electronic

and geometric structures of the two T1 minima is that their

relative energies is a key factor determining the fate of the T1

state, as we shall discuss. And exactly due to the importance of

Figure 3 The singly-occupied orbitals of the T1 state of 2tThy from CASPT2 calculation 

at the op-S minimum (left) and at the B3,6 minimum (right). The equivalent orbitals for 

6n-2tThy are shown in Section S5 of the ESI.

Figure 2 T1 minima including (a) out-of-plane S (op-S) and (b) boat-distorted (B3,6) 

conformations of 2tThy and 6n-2tThy at CASPT2 level. In (a), the C/N6-N1-C2-S 

dihedral angle is indicated. In (b), the Cremer-Pople parameter Q, giving the ring 

puckering degree (in Å), is given as well. (Q = 0 corresponds to a planar structure.)



these relative energies, before moving into the discussion of the 

reaction mechanisms in the next sections, we will briefly 

describe how sensitive to the theoretical method these 

energies are. 

To compare the effects from different quantum chemical 

methods, we used CASPT2, CASSCF, CC2, ADC(2), TDDFT, and 

DFT methods to compute the T1 energy after linear 

interpolation of internal coordinates (LIIC) between the two 

minima optimized at CASPT2 level. The results, collected in 

Figure 4, show that CC2 and ADC(2) are in very good agreement 

with CASPT2, which is taken here as the reference method. The 

differences between these three methods are within 

acceptable 0.1-eV margin.  

CASSCF gives quite poor results, strongly overestimating the 

relative energy of B3,6 minimum by about 0.4 eV. In the case of 

6n-2tThy, the CASSCF relative energies of the two minima are 

qualitatively wrong. To increase the active space up to (16,11) 

or to use CASSCF-optimized geometries does not improve this 

result significantly. The failure of CASSCF is not surprising on 

itself, as it has been known for a long time that the quality of 

the CASSCF excitation energy (for both, singlet and triplet 

states) is deeply dependent on the amount of ionic character of 

each state.53 Fortunately, CASPT2 corrects this unbalance, 

providing excitations with uniform accuracy.53 

TDDFT with B3LYP functional gives reasonable results for the 

reaction barrier of 2tThy starting from op-S minimum, but all 

other features are ill-described. In particular, TD-B3LYP strongly 

underestimates the relative energy of the B3,6 minima. This 

underestimation is even larger with CAM-B3LYP and ωB97X-D 

functionals (not shown in the figure). DFT performs slightly 

better than TDDFT for the same functional (B3LYP), but it is still 

not satisfactory as compared to the CASPT2 result.  

These results confirm the importance of applying a high-level 

correlated method, to precisely describe the delicate balance 

between the energies of the two minima.  

Description of the potential energy profiles 

As discussed in the previous section, the T1 state of both 

thiothymines has two minima, and to understand the decay of 

this state, it is worth mapping the other electronic states along 

the pathway connecting these minima. This is done in Figure 5, 

which shows LIIC energy profiles for S0, S1, T1, T2, and T3 states 

between the two minima at CASPT2 level.  

The character and energy of the first three triplet states imply 

that three diabatic states determine them, two 3* states and 

a 3n* state involving the n orbital of S. The 3n* state and the 
1n* (S1) are energetically close. The two 3* states are 

strongly coupled, forming a double-well profile around the two 

T1 minima. Note that both minima have clear 3* character, 

and the T1 state holds a dominant 3* character along the 

whole potential energy profile. This characterization disproves 

the hypothesis raised by Kuramochi et al.1 that the strong 

difference between the singlet oxygen yields of 2tThy and 6n-

2tThy would be caused by a 3n* character of their T1 state.  

According to the CASPT2 results, the energies of the two 3* 

minima of 2tThy are nearly the same, with the B3,6 minimum 

only 0.03 eV above the op-S minimum (Table 1). Meanwhile, in 

6n-2tThy, the B3,6 minimum is 0.3 eV lower than the op-S 

minimum. This phenomenon is related to the fact that the C=C 

bond is stronger than the C=N bond, leading to larger excitation 

energy of 3*(C5-C6) in 2tThy than of 3*(C5-N6) in 6n-2tThy. 

This strong difference of relative energies between the two 

Figure 4 T1 energy profile between the two T1 minima at different levels. The energy of 

the op-S minimum was set to zero in all cases. TD-B3LYP, CC2, and ADC(2) calculations 

are based on the linear response of the closed-shell ground state, while B3LYP is a direct 

unrestricted DFT calculation of the triplet configuration. 

Figure 5 Potential energy profiles of the lowest singlet and triplet states and their 

characters for (a) 2tThy and (b) 6n-2tThy at CASPT2 level.



molecules, directly impacts the T1 equilibrium distribution, and 

the subsequent T1 decay. 

In addition to relative energies, a series of other relevant 

parameters of the two minima of each molecule are collected 

in Table 1, including Boltzmann population at 300 K, 

phosphorescence lifetime (as given by Eq. 1), energy gap, SOC, 

and oscillator strengths between T1 and S0. The experimental T1 

lifetime for each molecule is given as well.1 

Under the thermal equilibrium hypothesis, the T1 population in 

2tThy splits between the two minima: a Boltzmann distribution 

at 300 K based on the CASPT2 energies predicts a 3:1 ratio 

between the op-S and the B3,6 (Table 1). In the case of 6n-2tThy, 

the whole population lies on the B3,6 minimum. We point out 

that these estimates do not consider zero-point, thermal, and 

entropic terms. At another level, neither solvent effects nor 

tunneling are considered as well. However, we believe that 

given the large energy gap between the minima of 6n-2tThy (0.3 

eV), the preference for the B3,6 minimum will hold even when 

those other factors were taken into account. In fact, later, when 

we discuss the transient absorption spectra and compare them 

to the experimental data, we will confirm this hypothesis.  

For both, 2tThy and 6n-2tThy, the two minimum structures 

show striking differences for almost all the properties listed in 

Table 1. This suggests that we can treat the two minima as 

independent quasi-states, instead of one single T1 state, when 

considering the T1 decay dynamics. In other words, we must 

consider the adiabatic dynamics along the T1 state.  

Note, first, that the calculated phosphorescence lifetimes are 

much longer than the experimental T1 lifetime. This implies that 

there is some nonradiative dynamics determining the fate of 

the T1 state, agreeing with the experimental conclusions of 

Taras-Goslinska et al.25 This nonradiative process is most likely 

an ISC from T1 into S0. Then, another interesting point is that, 

given the SOC and ∆E values in Table 1, the T1/S0 ISC rate should 

be significantly larger from op-S than from B3,6 minimum. The 

implications of this finding are discussed in the next section.  

Table 1  Characterization of the T1 minimum structures of 2tThy and 6n-2tThy at 

CASPT2 level. E: vertical energy gap;Ea: adiabatic energy gap; Eop-S(T1): energy 

relative to the op-S minimum; ph: computed phosphorescence lifetime; expt: T1 intrinsic 

experimental lifetime (ref.1). 

Two-step mechanism of intrinsic triplet-decay dynamics 

To clarify how the T1 state converts to the singlet ground state, 

we first optimized the T1/S0 crossing point at CASPT2 level, and 

then calculated the LIIC energy profiles for S0 and T1 states 

between the B3,6 minimum and the crossing point also with 

CASPT2.  

The geometry of the T1/S0 crossing point is close to the op-S 

minimum, but with an even larger displacement of S out of the 

plane. It lies about 0.3 eV above the op-S T1 minimum and has a 

significant spin-orbit coupling to S0 of about 80 cm-1 (Δ𝐸𝑖𝑠𝑐
‡  and 

Jsoc in Table 2).  

A different T1/S0 crossing point, characterized by a strong 

puckering at C/N6, has been described for 2tThy and 6n-2tThy 

in refs.21, 52. As it lies 0.9 eV above the T1 minimum and has SOC 

near zero,52 it should not play any relevant role for the triplet 

decay and it will not be further discussed here. 

Because the op-S crossing point is close to the op-S minimum, 

the LIIC path connecting the B3,6 minimum to the crossing point 

conveniently shows the main topographic features of the triplet 

state, as illustrated in Figure 6 for 6n-2tThy. This figure also 

qualitatively shows how T1 decay should take place. Starting 

from the B3,6 minimum, it is a two-step process: first, the 

molecule must cross the barrier to the op-S minimum (step 1); 

and then from there it may reach the crossing point (step 2), 

where the molecule converts to S0. Naturally, starting from the 

op-S minimum, only step 2 is in play.  

It is fortunate that experimental rates for intrinsic T1 decay of 

both molecules are available:1 expt
-1 = 3.7×105  s-1 for 2tThy and 

expt
-1 = 1.3×105  s-1 for 6n-2tThy (Table 1). Based on these 

results, we estimated the activation free energy for a chemical 

kinetic model involving each of these two steps, using two 

simple models, the Eyring equation (Eq. 2) for the barrier-

crossing rate (step 1) and the quasi-Marcus formula (Eq. 3) for 

the ISC rate (step 2). The comparison of these estimates to the 

activation energies obtained at CASPT2 level allowed us to 

identify the rate determining step (RDS) in the intrinsic triplet 

decay of each molecule, as discussed next. 

2tThy 6n-2tThy 

T1 min Structure op-S B3,6 op-S B3,6 

Character: 3* (C2-S) (C5-C6) (C2-S) (C5-N6) 

E(T1-S0) /eV 1.76 2.17 1.52 2.07 

Ea(T1-S0) /eV 3.20 3.23 3.17 2.87 

Eop-S(T1) /eV 0.000 0.026 0.000 -0.304 

T1 Population (300 K)  74% 26% <1% >99% 

T1-S0 SOC  /cm-1 59 7 75 3

T1-S0 Osc. Strength (×10-6) 0.4 0.01 2.9 0.02 

ph  /s 822 51,600 86 21,000 

expt /s (ref.1) 2.7 7.5 

Figure 6 Energy profiles for the T1 and S0 states connecting the two T1 minima and the 

T1/S0 crossing point for 6n-2tThy at CASPT2 level. The related key structures are 

indicated too.



Table 2 Parameters for RDS determination (300 K) with Eqs. 2 and 3. 

Let us for a moment assume that step 1, the barrier crossing, is 

the RDS for the T1 intrinsic decay. If that were true, according to 

the Eyring equation (Eq. 2), Δ𝐺𝑐𝑟𝑜𝑠𝑠 
‡ would have to be about 

0.43 eV for 2tThy and 0.46 eV for 6n-2tThy to be consistent with 

the experimental reaction rates (Table 1). As for comparison, 

the calculated Δ𝐸𝑐𝑟𝑜𝑠𝑠
‡  based on CASPT2 LIIC paths are 0.19 and 

0.43 eV, respectively. 

Now, if we assume that step 2, T1/S0 ISC, is the RDS, we may use 

the quasi-Marcus formula (Eq. 3) to predict that Δ𝐺𝑖𝑠𝑐 
‡ would 

have to be 0.39 eV for 2tThy and 0.42 eV for 6n-2tThy to be 

consistent with the experimental rates (Table 2). CASPT2, on its 
‡turn, tells that Δ𝐸𝑖𝑠𝑐 , computed as the T1 energy difference 

between the crossing point and the op-S minimum, is 0.30 eV 

for 2tThy and 0.24 eV for 6n-2tThy.  

For 2tThy, the Boltzmann analysis showed that the T1 state 

should be mainly distributed over the op-S minimum with an 

excess of 3 to 1 (Table 1). Therefore, we should not expect step 

1 to be the RDS. Even if we allow for some error in the 

theoretical calculations, and assume that the T1 state has a 

larger population over the B3,6 minimum, the difference 

between the CASPT2 and the experimental activation barriers 

(0.19 and 0.43 eV; Table 2) is still too large to reasonably expect 

that step 1 would be the RDS. As a conclusion, the RDS for 2tThy 

should be step 2, no matter the exact population distribution 

between the two T1 minima. This conclusion is reinforced by the 

excellent agreement between the experimental ISC barrier 

(0.39 eV) and the CASPT2 calculation (0.30 eV), even in view of 

the computational approximations and intrinsic inaccuracy.  

For 6n-2tThy, on its turn, we have three reasons to believe that 

step 1 is in fact the RDS. First, the T1 population is completely 

concentrated in the B3,6 minimum (Table 1). Secondly, the 

CASPT2 and the experimental activation barriers (0.43 and 0.46 

eV) are in excellent agreement. And finally, step 2 is much faster 

than step 1, as indicated by the difference between the 

activation barriers 0.24 eV for theory against 0.42 eV for the 

experiment. 

Confirmation of the distributions from transient absorption 

simulation 

According to our calculations, the T1-state population of 6n-

2tThy totally lies on the B3,6 minimum, while that of 2tThy splits 

3:1 between the op-S and the B3,6 minima. Here we show how 

experimental transient absorption spectra strongly confirm this 

prediction. 

We calculated absorption spectra using DFT/MRCI for each of 

the two minima of both molecules. We resorted to this method 

instead of CASPT2, because for the absorption spectra we need 

to compute about ten excited states for each molecule. These 

simulated spectra are compared to the experimental results 

from ref.1 in Figure 7.  

For both molecules, experimental and computed spectra 

predict a double-band structure. Despite the qualitative 

agreement, the computational result is blue-shifted by about 

0.3-0.4 eV.  

The main difference between the experimental spectra of 2tThy 

and 6n-2tThy is the relative strength of the two bands. While for 

6n-2tThy the high-energy peak (450 nm) has about half of the 

height of the low-energy peak (700 nm), for 2tThy, the low 

energy peak is much weaker, barely registering any signal.  

We can use this relative intensity between the two peaks to 

qualitatively infer the relative importance of the population in 

each T1 minimum. Starting from 6n-2tThy, the large intensity of 

the experimental high-energy peak favors a T1 population at the 

B3,6 minimum, as predicted by the Boltzmann analysis of the 

CASPT2 energies (Table 1). For 2tThy, the low intensity of the 

experimental high-energy peak favors a T1 population at the op-

S minimum, also in agreement with the computational 

predictions. 

T1 decay in other thionucleobases 

We have discussed above that, for thiothymines, the T1 state 

topography, characterized by two minima with different SOC 

strengths, determines the decay rate to the ground state. Is this 

conclusion restricted to thiothymines, or is it a phenomenon 

shared by other thionucleobases too? To answer this question, 

we should check whether the double-well T1 topography is also 

a feature of other thionucleobases.  

Unsurprisingly, for thiouracil, we know already that it features 

a T1 topography similar to that of thiothymine, as we may infer 

from a comparison between our results and those from Mai and 

co-workers,17 in their discussion of the ultrafast population of 

the triplet manifold. The cases of thiocytosine and thioguanine 

are not so obvious and are addressed here.  

Source 2tThy 6n-2tThy 

 /eV CASPT2 1.44 1.66 

Jsoc /cm-1 CASPT2 79 81 

Δ𝐸𝑐𝑟𝑜𝑠𝑠
‡  /eV CASPT2 0.19 0.43 

Δ𝐺𝑐𝑟𝑜𝑠𝑠
‡  /eV Expt. (Eq. 2) 0.43 0.46 

Δ𝐸𝑖𝑠𝑐
‡  /eV CASPT2 0.30 0.24 

Δ𝐺𝑖𝑠𝑐
‡  /eV Expt. (Eq. 3) 0.39 0.42 

Figure 7. Experimental transient absorption spectra1 at starting time and simulated 

absorption spectra from T1 state for (a) 2tThy and (b) 6n-2tThy.



We took 2-thiocytosine (2t-Cyt) and 6-thioguanine (6t-Gua) as 

prototypes. Both are the simplest thio-derivatives of cytosine 

and guanine and have been often investigated.11, 23, 54 For both 

thio-derivatives, we searched for T1 minima with ADC(2), which, 

as discussed, has provided excellent results for thiothymines. 

(Geometries are given in the ESI, Section S6.)  

In both cases, we found out that the T1 state also features two 

minima, one with the sulfur displaced out of the ring plane and 

another with a ring-distorted structure (they are shown in 

Figure 8). For 6t-Gua, such topography has also been previously 

described by Martínez-Fernandez et al.,23 in their discussion of 

population transfer to triplet states. For the two minima of each 

species, we computed T1/S0 SOC with MS-CASPT2. The coupling 

strengths are completely analogous to those obtained for 

thiothymines: the SOC at the op-S minimum is significantly 

larger than that at the ring-distorted minimum (77 cm-1 vs 4 
cm-1

 for 2t-Cyt and 46 cm-1 vs 7 cm-1 for 6t-Gua).  
These results support the hypothesis that the double-well 

topography of the T1 state is a general feature of 

thionucleobases, generalizing our conclusions on the decay of 

the T1 state for a larger class of molecules.  

Conclusion 

Different medical applications of thionucleobases may require 

singlet oxygen yields upon photoexcitation as low as zero when 

dealing with immunosuppressants or as high as the unity when 

dealing with phototherapy. Seeking for the fundamentals of this 

chemical tuning, we have unveiled the mechanisms of intrinsic 

triplet deactivation in two prototypical thiothymines, 2tThy and 

6n-2tThy, and then extended these conclusions to other 

thionucleobases, 2t-Cyt and 6t-Gua. 

Starting from the T1-state equilibrium of 2tThy and 6n-2tThy 

and supposing that the previous processes leading to this state 

leave no memory, we applied high-level static calculation 

optimized at CASPT2 level, chemical kinetics analysis, and 

transient absorption simulations to draw a complete picture of 

intrinsic decay dynamics of triplet state. 

In a nutshell: 

1. At CASPT2 level, we obtained two minimum structures for the 
T1 state. These minima are determined by two strongly coupled 
3ππ* diabatic states, producing a double well adiabatic T1 state.

High-level quantum chemical methods with good description of 

electron correlation are necessary to properly simulate the 

delicate energetic balance of these two minimum structures. 

Qualitatively wrong results may be got with TDDFT and CASSCF. 

2. Given the relative energies of the two minima, the population

distribution in the T1 state of 2tThy and 6n-2tThy between these

minima is reversed: while 2tThy mainly lies on an out-of-plane

sulfur (op-S) minimum, 6n-2tThy mainly lies on a ring-distorted

minimum. Comparison of simulated spectra to experimental

transient absorption confirmed these distributions.

3. In addition to the two-minimum structure, the deactivation

mechanism of the triplet state involves a T1/S0 crossing region

near the op-S structure. We built a two-step model of triplet-

decay dynamics, and applied rate equations to gather

thermochemical information out of available experimental

results. This two-step model showed that the different triplet

decay rates of the two molecules arise from dynamical factors:

while for 2tThy, the rate determining step (RDS) is an ISC step;

for 6n-2tThy the RDS is the crossing from the B3,6 to the op-S

minimum.

4. Finally, we tested 2t-Cyt and 6t-Gua, and confirmed that they

feature two analogous T1 minimum structures, with similar SOC

strengths. Thus, the two-step mechanism for T1 decay proposed

here seems to be a common theme for thionucleobases in

general.

The two-step mechanism may be the basis for a general on/off

switch of the singlet oxygen yield. We may think of two limiting

cases (Figure 9). The first one would be to have the ring-

distorted minimum much more stable than the non-planar-S

minimum. In such a case, the RDS is the barrier crossing

between minima. This elongates the triplet lifetime, giving time

to the thionucleobase derivative to react with oxygen and

produce a singlet oxygen species.

The second limiting case would be to have the ring-distorted

minimum much less stable than the non-planar S minimum.

Now, ISC is the RDS. The triplet lifetime of the thionucleobase

derivative is shortened and the singlet oxygen production,

reduced. The experimental fact1 that the singlet oxygen yield is

twice as bigger in 6n-2tThy (B3,6 lower than op-S) than in in

2tThy (B3,6 higher than op-S) is a strong indication that such a

switch mechanism may work, opening new research

possibilities in drug design.

Under the risk of sounding trivial, we would like to point out a

fact that might be somewhat unexpected, especially for

researchers focused on ultrafast processes. When dealing with

Figure 8 T1 minima including (a) out-of-plane S (op-S) and (b) ring-distorted 

conformations of 2t-Cyt and 6t-Gua at ADC(2) level.

Figure 9 General double-well topography of T1 state as an on/off switch for singlet 

oxygen yield in thionucleobases.



relatively long-time scale dynamics, as the microsecond taken 

by the intrinsic triplet decay, the exclusive consideration of the 

global minimum during the theoretical analysis is not enough. 

Instead, we should consider other local minima, as high as 0.5 

eV above the global minimum. As we have seen, even when 

such a high-energy minimum has an initial population 

distribution near zero, it may still play an important role for the 

long-term dynamics.  
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