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Abstract: Pure light-atoms organic phosphorescent molecules have been under 

scientific scrutiny because they are inexpensive, flexible, and environment friendly. 

The development of such materials, however, faces a bottleneck problem of 

intrinsically small spin-orbit couplings (SOC), which can be addressed by seeking a 

proper balance between intersystem crossing (ISC) and fluorescence rates. Using N-

substituted naphthalimides (NNI) as the prototype molecule, we applied chemical 

modifications with several electrophilic and nucleophilic functional groups, to 

approach the goal. The selected electron donating groups actively restrain the 

fluorescence, enabling an efficient ISC to the triplet manifold. Electron withdrawing 

groups do not change the luminescent properties of the parent species. The changes in 

ISC and fluorescence rates are related to the nature of the lowest singlet state, which 

changes from localized excitation into charge-transfer excitation. This finding opens an 

alternative strategy for designing pure light-atoms organic phosphorescent molecules 

for emerging luminescent materials applications. 
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Molecular phosphorescence has a high potential in information processing applications, 

including sensors, biological imaging, and LEDs, which has promoted a vivid search 

for efficient, low-cost, and environment-friendly phosphorescent materials.1-6 

Naturally, a crucial point in this search is to develop molecules with efficient 

intersystem crossing (ISC), the nonradiative transition between electronic states with 

different spin multiplicity.7-14 In organometallic LEDs, for instance, the interaction 

between the singlet metal-to-ligand charge transfer (1MLCT) and the lowest triplet 

metal-to-ligand charge transfer (3MLCT) states leads to robust ISC, resulting in high 

phosphorescence quantum yield.15-16 

To date, many phosphorescent molecules are either organometallic molecules 

or organic molecules with halogen atoms.17-18 Such dominance has two causes, both 

well-documented. First, heavy, occasionally magnetic metal ions help to strength the 

spin-orbit coupling (SOC), which is the root of ISC.19-20 Secondly, charge transfer (CT) 

processes contribute to tuning the relevant excited energies favorably.21-23 That is, the 

poor superposition of the orbitals from the metal center and ligand results in tiny 

singlet-triplet energy gap ( STE , the energy difference between the lowest singlet 

excited state and neighboring triplet state).3 Thus, the ISC efficiency can be improved 

by either reducing STE  or enlarging the SOC matrix element24-25 (see also eq. (1)).  
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It has been reported that small STE  led to efficient ISC and thereby strong 

phosphorescence in dibenzothiophene-S,S-dioxide and 2-biphenyl-4,6-bis(12-

phenylindolo[2,3-a]carbazole-11-yl)-1,3,5-triazine complexes.26-27 In suitable 

conditions, the metal-ligand compounds may emit phosphorescence thanks to the 

ligand-localized nature (3IL* or 3π-π*) of the lowest triplet state and the relaxation of 

3LMCT/3MLCT to 3πLC*.28 However, the risk of toxicity and instability of 

organometallic or halo-organic molecules limits their applications.29  

By comparison, pure light-atoms organic molecules could be an alternative 

because of their low cost, potentially low toxicity, and high engineering flexibility. 

Recently, pure light-atoms organic materials have emerged as a promising type of 

phosphorescent materials. Their luminescent properties were modified through 

crystallization and aggregation-induced emission enhancement to reduce nonradiative 

losses.29-33 Nevertheless, the designing of pure light-atoms organic phosphorescent 

chromophores has still been a significant challenge because of their tiny SOC, ranging 

from around 1 cm-1 in El-Sayed34 forbidden transitions to typically 50 to 100 cm-1 in 

El-Sayed allowed transitions.35-36 Such SOC values are truly too small compared to 

those above 500 cm-1 observed in organometallic systems,37 especially considering that 

the ISC rate depends on their squared values.  

Despite their tiny SOCs, specific chemical modification to pure light-atoms 

organic fluorescent molecules with functional groups have successfully activated 

phosphorescence. This is the case, for instance, of N-substituted naphthalimides (NNI), 

whose luminescent properties can be fundamentally altered when the functional group 

–OCH3 is added, as reported by Chen et al.3 Specifically, NNI is fluorescence active 

but phosphorescence inactive. By contrast, NNI–OCH3 is phosphorescence active but 

fluorescence inactive (see Figure 1(a)). The proposed mechanism3 explaining the 

phosphorescence activation in NNI–OCH3 claims that both the first singlet excited state 

(S1) and the closest triplet excited state of NNI–OCH3 have charge-transfer (CT) 
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characters, reducing STE  and, consequently, enhancing the ISC rate (see Figure 

1(b)).  

 

Figure 1. (a) The luminescence properties of NNI and NNI–OCH3. The addition of 

–OCH3 turns the fluorescent NNI into a phosphorescent molecule. (b) A previously 

proposed mechanism to explain NNI–OCH3 phosphorescence is based on a small EST 

due to low-lying CT states.3 (c) The mechanism proposed in this work is based on 

restrained fluorescence also caused by low-lying CT states.  
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These findings prompt us to investigate the photophysics of NNI from a 

theoretical standpoint, to learn how to control the luminescence behavior of a dye 

molecule through a delicate modification of its chemical structure. Here, we applied 

density functional theory (DFT) and time-dependent DFT (TD-DFT) to map electron-

hole distributions and to estimate fluorescence and phosphorescence rates in NNI and 

NNI substituted with diverse functional groups. By studying functional groups that are 

either electron withdrawing (EWGs: –F and –COOH) or electron donating (EDGs: –

OH and –OCH3), we aimed to understand how these different classes of functional 

substitutions impact the luminescent properties.  

We have found out that EDG substitutions strongly enhance the triplet 

population, while EWG substitutions have little effect compared to the parent system. 

As proposed by Chen et al.,3 the CT character of the S1 state in NNI-EDG is the crucial 

piece to understand the enhanced ISC in these systems. Nevertheless, the reason 

underlying the ISC enhancement is not a reduction of STE , but rather a strongly-

restrained fluorescence due to transition dipole moment reduction (Figure 1(c)), which 

compensates for the small SOCs. 

Based on the semiclassical Marcus theory, the ISC rate, 
1

ISC ISCk  −= , from S1 to 

a neighbor triplet state Tm can be estimated as38  
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where SOCV  is the spin-orbit coupling (SOC) matrix element,   is the reorganization 

energy, and 
v

STG  is the vertical free Gibbs energy variation. As usual,  is the 

reduced Planck constant, Bk  is the Boltzmann constant, and T  is the absolute 

temperature. The reorganization energy was approximated as 

( ) ( )
2 1 2 2min minT S T TE E  −R R  and the vertical free energy gap as 
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( ) ( )
1 1 1min minm

v

ST ST T S S SG E E E   = −R R . The SOC matrix elements of selected 

singlet-triplet channels were calculated at the optimized structure of S1. They were 

evaluated adopting the Breit-Pauli (BP) spin-orbital Hamiltonian with effective-charge 

approximation,39 using Casida’s wavefunction Ansatz.40 Given proper approximations 

(See details in the Supporting Information), the simplified rate model in Eq. (1) is 

supposed to deliver a qualitative estimate of the ISC rate. This limitation is not a major 

impediment for us, as the rates here are only needed for a qualitative comparison 

between different photophysical processes. 

Meantime, the fluorescence rate, 
1

FL FLk  −= , was estimated as41 
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where 0 is the vacuum permittivity, me is the electron mass, e is the electron charge, c 

is the speed of light. ( ) ( )
0 1 1 1min minS S S SE E E = −R R  and f are the S1-S0 energy gap and 

the oscillator strength calculated at the S1 minimum. 

The chemical structures of NNI and its four derivatives with single para-

substitution are collected in the upper half of Figure 2. We first examined the ground 

states of all species. Intriguingly, regardless of the substituent added to NNI, the 

benzene and naphthalimide groups are always perpendicular to each other in optimized 

structures (See Cartesian coordinates in Supporting Information). Further, vertical 

excitation calculations based on optimized S0 geometries show that the S1 states of all 

species are almost the same (See Table S1 in Supporting Information). Thus, for NNI-

OCH3 and NNI-OH, there may be some configurational change during the relaxation 

of S1 that can induce the change of its nature. 

The electron-hole distributions of their respective S1 and T2 states based on 

optimized S1 structures are collected in the lower half of Figure 2. Compared to the 

NNI molecule, the EDGs concerned in the work (–OH and –OCH3) alter the nature of 
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S1 and T2 from locally excited states to charge-transfer (CT) states, with an electron 

transfer from the benzene to the naphtalimide group. Noticeably, this shift is closely 

related to the conformational change of S1 and T2. For NNI, the benzene and the 

naphthalimide groups are perpendicular to each other, while for NNI-X (X= –OH or –

OCH3), they are not. Also, the S1 of NNI–OH and NNI–OCH3 is a dark state because 

the two molecular orbitals involved in S1 (see Table S2 in the Supporting Information) 

are poorly π-conjugated as the two corresponding molecular fragments appreciably 

deviated from co-planarity.42 Meanwhile, the EWGs groups –F and –COOH left almost 

unchanged the nature of S1 and T2.  

 

Figure 2. Upper half: chemical structures; lower half: the electron-hole distribution 

of S1 and T2 of NNI and its para-substituted derivatives. (The blue and green regions 

represent the hole and electron, respectively.) 
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The occurrence of an S1 state with CT character in NNI-EDG has major 

consequences for the photophysics of these molecules. While the S1→T2 ISC rate in 

the EWG substitutions is not significantly altered in relation to the parent NNI (Table 

1), in the case of the EDGs, it shows an increase of three times for –OCH3 and doubling 

for –OH. Thus, the ISC lifetime shortens from 23 - 26 ns in NNI and NNI-EWG to 

about 8 - 11 ns in NNI-EDG. The data in Table 1 also show that the ISC rate variation 

is caused by the increase of the VSOC, from 0.5 to 1.3 cm− upon EDG substitution, 

which compensates the small but unfavorable growth of EST. 

Curiously, the reason VSOC is so small in either NNI-EWGs or NNI-EDGs is not 

the same. In NNI-EWGs (and in the parent NNI), the singlet-triplet transition between 

* states is unfavorable by the El-Sayed rule.34 In NNI-EDGs, VSOC is tiny due to the 

local nature of the spin-orbit coupling Hamiltonian,43 which tends to return vanishing 

elements for non-local transitions, as in CT states. 

Table 1. S1-T2 energy gap (EST) at the S1 minimum, reorganization energy (), and 

SOC (VSOC). ISC rate (kISC), ISC rate relative to that of NNI (krel), ISC lifetime (ISC). 

All quantities calculated for NNI and its para- and meta-substituted derivatives with 

electron withdrawing (–F and –COOH) and electron donating (–OCH3 and –OH) 

groups.  

 EST (eV)  (eV) VSOC (cm−1) kISC (107 s−1) krel ISC (ns) 

NNI -0.162 0.202 0.5 4.3 1 23 

Para       

-F -0.166 0.202 0.5 4.1 1 25 

-COOH -0.170 0.202 0.5 3.9 1 26 

-OCH3 -0.258 0.371 1.3 12.2 3 8 

-OH -0.265 0.320 1.3 8.8 2 11 

Meta       

-F -0.168 0.202 0.5 3.9 1 25.3 

-COOH -0.169 0.202 0.5 3.9 1 25.5 

-OCH3 -0.268 0.368 2.2 31.0 7 3.2 

-OH -0.286 0.406 2.2 27.7 6 3.6 

Such modest changes in the ISC rates would not alone explain the fluorescence switch-

on reported in Chen et al.’s work.3 Nevertheless, the effect of the EDG substitutions on 
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the fluorescence is more impressive. In NNI and NNI-EWGs, the fluorescence rate is 

about 2108 s−1 (Table 2). In NNI-EDGs, this value is strongly reduced by a factor ~35. 

Thus, the fluorescence lifetime is elongated from 5 ns in NNI and NNI-EWGs to about 

180 ns in NNI-EDGs. This substantial shift in the fluorescence rates caused by the EDG 

substitutions is a direct result of the CT character of the S1 state, which reduces the S1-

S0 oscillator strength. In addition, large S1-S0 energy gaps at the S1 minimum (Table 2) 

suggests that nonradiative decay of S1 are not significant for these molecules, even 

though we have not explicitly investigated nonradiative decay pathways in this work.  

Table 2. S1-S0 energy gap E and oscillator strength f at the S1 minimum. Fluorescence 

rate (kFL), fluorescence rate relative to that of NNI (krel), and fluorescence lifetime (FL). 

All quantities calculated for NNI and its para- and meta-substituted derivatives with 

electron withdrawing (–F and –COOH) and electron donating (–OCH3 and –OH) 

groups. 

 E (eV) f kFL (108 s−1) krel FL (ns) 

NNI −     

Para      

-F −     

-COOH −     

-OCH3 −     

-OH −     

Meta      

-F −     

-COOH −     

-OCH3 −     

-OH −     

 

In short, we show that substitution of selected EDGs in NNI results in the 

enhancement of ISC rate between its lowest singlet excited states and adjacent triplet 

excited states thanks to a larger SOC induces discernable configuration change of the 

lowest singlet excited state, resulting in a larger SOC between S1 and adjacent T2 and 

ensuing enhancement of ISC rate. In contrast to the hypothesis in the experimental work 

which emphasizes the decisive role of reducing singlet-triplet gap to boost ISC, we 
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show that it follows an alternative mechanism for NNI species. Moreover, the dark 

nature of the S1 state in the NNI-EDG, which also roots from the structural change of 

S1, strongly elongates the fluorescence lifetime, making it slower than ISC and favoring 

the phosphorescence in these species. Thus, our theoretical results suggest the 

significance of configuration tuning of chromophores on their luminescent properties, 

casting new physical insight into the hypothesis proposed in the precedent work of Chen 

et al.3 

To further exploit this design strategy, we studied the effect of substitutions in 

the meta- position. Our results, presented below, revealed the general relationship 

between the mechanism of intersystem crossing and the charge-transfer excited-state 

process.  

Figure 3 shows the chemical structures of NNI and its four derivatives with 

single meta-substitution, and the electron-hole distributions of their S1 and T2. They are 

like their counterpart species of para-substitution in both geometric and electronic 

structures. 
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Figure 3. Upper half: chemical structures; lower half: the electron-hole distribution 

of S1 and T2 of NNI and its meta-substitution derivatives. 

The S1-T2 energy gaps of each meta-substituted species are almost invariant 

compared to their para-substituted counterpart, as seen from the data in Table 1 and 

Table 2. The natures of S1 are barely changed as well. (See Table S2 and Table S3 in 

the Supporting Information). The main reason for the insensitivity to the substitution 

position on the excitation energy of S1 lies in that the region the electron moves out 

during the S0→S1 excitation does not directly involve the added group. 

The effects of the substitutions on the ISC and fluorescence rates are also 

qualitatively the same as those observed in the para-substitutions. Nevertheless, there 

are some interesting quantitative variations.  

The ISC rates of the meta-NNI-EDGs are about 6 to 7 times larger than that of 

NNI (Table 1). In the para-NNI-EDGs, this growth was no larger than 3. The reason for 

this additional enhancement is once again in VSOC, which reaches 2.2 cm−1 in meta-

NNI-EDGs against 0.5 cm−1 in NNI and 1.3 cm−1 in para-NNI-EDGs. Although all 

these values are within the error bar our methodology for VSOC calculation,35 we can 

speculate that the slightly larger value upon meta-substitutions are due to the 

asymmetry it introduces, helping to mix the singly-occupied orbitals in the singlet and 

triplet states. 

The fluorescence rates are also more significantly impacted by the meta- than 

by the para-substitutions. While in the latter, they are reduced by a factor 35 compared 

to NNI, in upon a meta-substitution this reduction is between 64 and 77 times. Thus, 

the fluorescence lifetime is elongated up to 408 ns. Once more, the reduction of the 

fluorescence rates is due to the dark nature of S1. 

Efficient ISC is the prerequisite for photoinduced phosphorescence process. It 

is crucial to enhance ISC in molecular design towards organic phosphorescence.14 In 

this theoretical study, we showed that for specific fluorescent molecules like NNI, 
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chemical modification by adding an electron donating group (EDG) could appreciably 

shift the balance between fluorescence and ISC, favoring the latter. In NNI and NNI 

with electron withdrawing group (EWG), ISC occurs within ~25 ns, while fluorescence 

is faster, occurring within 5 ns. Thus, these molecules tend to show strong fluorescence. 

In NNI-EDG, however, ISC becomes faster, between 3 and 11 ns, while fluorescence 

becomes much longer, between 185 and 408 ns. Therefore, these molecules efficiently 

populate the triplet manifold and, under adequate conditions, may become 

phosphorescent. It is encouraging to see that the EDG substitution enhances the 

transference from singlet to triplet states and enables phosphorescence, even in systems 

with very small spin-orbit couplings (~1 cm-1), as it is often the case of pure light-atoms 

organic molecules.  

The strong photophysical shift between NNI and NNI-EWG on the one hand 

and NNI-EDG on the other is related to the nature of the S1 state. In the former 

molecules, the lowest singlet state has a localized character, while upon an EDG 

substitution it becomes a charge-transfer (CT) state in response to the configurational 

change of molecules. The CT state has a slightly stronger coupling to T2. Although the 

spin-orbit coupling is still tiny, about 2 cm−1, it is enough to enhance the ISC rate by up 

to a factor 7 compared to the parent NNI. Concerning fluorescence, while the localized 

S1 state is strongly dipole-coupled to S0, with oscillator strength near 0.4, the CT S1 

state has a vanishing coupling to S0, with an oscillator strength not larger than 0.01. 

Therefore, the fluorescence rate reduces by up 77 times.  

These are systematic findings observed in the comparison between the parent 

NNI and NNI functionalized by –F and –COOH EWGs and–OCH3 and –OH EDGs. 

Substitution of these groups in either para or meta locations does not change the 

qualitative results, although the population of triplet states is even more favorable after 

a meta-substitution. 

In short, we have shown that ISC can be promoted by restrained fluorescence 

due to low-lying CT singlet states. The triplet population formed in this way may 
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fluoresce as long as conventional conditions are met: nonradiative rates are small, and 

the chromophore is in an oxygen-depleted atmosphere. Restrained-fluorescence ISC 

turns out to be so efficient that it can deplete the singlet population even in systems 

with spin-orbit couplings as small as those in El-Sayed forbidden transitions. 

 This study cast new insight into the design of pure light-atoms organic 

phosphorescent molecules via chemical modifications of functional groups. By 

exploring more organic molecules using the same strategy and employing more 

comprehensive theoretical framework that can compute phosphorescent radiative decay 

rate,44-45 we are on the way of rational design of new organic phosphorescent molecules.  
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