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Abstract 

Semiclassical methods to simulate both steady and time-resolved photoelectron spectra are 

presented. These approaches provide spectra with absolute band shapes and vibrational broadening 

beyond the Condon approximation, using ensemble of nuclear configurations built either via 

distribution samplings or nonadiabatic dynamics simulations. Two models to account for the 

electron kinetic energy modulation due to vibrational overlaps between initial and final states are 

discussed. As illustrative examples, the steady photoelectron spectra of imidazole and adenine and 

the time- and kinetic-energy-resolved photoelectron spectrum of imidazole were simulated within 

the frame of time-dependent density functional theory. While for steady spectra only electrons 

ejected with maximum allowed kinetic energy need to be considered, it is shown that to properly 

describe time-resolved spectra, electrons ejected with low kinetic energies must be considered in 

the simulations as well. The results also show that simulations based either on full computation of 

photoelectron cross section or on simple Dyson orbital norms provide results of similar quality. 
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1 Introduction 

To provide results directly comparable to experimental data is a major goal in computational 

theoretical chemistry. This goal represents a special challenge with the natural trend of dealing 

with always larger and more complex molecular systems. Whenever nonlocal quantum effects can 

be neglected, resorting to semiclassical simulations turns out to be a good option, as it allows 

closely emulating experimental techniques at relatively modest computational costs compared to 

full quantum simulations.  

In the last years, within the development of the NEWTON-X platform,1 we have worked out 

and implemented diverse of such semiclassical approaches for dynamics and spectrum 

simulations. A central point in these developments has been the extensive use of population 

sampling via nuclear ensembles.2 In the present work, this approach will once more play an 

important role for the implementation of semiclassical methods for simulations of steady and time-

resolved photoelectron (PE) spectra. 

The nuclear ensemble approach is likely the simplest method to obtain absolute spectral 

bands. It works in three steps: i) an ensemble of nuclear geometries is built to represent the 

vibrational distribution in the source state; ii) spectral intensities between the source and the target 

states are computed for each point in the ensemble; iii) the final spectrum is obtained as an 

incoherent sum over all these individual transitions. Thus, the vibrational features of the spectrum 

are first supposed to be essentially dependent on source-state nuclear wavefunction and any 

property depending on the correlation between the source and target nuclear wavefunctions is 

neglected (vibrational structures in the electronic spectrum, for instance). 

Nuclear ensembles have been chiefly used to simulate steady electronic spectra and to 

sample initial conditions for dynamics simulations. Going beyond its very intuitive background, 

we have shown in ref.2a how the nuclear ensemble approach is correlated to more formal methods. 

Recently, Bennett and co-workers,3 presented the approach as a particular case of a unified 

description of time-resolved spectroscopies. Also, Petit and Subtonik4 have developed ensemble-

based methods for recovering source/target correlation. The impact on the spectrum and dynamics 

results due to different ways of building the ensemble has been discussed in refs.2b, 5. 

The nuclear ensemble approach has been applied for simulations of different types of time-

resolved spectra, including two-dimensional,6 stimulated emission,7 photoelectron,3, 8 ultrafast 
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Auger,3, 9 and X-ray photo-scattering3 spectroscopies. These developments have been based on a 

broad range of approximations and electronic structure methods, from very simple estimates of 

transition probabilities3, 8c, 8d, 10 to more involved modelling with full computation of transition 

moments.8b, 8e, 10c, 11 Here, we present a new implementation of the method aiming at photoelectron 

spectroscopy, which, although it shares a number of common features with previous 

implementations (especially those reported in refs.3, 10a), distinguishes itself by its generality; 

allowing simulations of steady and time-resolved spectra, use of arbitrary ensembles, investigation 

of general molecular systems, control of diverse parameters, choice of particular models for 

intensity calculation and vibrational overlap modulation, direct integration with any electronic 

structure method, and computation of intensities with absolute units. 

To simulate steady and time-resolved photoelectron spectra we should care of three 

different aspects: computation of ionization energies, computation of ionization probabilities, and 

how to put these results together to build the spectrum. 

Over the years, computations of ionization energies have developed through two 

orthogonal methodological branches. On the one hand, there are a large number of methods based 

on quasi-particle methods, where many-body effects on Koopmans ionization are perturbatively 

recovered,12 like in the popular outer-valence Green’s function method.12b, 12d In this context, 

Koopmans-compliant functionals have shown promising results for the simulation of 

photoelectron spectra as well.13 On the other hand, ionization energies have also been simulated 

based on the difference between independent calculations for the N and N−1 electron systems, the 

so-called  approach.14 The  approach has been regarded as less accurate than the former, 

especially within the SCF approximation, based on the difference between Hartree-Fock energies 

and wavefunctions. However, with the development of new and more accurate methods for excited 

state calculations, a proper balance between the estimates for the N and N−1 electron systems could 

be achieved, and methods as CASPT2, CC2, and TDDFT may provide accurate (within 0.2 eV) 

photoelectron information.15 In view of the flexibility of the  methods to be systematically applied 

to a large number of points in the ensemble, we have based our current developments on them, 

even though we had to pay the price of dealing with non-orthogonal sets of orbitals for computation 

of intensities, as discussed later. 
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Computation of ionization probabilities have a long history dating back to several 

decades.16 These calculations are not of our direct concern here. Instead, we have used a third-

party program16c, 17  to compute ionization cross-sections using standard methods, as explained 

below. However, for using these methods, Dyson orbitals are needed and their computation within 

TDDFT frame is also discussed below. 

Lastly, having computed ionization energies and probabilities, we must put them together 

in a spectral representation. In the present work, we do this using the nuclear ensemble approach. 

Formal quantum approaches for steady and time-resolved photoelectron spectrum simulations of 

molecules have also been available for many years3, 12a, 16d, 18 and their success is well 

documented.3, 19 Thus, the approach presented here must not be understood as a new theory aiming 

at replacing the previous ones. Instead, it should be taken as a routine approach, especially useful 

in the context of trajectory-based dynamics simulations for large molecules, where ensembles are 

automatically generated and must be analyzed. We, yet, emphasize that the nuclear ensemble is a 

low-resolution semi-classical approach. It cannot be expected to compete with formal quantum 

methods, which are obviously the most indicated option for problems requiring high accuracy.  

We will demonstrate here the potential applications and caveats of the nuclear ensemble 

approach for photoelectron spectroscopy with simulations of the steady PE spectra of adenine and 

imidazole (Scheme 1) and the time-resolved PE spectrum of imidazole, always in the gas phase. 

The choice of these systems followed a pragmatic logic: first experimental data are available for 

comparison;20 and second we have previously studied the photoelectron spectroscopy of both 

systems,8d, 15, 21 which will spare us of discussing their very interesting photophysics this time to 

primarily focus on the method implementation itself.  

Finally, we should add that all developments discussed here have been implemented in 

NEWTON-X and are available in the new versions of the program. 

 

Scheme 1 
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2 Theory 

2.1 Steady PE spectra 

Consider the photoionization process depicted in Figure 1. A N-electrons molecule in the 

electronic state I and the stationary vibrational level m, with eigenvalue
m

IE , is excited with a 

monochromatic laser of fixed energy E. As a result, an electron with asymptotic kinetic energy 

2 2 / 2k eE k m=  (me and k  are the mass and wavevector of the photoelectron) is ejected, leaving 

the remaining N−1 electron system in the electronic state F and vibrational level n, with eigenvalue

n

FE . 

 

Figure 1. Schematic representation of the photoionization for the steady case. 

From a semiclassical standpoint, the probability of occurrence of such a process is 

proportional to the cross section per unit of electron kinetic energy:  

 ( ) ( ) ( ) ( )( )( , ) , , , k Im IF k k IF mn

F

E E d E E E E V K   = − + + R R R R R  (1) 

where Im is the probability distribution of nuclear coordinates R  for the source state I,m , IF

is the photoionization cross section between I and F, and the delta function imposes the energy 

resonance condition involving the ionization potential IF F IV V V = −  and the kinetic energy 
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difference mn n mK E E = −  between the two states. The sum runs over all target F states 

contributing to the process. 

Supposing that the photoprocess is instantaneous and that the nuclear momentum does not 

change, 0mnK  . Additionally, replacing the ( )x  function by a sharp function, one obtains 

 ( ) ( ) ( )( , ) , , , , ,k Im IF k s k IF

F

E E d E E w E E V   −    R R R R   (2) 

where sw  is given either as a normalized Gaussian  

  ( ) ( )

( )( )
( )

1/

2

22

1
exp for ,

, , 2 / 2

0 for ,

2 / 2

k IF

k IF

s k IF

k IF

E E V
E E V

w E E V

E E V

  

  − − −
    − 

− =  
 


 −

(3) 

or a normalized Lorentzian 

  ( )

( )

( )( ) ( )

2

2 2

/ 21
for ,

/ 2, , / 2

0 for .

k IF

s k IF k IF

k IF

E E V
w E E V E E V

E E V



  


 −

− = − − +


 −

 (4) 

In both cases,   is an arbitrary parameter determining the line width. It should be much smaller 

than the band width to not interfere with the results, usually 1 eV is enough to satisfy this 

requirement.  

2.1.1 Nuclear ensemble approach for steady spectra 

The integral over R in Eq. (2) can be solved by a Monte-Carlo procedure, leading to  

 ( ) ( )
1

1
( , ) , , = , , ,

pN

k IF k l s k IF l

F lp

E E E E w E E V
N

 
=

 −    R R  (5) 

where a set of pN  nuclear geometries lR  are generated according to the Im  distribution.  

In the particular case when the system is prepared before the ionization in the electronic 

and vibrational ground states 0I =  and 0m = , it is fair to assume that the harmonic approximation 

is valid. Under these conditions, it is more natural,2b as well as numerically efficient, to perform 
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the sampling of the nuclear configurations in the normal mode coordinates q, where the nuclear 

ensemble is defined by the marginal Wigner distribution function for the quantum harmonic 

oscillator22 

 

1/2 2

00

1

( ) exp .
dN

i i i i i

i

q 


=

  
= −  

   
q  (6) 

Here, i  is the angular frequency associated with the ith normal mode with reduced mass μi. Nd is 

the number of normal modes in the system. Once Np nuclear geometries ql are generated according 

to 0 ( ) q , they are transformed back to Cartesian coordinates Rl. 

2.2 Time-resolved PE spectra 

Suppose now that the molecule is at time t = 0 in the electronic and vibrational ground state, with 

energy E0, when a laser of energy E1 pumps it to the excited state I'. This first excitation is 

considered fully vertical, so that the nuclear coordinates and conjugate momenta remain constant. 

Once in the I' state, the system is allowed to evolve freely and, at t = , the dynamics is probed by 

ionizing the molecule with a second laser of energy E2, exactly under the same conditions as in 

Section 2.1. As nonadiabatic transitions are allowed during the dynamics, the electronic state I at 

the moment of the ionization, with total energy 0 1IE E E= + , may in general be different of I'. This 

is schematically depicted in Figure 2.  

Given the equivalence, the analysis of this time-resolved situation parallels the 

development of the steady case, considering that the effects of the two laser pulses are 

uncorrelated. Nevertheless, there are some fundamental differences: first, the nuclear state of the 

molecule at t = τ is described by a wavepacket, not by a single stationary state; second, the laser 

pulse duration is in the femtosecond scale, impacting the energy resolution.  

Bennett et al.3 have shown that the time-resolved case can still be written analogously to 

Eq. (5), but with the initial ensemble distribution given by the population I

  of state I at time . 

The photoelectron spectrum is then given by 

 ( )( ) ( )( ) ( )2 2 2( , , ) , , , = , .k I IF k s k IF

F

E E d E E w E E V      −   R R R R   (7) 
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This approximation, which like in the steady case still assumes that the nuclear momentum does 

not change, implies that the electron is always ejected with the maximum allowed kinetic energy,  

max

, 2k IF IFE E V= −  .  

 

Figure 2.  Schematic representation of the photoionization for the time-resolved case. 

Because the molecule at time  is described by a wavepacket rather than by a stationary 

eigenvector of state I, the Franck-Condon overlaps between I and F are much more complex than 

in the steady case.19b Therefore, to assume that the nuclear momentum remains constant during the 

photo-transition (
max

,k IFE  ejection) may be too restrictive. To go beyond this hypothesis, we have 

also tested a model that simply assumes that any value between 
max

,k IFE  and 
min 0kE =  is equally 

probable (from the vibrational point of view). In this case, the sw  function in Eq. (7) should be 

replaced by a normalized rectangular function allowing for contribution in the whole domain:   

  
( )

1

2 2
2

2

for ,
,

0 for .

IF k IF
r k IF

k IF

E V E E V
w E E V

E E V

− −  −
− = 

 −
 (8)   

With this new assumption, which has also been applied by Fuji et al.,10a the semiclassical 

expression for the time-resolved spectrum is 

 ( )( ) ( )( ) ( )2 2 2 =( , , ) , , , .k I IF k r k IF

F

E E d E E w E E V     −   R R R R   (9) 
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In the remaining paper, when using sharp sw  functions, we will refer to it as the peaked 

vibrational background (PVB) model; when using rectangular rw  functions, we will refer to it as 

the constant vibrational background (CVB) model. 

2.2.1 Nuclear ensemble approach for time-resolved spectra 

Either with Eq. (7) or with Eq. (9), the integral over R is solved by a Monte-Carlo procedure, 

leading to 

 ( )( ) ( )( )
1

1
( , , ) , , , , =

pN

k IF k l k IF l

F lp

E E E E w E E V
N

   
=

  −   R R  (10) 

where a set of pN  nuclear geometries lR  are generated according to the I

  distribution. 

In practical terms, the nuclear ensemble ( )I

 R  at time t = τ is built by first running a 

conventional surface hopping simulation,23 and then collecting geometries R within a time window 

t    +  after the photoexcitation. For each R, 
IF  is computed for 

max

,k IFE  in the case of Eq. 

(7) or for lin  values of kE  regularly spaced between zero and 2 IFE V−  in the case of Eq. (9). For 

evaluation of  , we search this grid for the values immediately inferior ( )1n

kE −  and superior ( )n

kE  

to kE , and compute   with the linearly-interpolated cross section 

 ( ) ( )
( ) ( )
( )

( )
1

1 1

1
.

n n

IF k IF kn n

IF k IF k k kn n

k k

E E
E E E E

E E

 
 

−

− −

−

−
= + −

−
 (11) 

2.3 Cross sections 

From the light-matter interaction theory up to first order and in the electric-dipole approximation, 

it is possible to show that the state-resolved photoionization cross section for this process is given 

by the expression24  

 
2

0

 ( , , ) ( ) ,nk

IF k IFE E E D
c


 =R R  (12) 
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where 0  is the vacuum permittivity and c is the speed of light. The quantity ( )nk

IFD R  denotes the 

photoelectron transition dipole matrix element as a function of the nuclear coordinates R, formally 

defined as  

 ˆ( ) ( ; ) | · | ( ; ) ,n nk k

IF F ID =   R r R μe r R  (13) 

where ( ; )I r R  and ( ; )k

F r R  are the corresponding electronic wavefunctions before and after the 

ionization. Note that 
k

F  also describes the ejected electron with wavevector k . The remaining 

terms in Eq. (13) are the electric dipole operator μ and the unit vector ê  in the direction of the 

electric field of the laser. Integration in Eq. (13) is over the electronic coordinates r.  

Usually, the transition dipole matrix is computed within the Condon approximation at the 

nuclear equilibrium geometry 0R . The nuclear ensemble, however, is intrinsically a post-Condon 

approach, as the transition moments are by construction computed for a distribution of nuclear 

geometries. For this reason, working equations are derived here implicitly retaining the 

dependence of 
k

IFD  on R . 

Now, assuming the photoelectron ejection is fast, the final electronic state can be 

represented by the uncorrelated product17  

 ,k k

F F F =  (14) 

k

F  is the wavefunction of the ejected electron and F  the electronic wavefunction describing 

the F  state of the remaining 1N −  electron species. Also assuming that 
k

F  is orthogonal to the 

orbitals of the initial state (strong orthogonality conditions), then  

 
22

ˆ| · | .
N

k k d

IF F IFD  =  rμe  (15) 

Integration in Eq. (15) is over only one electron coordinate, Nr  in this case. ( )d

IF N r  is the Dyson 

orbital (DO) associated with the particular I→F transition, formally defined as25  

 
1{ }( ) | ,

N

d

IF N F IN
−

=    rr  (16) 
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where the integration is here over the remaining 1N −  electron coordinates. Note that 
d

IF  is 

defined for a given nuclear configuration R . Introducing the norm of the Dyson orbital d

IF , Eq. 

(15) can be rewritten as  

 
22 2

ˆ| · | ,
N

k d k d

IF IF F IFD   =  rμe  (17) 

where /d d d

IF IF IF  =  is just the DO normalized to one. 

Once the DOs and their norms are known, the right-hand side of Eq. (17) can be evaluated. 

In this work, after computing the DOs as explained later in Section 2.4, we have used the EZDYSON 

3.2 program16c, 17 to compute ( )IF l R . This program offers the options of representing 
k

F  on a 

basis set of Spherical or Coulomb partial waves,26 and also includes isotropic angular averaging 

of the photoelectron dipole matrix elements. The free electron states are represented by16a, 16b  

 ( ) ( )
1/2

1/2 ,k e
F k

m
k F =r r   (18) 

where ( )kF R  is the electron wave expansion in a convenient basis and 
k

F   is normalized to energy 

interval (i.e., it has units of (volume × energy)-1/2). Thus, the transition moment is 

 
22 2

2
.| |

3 N

k d de
k

I
IF IF IFF

m g
D k   =  r  (19) 

The factor 1/3 stems from the isotropic averaging, while Ig  accounts for spin and orbital 

degeneracies of state I. Replacing Eq. (19) into Eq. (12) renders 

 
0

22

3
| | .

3
 

N

d de I
IF I IFkF

m
k E F

g

c


   


=  r  (20) 

In addition to simulations based on the full computation of the cross sections, we have also 

simulated the spectrum based on a second approach, which consists of simply approximating Eq. 

(20) to  

 
2

,d

IF IFC   (21) 
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where C is an arbitrary constant. In this case, all functional dependence of the transition dipole 

moments on the geometries and final states are supposed to be contained in the DO norms.  

In the remaining text, when using Eq. (20) to simulate the spectrum, we will refer to it as 

the cross section approach, and when using Eq. (21), as the DO norm approach. 

2.4 Dyson orbitals 

The DO associated with a particular I → F transition (Eq. (16)) is a single electron wavefunction 

containing information on where the ejected electron was removed from. According to our 

previous developments, once the DOs are known, the cross sections can be evaluated and the 

photoelectron spectrum fully computed. In the Supporting Information (SI-1), we provide a 

detailed discussion on how to compute DOs. Here, we will outline only few key aspects. 

As shown in the SI, Eq. (16) can be rewritten as a linear combination of spin-orbitals q  

as  

 
1

( ) ( ),
b fN

d

IF N s s N

s

b 
=

=r r  (22) 

with  

 
maxN

0 1

,
N

q

s n j qs

n j

b d 
= =

=   (23) 

where qs  is the Kronecker delta function. The coefficients  

 
maxM

0

( 1) | .q N j j

n j n m m n

m

d c c+

=

= −     (24) 

are computed in terms of Slater determinant overlaps | j

m n    and configuration interaction (CI) 

coefficients nc  and mc  defining the electronic wavefunctions of the N and N-1 electron systems, 

respectively. To reduce computational costs, 
q

n jd  terms with expansion coefficient nc  or mc  

smaller than an arbitrarily small value cis  can be neglected. In all results discussed here, we have 

adopted 0.01cis = . 
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Using Eq. (22), the DO norm can be easily computed as  

 

1/2

2

1

,
b fN

d

IF s

s

b
=

 
=   
 
  (25) 

which, in general, is not equal to one. In fact, d

IF  may range from 0 to 1 and, as can be inferred 

from Eq. (21), it is a measure of the photoelectron ejection probability.27 The closest the norm to 

0 (1) the less (more) probable the ionization. 

While, the Slater determinant overlaps required in Eq. (24) can be readily computed in 

terms of the overlap matrix between atomic orbitals |uv u vS  =   , a standard output when 

computing the electronic states, the CI coefficients in the framework of linear-response TDDFT 

requires some additional discussion, which is done in the next section. 

2.4.1 Dyson orbitals with TDDFT 

The theory presented so far in this section to compute the DOs is general and can in principle be 

applied for any method used to solve the electronic problem. The only condition is the 

representation of the electronic wavefunctions as a linear combination of Slater determinants. 

Within the frame of Hartree-Fock based methods, that introduces no problem as it is a common 

assumption of the methodology. Therefore, the expansion coefficients nc  and mc  are directly 

computed. In the case of TDDFT, approximated wavefunctions in the CI form should be built.  

According to the Casida's Ansatz for state assignment,28 the electronic wavefunction 

corresponding to a given excited state K can be represented as  

 ,K

K ov ov

o v

C =   (26) 

where o and v stand for occupied and virtual spin-orbitals of the same spin, respectively. Denoting 

by 0  the Kohn-Sham Hartree-Fock ground state determinant, ov  are singly excited Slater 

determinants, where the oth occupied spin-orbital has been replaced by the vth virtual one of the 

same spin, analogous to a configuration interaction with single excitations. Notice that only excited 
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Slater determinants are included in Eq. (26). The ground state wavefunction is by definition 

0 0 = . 

The use of Eq. (26) for building wavefunctions out of TDDFT amplitudes has become very 

popular recently.29 It has been extensively used for computations of nonadiabatic couplings in 

dynamics simulations30 and also employed to compute different types of quantities, including spin-

orbit couplings,31 transition dipole moments,10b, 32 nonadiabatic coupling vectors,32-33 and Dyson 

orbitals.8b In fact, this same methodology has been generalized34 to build wavefunctions to other 

linear-response-based methods as well, like ADC(2) and CC2.35  

The expansion coefficients in Eq. (26) can be explicitly computed as28  

 

1/2

( ),K K Kv o
ov K ov ov

K

C A X Y
E

  −
= + 

 
 (27) 

where KE is the transition energy 

 
0 ,K KV VE = −  (28) 

o  ( v ) is the energy of the molecular orbital o (v), and K K+X Y  is the linear response TDDFT 

vector associated with the Kth electronic state. The remaining term,  

 

1/2

2

,

| | ,K

K ov

o v

A C

−

 
=  
 
  (29) 

is a normalization factor introduced to ensure electronic wavefunctions normalized to unity. 

3 Steady PE spectra of imidazole and adenine 

According to the developments of Section 2.1, calculation of the steady spectrum at a given value 

of kinetic energy Ek of the photoelectron can be pictured in three main steps: (i) generation of the 

nuclear ensemble; (ii) calculation of the DOs and IPs for each nuclear configuration and F 

electronic state considered; and (iii) calculation of the individual photoelectron intensities, from 

which the full spectrum is statistically computed. Along this section, we will illustrate each of 

these steps when applied to the He(I) photoionization of imidazole20c and adenine.20b  
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3.1 Nuclear ensemble 

The steady PE spectra of imidazole and adenine were computed at E = 21.21 eV, which 

corresponds to the energy of a He(I) source. As the ionization is assumed to occur from the 

electronic and vibrational ground states, the nuclear configurations were sampled according to Eq. 

(6). An ensemble of Np = 500 nuclear geometries was generated in normal modes coordinates for 

each molecule and then transformed back to Cartesian coordinates. The equilibrium geometries 

R0, normal mode frequencies ωi, and normal mode eigenvectors were computed at B3LYP/aug-

cc-pVTZ level. DFT and TDDFT calculations here, as in rest of the paper, were all performed with 

GAUSSIAN 09.36 

3.2 IPs and DOs 

For each nuclear configuration, the electronic ground state of the neutral molecules was computed 

within DFT at CAM-B3LYP/aug-cc-pVDZ level. The first 40 states of imidazole cation and the 

first 10 of adenine cation were considered. All those doublet excited states were computed within 

TDDFT with the same functional37 and basis set.38  

After building approximated electronic wavefunctions for all these states, the DOs 

corresponding to each particular I = 0 (neutral) → F (cation) transition were computed according 

to the formalism presented in Section 2.4. To illustrate this step in more details, Table 1 

(imidazole) and Table 2 (adenine) present the values of 0FV  and 
0

d

F  for the corresponding 

equilibrium geometries of each system, together with the experimental IPs for each molecule.20b, 

20c  

As can be seen from the tables, theoretical IPs are in excellent agreement with experimental 

ones. Another interesting feature that can be appreciated is that although all 0 → F transitions are 

energetically allowed ( 0FV E  ), not all of them contribute to the spectrum. For imidazole, for 

instance, only a few transitions really do so, the rest being practicably negligible, given their small 

DO norms. Moreover, among the significant transitions, we can find very intense ones (norms 

close to one), like the 0 → 0 in both molecules, and some much less intense, like the 0 → 9 for 

imidazole or 0 → 7 for adenine. Thus, with DO norms alone, one can not only identify which 
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transitions really contribute to the spectrum, but also what the relative contribution from each 

transition will be. 

Table 1. IPs (in eV) and DO norms 
0

d

F  corresponding to each 0 → F transition for the 

equilibrium geometry of imidazole. The experimental IPs reported in ref.20c are given as well.  

F 
exp

0

t

FV  ( )00FV R  ( )00

d

F R  F 
exp

0

t

FV  ( )00FV R  ( )00

d

F R  

0 8.81 8.99 0.98 20 18.08 18.23 0.79 

1 10.38 10.30 0.96 21  18.30 0.07 

2 
 

10.62 0.91 22  18.33 0.02 

3 14.03 14.07 0.96 23  18.90 0.18 

4 
 

14.21 0.70 24  18.94 0.00 

5  14.74 0.27 25  18.95 0.17 

6 14.77 14.93 0.91 26  18.98 0.20 

7 15.38 15.04 0.96 27 20.48 19.04 0.73 

8  15.15 0.10 28  19.17 0.01 

9 
 

15.25 0.33 29  19.19 0.13 

10  15.40 0.33 30  19.24 0.01 

11  16.05 0.20 31  19.28 0.19 

12  16.13 0.13 32  19.36 0.00 

13 
 

16.71 0.34 33  19.39 0.12 

14  16.92 0.14 34  19.39 0.00 

15  17.49 0.08 35  19.52 0.37 

16  17.92 0.10 36  19.53 0.03 

17  18.10 0.13 37  19.54 0.03 

18  18.13 0.02 38  19.55 0.32 

19  18.16 0.00 39  19.59 0.05 

 

Table 2 also shows OVGF results for adenine.20g As this method is one of the most reliable 

approaches for determination of IPs, they help to gage the quality of the current TDDFT results. Up 

to 12 eV (D6), these two data sets are in excellent agreement with each other, with a RMSD of 0.2 

eV for the IPs. Above 12 eV, however, the agreement is not as good; TDDFT distributes the 

intensity of the 13.21 eV experimental band over three low-intensity states (D7-D9), while OVGF 

still predicts a single state. The quantitative comparison to the experiment favors TDDFT though.    



17 

 

Table 2. IPs (in eV) and DO norms 
0

d

F  corresponding to each 0 → F transition for the 

equilibrium geometry of adenine. Experimental IPs reported in ref.20b and OVGF/6-311++G** 

data from ref.20g are given as well.  

  
TD-CAM-B3LYP 

 

OVGF a 

 

F 
exp

0

t

FV  ( )00FV R  ( )00

d

F R  ( )00FV R  P1/2 

0 8.48 8.35 0.98 8.32 0.95 

1 9.58 9.51 0.94 9.40 0.94 

2 
 

9.69 0.87 9.45 0.94 

3 10.50 10.45 0.95 10.50 0.94 

4 
 

10.62 0.88 10.53 0.94 

5 11.39 11.37 0.93 11.61 0.94 

6 12.10 12.02 0.80 12.28 0.93 

7 
 

13.06 0.32   

8  13.24 0.11   

9 13.21 13.48 0.52 13.63 0.92 
a P1/2 is the square root of the OVGF intensity.  

3.3 Steady PE spectrum 

Once IPs and DOs (Eq. (22)) are computed for each nuclear configuration Rl of the ensemble (Eq. 

(6)) and for F electronic state of the cation, the spherically averaged total cross section for the 

same geometries ( ( )IF l R , Eq. (20)) are computed, and the spectrum is simulated (Eq. (5)). 

( )IF l R  are computed with the EZDYSON 3.2 program. The free-electron wavefunction was 

expanded in Coulomb partial waves to an angular momentum of lmax = 6, which we found out to 

be enough to converge the ionization probabilities. The photoelectron dipole matrix elements were 

averaged over all molecular orientations, which is justified by the non-polarized character of the 

laser used in the experiments and the random orientation of the molecules before the ionization. 

Alternatively, we have also computed the spectrum based on the DO norm approach, using Eq. 

(21).  
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Figure 3.  Simulated (this work) and experimental20c steady PE spectra of imidazole for a 

laser energy of 21.21 eV. The intensities of the experimental spectrum and of the simulation based 

on DO norms are normalized to match the maximum of the first peak. Bottom: Individual 

contributions from each cationic state up to D39; the dotted line shows the sum over all components. 

0.1 =  eV.  

The simulated PE spectra obtained by both approaches, cross section and DO norm, are 

shown in Figure 3 for imidazole and Figure 4 for adenine. Experimental results from refs.20b, 20c 

are shown as well. All curves are represented as a function of the binding energy, defined as 

b kE E E= − . As can be seen in the figures, the theoretical methods are able to correctly reproduce 

both the position and width of the bands. The relative intensity of the bands shows some 

dependency on the method, but a nice agreement with the experiment is in general reached. For 

imidazole, the DO norm approach renders the medium and high energy bands at 14 and 18 eV 

with too low intensities, as compared to the low energy bands. The full computation of the 
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transition moments in the cross section approach tends to deliver better balanced relative 

intensities.  

 

Figure 4. Top: Simulated (this work) and experimental20b steady PE spectra of adenine for a 

photon energy of 21.21 eV. The intensities of the experimental spectrum and of the simulation 

based on DO norms are normalized to match the maximum of the first peak. Bottom: Individual 

contributions from each cationic state up to D9. The dotted line shows the sum over all components. 

0.1 =  eV. 

Concerning intensity, only the cross section approach can provide absolute values. In 

Figure 3 and Figure 4, the intensities of the spectra based on DO norms are normalized to match 

the intensity of the first peak of the spectra based on cross sections. Unfortunately, absolute 

intensities for these molecules have not been experimentally reported, and the same normalization 

procedure was applied. 
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The good agreement between the spectra computed with cross sections and DO norms in 

the low binding energy region implies that the cross section approximation in Eq. (21) is valid for 

IFE V  . Thus, as long as absolute intensities are not required, the low-energy region of the 

photoelectron spectrum may be simulated with the DO norm approach, significantly reducing 

computational costs. 

The bottom graphs of Figure 3 and Figure 4 show the contribution of each S0→Dn transition 

to the total cross section. For both molecules, only few cation states contribute to the spectrum up 

to 14 eV. In some cases, a single experimental band may correspond to the overlap of transitions 

into more than one state, as for instance transitions into D1 and D2 forming the second 

photoelectron band of the two molecules. 

Above 14 eV, the number of states needed to compute the spectrum increases substantially. 

For imidazole, for instance, transitions into nine states (D3 to D12) contribute to the broad band 

starting at 13 eV. For the next band starting at 18 eV, even considering 24 states (D15 to D39), we 

have not been able to reproduce the experimental band shape. This large demand for states in the 

high energy region points to a major limitation of the method. Not only the simulation costs may 

be prohibitive, but also the computed properties of such highly excited states are not fully reliable, 

especially within linear-response approximation. 

4 Time-resolved PE spectra of imidazole 

As in the steady case, the calculation of the time-resolved PE spectrum at a given Ek can also be 

pictured in three main steps: (i) generation of the nuclear ensemble, (ii) computation of the DOs 

and IPs, and (iii) calculation of photoelectron intensities, from which the spectrum is statistically 

computed. However, according to the developments of Section 2.2, step (i) is fundamentally 

different now: the nuclear ensemble has to be selected from nonadiabatic dynamics. Along this 

section, we illustrate all these steps, when applied to simulate the time- and kinetic-energy-

resolved PE spectrum of imidazole.  
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4.1 Nuclear ensemble from surface hopping 

As imidazole is initially pumped from the vibrational ground state, the sampling of the nuclear 

coordinates and conjugate momenta at t = 0 was performed according to a Wigner distribution 

function for S0. The same R0, ωi, and normal-mode eigenvectors as in Section 3.1 were used. A 

set of 500 nuclear configurations and conjugate momenta were generated and projected onto the 

adiabatic electronic states to compute the absorption spectrum shown in Figure 5.  

In the experimental setup,8d a pump laser of energy E1 = 6.18 eV (200.8 nm) was used to 

directly excite imidazole from the electronic ground state into the 1ππ* state. From the 

computational side, using TDDFT at CAM-B3LYP/aug-cc-pVDZ level, we found out that the 

simulated absorption spectrum is blue-shifted by 0.2 eV compared to the experimental spectrum20a 

(Figure 5). Therefore, to excite the 1ππ* state of imidazole in the same region as done in the 

experiments, an energy E1 = 6.4 eV is necessary in the computational modelling. This value was 

used in the simulations.  

 

Figure 5. Simulated and experimental20a absorption spectrum of imidazole in the gas phase. 

The intensity of the experimental spectrum was normalized to match the simulated one.  

To initiate the dynamics, 500 phase-space points sampled for the absorption spectrum were 

screened to select those with excitation energy 0IE E−  within the narrow energy interval E1 ± 0.1 

eV, and resampled using their corresponding oscillator strength as transition probability.2b A set 
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of 100 points matching these energy-window and oscillator-strength criteria was selected to be 

used as initial conditions for trajectories.  

The number of initial conditions per adiabatic electronic state is shown in Table 3. This 

distribution reflects the geometric distortions in the sampling. Although the vertical excitation into 

the bright * state is S3 for the equilibrium geometry, Table 3 shows that, depending on the 

geometry, this state may shift as down as S2 and as high as S6. 

Table 3. Number of initial conditions per electronic state for which 0IE E−  is within the 

energy interval E1 ± 0.1 eV.  

SI = S1 S2 S3 S4 S5 S6 S7 Total 
 

0 26 46 21 6 1 0 100 

 

The electronic energies, energy gradients, and nonadiabatic coupling terms were computed 

‘on-the-fly’ within the frame of TDDFT at CAM-B3LYP/aug-cc-pVDZ level. Excited electronic 

states up to S8 were included in the dynamics. Each trajectory was propagated for a maximum of 

t = 500 fs, with an integration step of 0.5 fs for classical equations and 0.025 fs for quantum 

equations.  

Nonadiabatic transitions between different electronic states were treated with the fewest-

switches surface hopping39 including decoherence corrections ( = 0.1 Hartree).40 Nonadiabatic 

couplings with TDDFT were computed by finite differences with the method discussed in ref.30a, 

which is based on the Hammes-Schiffer/Tully approach.41 As a single-reference method, TDDFT 

cannot provide reliable nonadiabatic couplings for crossings with the ground state. For this reason, 

when a trajectory reached an S1-S0 energy gap smaller than 0.15 eV before the maximum 

simulation time, it was stopped. This procedure did not affect the spectrum simulations, as at this 

point the probe energy was already smaller than the ionization energy.  

After completing the dynamics, trajectories were split in regular intervals of  = 25 fs 

starting from  = 0. For each time interval i between 0 and the maximum simulation time, Np = 

500 nuclear geometries 
( )i

lR  were randomly selected from the trajectories and used to compute the 

spectrum. 
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Initial conditions, semi-classical dynamics, absorption spectrum, and photoionization 

spectrum were computed with NEWTON-X interfaced with GAUSSIAN 09. 

4.2 IPs and DOs 

According to ref.8d, a laser of E2 = 4.93 eV (251.6 nm) was used in the experiment to probe the 

dynamics after the E1 = 6.18 eV (200.8 nm) pump excitation. In the simulation, for each 
( )i

lR , the 

DOs and their norms associated with each I → F transition were computed, where I is the current 

electronic state of the neutral molecule at the moment of the ionization and F are all cation states 

from 0 to 4.  

Table 4. Vertical excitation energies (singlet-singlet; 0IE  in eV) and vertical IPs (singlet-

doublet; IFV  in eV) computed at the equilibrium geometry 
0R . The values of the oscillator 

strength (f ) and of the squared DO norm (
2

0( )d

IF R ) are shown in brackets. State assignments 

in terms of the main orbital contribution are given in parenthesis. cs – closed shell; 3sX – 3s 

Rydberg orbital on atom X. 

 
 0IE  (eV) [f ] 

IFV (eV) [
2

d

IF ] 

I/F   0 1 2 

   D0 (1
hole) D1 (n

hole) D2 (2
hole) 

0 S0 (cs) 0.00  8.99 [0.96] 10.30 [0.91] 10.62 [0.83] 

1 S1 (3sN) 5.59 [0.000] 3.40 [0.47]  4.71 [0.00]  5.02 [0.00]  

2 S2 (3sC) 6.36 [0.030] 2.64 [0.47]  3.95 [0.00]  4.26 [0.00]  

3 S3 (*) 6.43 [0.169] 2.56 [0.42]  3.87 [0.00]  4.19 [0.01]  

4 S4 (3sC) 6.63 [0.000] 2.36 [0.38]  3.67 [0.00]  3.99 [0.00]  

5 S5 (n*) 6.72 [0.004] 2.28 [0.00]  3.59 [0.31]  3.90 [0.00]  

6 S6 (3sN) 6.99 [0.002] 2.00 [0.00]  3.31 [0.00]  3.62 [0.36]  

 

Before proceeding with the spectrum discussion, it is illustrative to characterize the 

ionization process for the S0 equilibrium geometry 0R , which approximately corresponds to the 

ionization at  = 0. Excitation energies, IPs, and DO norms for the lowest I → F transitions are 
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shown in Table 4. As can be seen, only electronic states of the cation up to F = 2 (D2) need to be 

considered for this particular geometry. (In fact, this is also true for all remaining geometries.)  

The DOs corresponding to ionizations from S0 (closed shell) and S3 (*) are shown in 

Figure 6. The main configuration for each singlet and doublet state is schematically shown in the 

figure as well. The doublet configurations differ from that for S0 by a single spin orbital. Therefore, 

according to the ionization rules discussed in the Supporting Information (SI-2), such ionization 

processes are allowed. This is corroborated by the large DO norms for S0→Dn processes reported 

in Table 4. In the case of S3, only ionization into D0 is allowed according to the ionization rules, 

which is also corroborated by the results in Table 4. As we discuss below, this ionization pattern 

from S3 will have major consequences for the simulation of the time-resolved spectrum.    

 

Figure 6. DOs for ionization from S0 (closed shell) and S3 (*) into the first three cation 

states (D0 to D2) computed for the equilibrium geometry of imidazole with TDDFT.  

4.3 Time-resolved spectrum 

Once IPs and DOs are known for each nuclear geometry 
( )i

lR  between the current state I and F  

cation states, the time-resolved PE spectrum can be computed either with the cross section 

approach (Eq. (20)) or with the DO norm approach (Eq. (21)). Then, if we suppose that the electron 

is ejected with the maximum kinetic energy, the photoelectron spectrum is computed based on 
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peaked line shapes (PVB model), as given by Eq. (7). In Figure 7-top, the simulated spectrum 

using the PVB model is shown for the early dynamics, collecting configurations generated in the 

first 25 fs of dynamics simulations. The experimental spectrum from ref.8d for zero time delay is 

also shown, normalized to the maximum of the simulated result. (For an analysis of the 

experimental results, see ref.8d, 20d, 20e). The spectra are plotted in terms of the binding energy 

1 2b kE E E E= + − . Transition dipoles were computed with Coulomb partial waves (lmax = 6) 

between the current neutral state at a certain time step and all cation states up to F = 4 (D3). The 

line width was assumed to be 0.2 =  eV. 

 

Figure 7. Photoelectron spectrum for configurations sampled within the first 25 fs of the 

dynamics simulations. Top: Spectrum based on the PVB model. Bottom: Spectrum based on the 

CVB model. In both cases, experimental data from ref.8d are shown. Different normalizations of 

experimental data are applied in each panel (see text). 
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It is clear from Figure 7-top that the spectrum computed with the PVB model poorly 

compares to the experimental result. The simulation has several peaks at the resonant points 

defined by max

1 2 , 1b k IF IFE E E E E V= + − = +  , with the main contribution coming from ionization of 

S2 and S3 into D0. The experimental spectrum, on its turn, is much broader and it peaks at much 

larger binding energies than predicted by the simulation. 

The large biding energy in the experimental data shown in Figure 7-top implies that 

electrons are being ejected with low kinetic energies, which has been attributed by Humeniuk et 

al.8b to a rearrangement of the nuclear wavepacket due to its interaction with the probe pulse. This 

also means that the hypothesis underlying the PVB model, i.e. that electrons are ejected at the 

maximum kinetic energy, does not hold in the present case and simulations based on the CVB 

model may be more adequate. In Figure 7-bottom, we show the spectrum simulated with this 

model, as given by Eq. (9), for times smaller than 25 fs. As before, transition dipoles were 

computed with Coulomb partial waves (lmax = 6) between the current neutral state and all cation 

states up to F = 4. 10lin =  points were used in the linear interpolation of Eq. (11). The experimental 

spectrum from ref.8d for zero delay is also shown, but now normalized to the intensity of the S4 → 

D0 contribution. 

The agreement of the CVB model with the experiment is still not perfect, but it is 

significantly better than with the peaked model. The simulation correctly predicts a series of 

substructures in the spectral intensity distribution. As shown in Figure 7-bottom, the trace of the 

experimental spectrum at  = 0 exhibits inflexion changes at 8.7, 9.2, and 10 eV. The simulation 

shows equivalent inflection changes at 8.7, 9.0, and 9.7 eV. The data analysis revealed that they 

are related to which neutral states are contributing to the ionization. Below 8.7 eV, only ionization 

into D0 coming from S6 contributes to the spectrum. Above this value, D0 ionization of S4 to S5 

also contributes causing the spectral shift. Starting from 9.0 eV, ionization of S2 and S3 into D0 

starts to contribute. S1 ionization appears at above 9.7 eV. A small contribution from ionization of 

S4 and S5 into D1 is observed above 10 eV. 

The early dynamics spectrum computed with the DO norm approach and the CVB model 

is also shown in Figure 7-bottom. It is normalized to match the cross-section based spectrum at 

the S4 → D0 contribution. The agreement between the two approaches is very good, once more 

indicating that the DO norm approach can be applied as an inexpensive alternative to the full 
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computation of the cross sections. The main difference between the two approaches comes is in 

the slope of the spectra for large binging energies. It is caused by a small effective near-linear 

dependence of the transition dipole on the electron kinetic energy, which is completely neglected 

in the DO norm approximation.  

The time evolution of the spectrum using the CVB model with the cross section approach 

is shown in Figure 8. The sub-picosecond time distribution of the spectrum is well predicted. In 

particular, the simulation clearly reproduces the dependence of the time decay on the binding 

energy, with a systematic increase of the lifetime between 9 and 11 eV.  

 

Figure 8. Time- and kinetic-energy-resolved PE spectrum of imidazole. Top: Experimental 

data from ref.8d; Bottom: simulations using the CVB model and the cross section approach. The 

intensities were renormalized to match each other at  = 0 and Eb = 9 eV. 

 In spite of the qualitative agreement between experiment and simulation with CVB model, 

the predictions for the binding energy distribution are, however, not entirely satisfactory. While 
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the experimental spectrum peaks at 10.5-10.7 eV and quickly drops to zero before the maximum 

biding energy (11.33 eV), the simulations do not show this important feature, but only a flat plateau 

extending up to the maximum binding energy (this is better seen in Figure 7-bottom). The reason 

underlying this difference can be traced back to three factors. First, the CVB model itself, which, 

as already discussed, provides only a very approximated guess on how vibrational overlaps 

modulate the distribution of electron kinetic energies. Second, the experimental setup in which 

electrons with small kinetic energy are not fully collected, causing the intensity drop before the 

maximum binding energy. Third, a TDDFT failure to describe the multiconfigurational character 

of the * state of imidazole. This last point is discussed next. 

We know from CASPT2 calculations for imidazole that the * state has strong 

contributions from 1* and * configurations (see, for instance, ref.42). This 

multiconfigurational character plays a central role for the spectrum, splitting the ionization signal 

in two components, depending on whether the hole is created in the 1 or  orbital. The 1
hole, 

which is formed after ejection of the electron in the 1* orbital (approximately the DO 30

d  in 

Figure 6), leads to an ionization signal spanning from 
min

00 8.99 eVbE V=  =  (see Table 4) to 

max

1 2 11.33 eVbE E E= + = . On the other hand, the 2
hole, formed after electron ejection from 2* 

(the DO 32

d ), leads to ionization signals from 
min

02 10.62 eVbE V=  = to again 
max 11.33 eVbE = . 

Thus, the sum of the two components creates a bias towards large bE  values. TDDFT, on its turn, 

represents the * state in terms of excitations from 1 only. Therefore, only 1 holes are created, 

flattening the result in the 10.5-10.7 eV region. 

5 Conclusions 

We have implemented semiclassical methods based on the nuclear ensemble approach to simulate 

steady and time-resolved photoelectron spectra. The current implementation in the NEWTON-X 

program works with TDDFT provided by GAUSSIAN 09, but the methods are rather general and 

can be easily adapted to work with other electronic structure levels and programs.  

For both, steady and time-resolved photoelectron spectra, we have developed and tested 

two levels of approximations, one based on full computation of transition dipole moments (cross 
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section approach) and another based on an approximation of the transition dipole moments by 

Dyson orbital norms (DO norm approach). Moreover, the vibrational modulation of the electron 

kinetic energy distribution was also modeled with two different approaches. In the first one, 

vibrational overlaps between N and N-1 electron systems were supposed to be significant only for 

the electrons ejected with the maximum allowed kinetic energy (PVB model), a common 

approximation resting on the sudden-ionization hypothesis. In the second model, vibrational 

overlaps were supposed to be constant over the whole electron kinetic energy domain (CVB 

model).    

Applications of the methods have been done for imidazole (steady and time-resolved) and 

for adenine (steady). The comparison to experimental data shows that steady spectra can be nicely 

predicted with the PVB model, with good description of intensities and band shapes.  

For time-resolved spectra, the PVB model failed and the CVB model rendered significantly 

better results. The CVB simulations have been able to reproduce a series of substructures in the 

spectrum, which were assigned to specific ionization processes. Nevertheless, the overall 

agreement between simulation and experiment was less satisfactory than in the steady case due to 

the hypotheses underlying the CVB model, the multiconfigurational character of the key state 

contributing to the spectrum, and the instrumental signal loss not included in the simulations. 

Considering all hypotheses and approximations invoked, it is truly encouraging that the main 

qualitative features of the spectrum have been predicted by the nuclear ensemble modelling.   

For all tested cases, the approximation of the cross sections by Dyson orbital norms 

delivered results of similar quality as those based on full computation of cross sections, with an 

enormous economy of computational effort.   

Finally, all these results make us confident that photoelectron spectrum simulations based 

on the nuclear ensemble approach can be an effective tool to aid deconvolution and assignment of 

experimental data for large molecules.   
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