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In the present study, we examined the UV excitations of a newly introduced molecular

set, Halons-9, composed of nine gaseous halon molecules. The performance of the den-

sity functional-based multi-reference configuration interaction method (DFT/MRCI)

and time-dependent density functional theory with CAM-B3LYP functional (TD-

CAM-B3LYP) in the computation of singlet and triplet excited states of this set was

evaluated against coupled-cluster with singles and doubles (CCSD). Excited states

up to the corresponding ionization limits, including both localized and delocalized

excitations, have been benchmarked. TD-CAM-B3LYP significantly underestimates

excitation energies of the higher mixed valence-Rydberg and Rydberg states, with

computed mean absolute deviations from the EOM-CCSD results 1.06 and 0.76 eV,

respectively. DFT/MRCI gives a significantly better description of higher excited

states, albeit still poor, compared to the TD-CAM-B3LYP. The mean absolute devi-

ations of mixed valence-Rydberg and Rydberg states from the reference EOM-CCSD

values are 0.66 and 0.47 eV, respectively. The performance of DFT/MRCI for descrip-

tion of strongly correlated states with valence-Rydberg mixing is still not satisfactory

enough. On the other hand, oscillator strengths of most of singlet states obtained

with both methods are close to the EOM-CCSD values. The largest deviations, oc-

curring in the case of several high-lying multiconfigurational states, are of an order

of magnitude.
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I. INTRODUCTION

One of the main challenges in quantum chemistry is the reliable prediction of excited-

state properties. Numerous theoretical methods for computation of excited states have

been introduced and assessed, among them several popular single-reference methods (e.g.

the linear-response time-dependent density functional theory (TD-DFT)1,2 and coupled-

cluster-based methods), as well as multi-reference methods (e.g. the complete active space

second-order perturbation theory (CASPT2)3 and the multi-reference configuration inter-

action (MRCI)4 method). However, selecting an appropriate electronic structure method

for excited state computation in a particular case, in terms of accuracy and computational

cost, is not a straightforward problem.

A number of computational studies have been devoted to performance evaluation of differ-

ent quantum chemistry methods for prediction of various molecular properties on different

molecular sets.5–11 Since the focus of this study is on excited states, we here mention few

well-established molecular sets, which stand out among numerous sets used in methods

assessments. The molecular set by Thiel and his co-workers5, an assembly of 28 small

representative organic molecules, is one of the most widely used molecular sets. It has been

employed for evaluation of excited states of several multi- and single-reference methods.5–8

Furthermore, Grimme and his co-workers introduced several molecular sets9–12. The first

of them9 comprises 14 middle-sized to large molecules, including organic and inorganic

molecules, where the studied excited states included the lowest-lying localized and Rydberg

states. The molecular set composed of 14 small- to medium-sized molecules, introduced by

Leang et al., was used for benchmarking of TD-DFT with various density functionals13. Win-

ter at al. introduced a molecular set of 66 organic molecules, including porphine derivatives,

polycyclic aromatic hydrocarbons, heterocyclic organic compounds and aromatic alcohols,

and assessed several single-reference methods for the excited state computations14.

By inspecting these and other prominent molecular sets, we noticed that a large field of

halo-organic compounds remained not properly covered by any of them. This motivated

us to introduce a new molecular set, Halons-9, composed of nine halon molecules: bro-

momethane (CH3Br), dichlorofluoromethane (CHCl2F), bromodifluoromethane (CHBrF2),

bromochlorodifluoro-methane (CBrClF2), dichlorodifluoromethane (CCl2F2), bromotriflu-

oromethane (CBrF3), tetrafluoromethane (CF4), 1,2-dichlorotetrafluoroethane (C2Cl2F4),
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and hexafluoroethane (C2F6). Among all halon molecules, we have chosen to investigate the

excited states of only those which are gaseous under standard conditions of temperature and

pressure, primarily because of their importance in atmospheric chemistry. The structures

of the studied molecules, alongside their IUPAC names and names according to the special

halons’ naming convention are shown in Figure 1. To our knowledge, none of the existing

molecular sets included any of these molecules. Apart from CH3Br, whose low-lying excited

states are examined in several studies15–17, excited states of the other molecules in the set

have not yet been studied computationally. Nevertheless, there are numerous experimental

studies of the UV spectra of halons (for CH3Br ref.18 and the references cited herein; for

CBrF3 ref.19–21 and the references cited herein; for CF4 ref.22,23 ; for CHCl2F ref.24 ; for

CHBrF2 ref.21 ; for CBrClF2 ref.21,25,26 ; for CCl2F2 ref.24,27 ; for C2F6 ref.28 ; for C2Cl2F4

ref.29).

This omission may impact the evaluation of computational methods and properties by in-

troducing a negative bias against halogen compounds. We particularly felt that in recent

simulations of halo-compounds of atmospheric interest30–34, where we could not count on

performance evaluation for any of the molecules of interest. Our aim in this study is to

start to fill this knowledge gap, first, by proposing a clear set of molecules to be tested;

and second, by evaluating them using few popular methods. As a first study, we limited

ourselves to the investigation of spin-free vertical excitation energies for the whole series.

Important topics as adiabatic excitation energies and spin-orbit coupling will be left for

further studies. We probed the performance of two DFT-based quantum chemical methods

against equation of motion CCSD (EOM-CCSD)35–38 in the computations of excited states

of these systems.

We focus on performance of density functional theory-based multi-reference configura-

tion interaction method (DFT/MRCI)39 and TD-DFT in combination with CAM-B3LYP

functional40,41 in description of excited states of halons. The 240 excited states included in

our study comprise a small number of valence excited states in low-energy regions and nu-

merous highly-correlated Rydberg and mixed valence-Rydberg states in high-energy regions

converging to the ionization limits.

TD-DFT stands out among other computational methods as one of the most popular due

to its good compromise between accuracy and computational cost. Several different flavors

of density functionals have been developed, and their performance has been benchmarked
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against high-level ab initio or experimental data so far, probing their performance for a

range of excited states, from localized to delocalized ones.42–48 One of the main drawbacks

of TD-DFT is the description of systems with pronounced multi-reference character of

ground state. Moreover, within the usual linear-response and adiabatic approximations,

TD-DFT is incapable of reproducing doubly-excited states49.

DFT/MRCI overcomes a large number of shortcomings of TD-DFT, because of its multi-

reference character. It is better suited to treat highly-correlated systems, and to capture

the excited states of double-excited character. The DFT/MRCI method has been tested

for a number of organic molecules39,44,50–52 and transition metal complexes53, applied for

simulation of UV/vis spectra (e.g. Ref.54–56), and recently assessed for the computation of

spin-orbit coupling in organic molecules57. It has been shown that it is able to reproduce

excitation energies with errors within few tenths of an eV. However, most of the available

benchmark studies of excited states with DFT/MRCI are usually focused on valence excited

states of nπ* or ππ* character, and do not include higher states characterized by σ bond

excitations, valence-Rydberg mixing, and Rydberg states.

EOM-CCSD computations of excited states are used as the reference data for the compari-

son with DFT/MRCI and TD-DFT results. Although it is one of the most reliable methods

available for routine excited state calculations, we should mention that, just like TD-DFT,

it is not able to describe multi-reference and double excitations. Therefore, concerning these

properties, we should take DFT/MRCI as the reference.

II. METHODS AND COMPUTATIONAL DETAILS

The ground state molecular structures of the nine molecules in the Halons-9 molecular

set have been optimized using Møller-Plesset perturbation theory up to the second order

(MP2)58–61 with def2-TZVPP basis set62 without symmetry constraints. First ionization

potentials of the studied molecules are computed at their optimized structures using cou-

pled cluster with singles and doubles (CCSD) method63–66 with the triple-zeta def2-TZVPP

basis set, as the difference between the ground state energy of the N and the N − 1 electron

systems. Cartesian coordinates for the optimized structures are given in the Supporting In-

formation (Tables I-IX) and vertical ionization potentials (IPs) are given in Table I. Vertical
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excitation energies of singlet and triplet excited states up to around the ionization limits are

computed at the optimized structures at three different levels of theory - EOM-CCSD35–38,

DFT/MRCI39, and linear response TD-DFT. We tested the influence of size of the basis set

on excited state energies of CF4 by comparing their values obtained with the def2-TZVPP

and quadruple-zeta def2-QZVPP62 bases (see Table X in the Supporting Information). The

def2-QZVPP basis set decreases the vertical excitation energies of CF4 molecule for ≈ 0.3

eV in average. Since we are primarily interested to compare the performances of applied

methods, we decided to use smaller def2-TZVPP set in all computations.

Since excited states with pure Rydberg or mixed valence-Rydberg character are expected to

occur among the computed excited states, TD-DFT computations are performed employing

range-separated (rs) hybrid Coulomb attenuated method CAM-B3LYP functional40,41. As it

is well-known67 generalized gradient approximation (GGA) and hybrid exchange-correlation

functionals usually describe accurately local excitations, with an accuracy of few tenths of an

eV. However, they significantly underestimate excitation energies of non-local states, such

as Rydberg or charge-transfer excitations68, with the typical errors of order of an eV. The

origin of this problem is already very well-known - it lies in an incorrect description of long-

range exchange functionals with GGA and hybrid functionals69–71. This problem can be

overcome using range-separated functionals, which describe short- and long-range exchange

functionals by different terms. One of the most widely used rs functionals, CAM-B3LYP,

comprises 0.19 Hartree-Fock(HF)-like and 0.81 Becke 1988 (B88) GGA exchange at short

range; the long-range region is represented by 0.65 HF-like plus 0.35 B88 exchange; and

the transition between short- and long-range regions is modulated by an error function with

parameter 0.33 a−1
0 .40 Assessed for the computation of excitation energies of Rydberg and

charge transfer states, CAM-B3LYP generally shows good performance.72,73

To analyze the delocalization of the excited states obtained on TD-CAM-B3LYP level, we

employ the Λ diagnostic, introduced by Peach et al.74, as a method to quantify the degree

of delocalization of states within TD-DFT method. The Λ values are computed as sums

of spatial overlaps between all occupied and virtual orbital pairs involved in TD-DFT ex-

citations, weighted by their contributions to the specific excited state. These contributions

are obtained by solving Casida’s equations74. The Λ value is a dimensionless number which

takes value between 0 and 1; small Λ values signify excitations with strong delocalized char-

acters, whereas large values signify local excitations. All presented TD-DFT computations
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were performed with GAMESS-US code75,76.

The basic idea of the combined density functional theory/multi-reference configuration in-

teraction (DFT/MRCI) method is to perform DFT computations of a closed-shell reference

ground state, and to use the obtained one-particle Kohn-Sham (KS) orbitals as a basis

to subsequently build configuration state functions (CSFs) with short MRCI expansions.39

The Hamiltonian matrix elements computed between the CSFs with the same space and

same spin parts (diagonal elements) are the most important, because CI-matrix is usually

diagonal-dominant. They account for most of dynamic electronic correlation included via

DFT. On the other hand, the off-diagonal Hamiltonian matrix elements are computed be-

tween CSFs with same space but different spin parts or between CSFs with one-electron

or two-electron differences in space parts. In DFT/MRCI off-diagonal matrix elements are

scaled using exponential damping function, which depends on the energy difference between

diagonal elements of two CSFs. This scaling is introduced to avoid large extent of double

counting of electron correlation which is already included via diagonal terms. It also ensures

efficient selection of energetically close CSFs, whose interaction gives rise to non-dynamic

correlation effects which are not taken into account within DFT. A few semi-empirical screen-

ing parameters are employed in the DFT/MRCI Hamiltonan, including parameters used for

fitting the exponential damping function for scaling procedure and parameters used for

screening of two-electron integrals in diagonal matrix elements.

In our DFT/MRCI computations, the reference configurations were initially generated by

single and double excitations of ten active electrons within the active space composed of

ten orbitals. We discard the configurations with energies above 1 Hartree. The number of

created configurations spans from 946 in the case of CF4 molecule to 10139 in the case of

C2Cl2F4 molecule. We employ the original sets of five empirical parameters for singlet and

triplet excited states for the DFT/MRCI Hamiltonian39,77, which are available in combina-

tion with the BH-LYP functional78.

The initial DFT calculations are performed with TURBOMOLE program79, and the sub-

sequent MRCI computations are done with the MRCI code developed by Grimme and

Waletzke39 and recently updated by Lyskov and co-workers80. The two-electron integrals in

DFT/MRCI computations were approximated using the resolution-of-the-identity approxi-

mation with auxiliary basis set81 from the TURBOMOLE library.

The spin-restricted EOM-CCSD computations and the MP2 geometry optimizations are
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performed with Gaussian 09 program82.

III. RESULTS AND DISCUSSION

A. Vertical excitations

Computed vertical excitation energies, state assignments, and their Λ values are compiled

in Table II for the singlet and in Table III for the triplet excited states. Oscillator strengths

for the singlet transitions are given as well. For the sake of brevity, we only show the singlet

excited states with oscillator strengths larger than 0.001 and only the first 5 triplet excited

states for each molecule. Complete Tables including all computed excited states are given

in the Supporting Information (Table XI and Table XII).

The assignment of the excited states computed with the applied methods is done by ana-

lyzing the nature of orbitals involved in the main excitations contributing to each particular

state. The states computed with different methods were correlated according to their de-

termined types and weights of main configurations. In the case of several high-lying multi-

configurational states, correlation of the excited states computed with EOM-CCSD and the

DFT-based methods according to these criteria is non-trivial due to a pronounced configura-

tion mixing within EOM-CCSD, which is not particularly well reproduced with DFT/MRCI

and TD-CAM-B3LYP methods. In these cases, the comparison of the oscillator strength

values and the symmetry representation of the states were also helpful for the assignment.

Weights of the main configurations obtained with EOM-CCSD are given in the tables in

the cases where it was possible to determine them. For numerous states, however, arising

from the excitations between mixed orbitals (represented as linear combinations of different

orbital types, for instance nσ* and Rydberg orbitals), the configuration weights are not

computed.

According to the DFT/MRCI results, all computed states are single-reference and singly-

excited, with negligible contributions of doubly-excited configurations (less than 5 %). This

implies that all states obtained with DFT/MRCI could in principle be also computed with

EOM-CCSD and TD-DFT methods, which are unsuited to capture states with predomi-

nantly multi-reference and doubly-excited character.

Based on the assignment, the benchmark set of 240 excited states was split into 64 localized
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valence states, 91 Rydberg states, and 85 states of mixed valence-Rydberg character; and

into 110 singlet and 130 triplet states. The correlation graphs between the TD-CAM-B3LYP

and DFT/MRCI vertical excitation energies with the corresponding EOM-CCSD values are

shown in Figure 2, separately for singlet and triplet excited states. Some of the features

of the computed states are noticeable from first sight. Both DFT/MRCI and TD-CAM-

B3LYP underestimate excitation energies of all computed states. DFT/MRCI excitation

energies lie in between EOM-CCSD and TD-CAM-B3LYP values, significantly closer to the

EOM-CCSD values. The standard deviation of DFT/MRCI vertical excitation energies from

the corresponding EOM-CCSD values is 0.49 for singlet and 0.51 for triplet states, whereas

for TD-CAM-B3LYP these values are 0.72 and 0.79 respectively. Both methods describe

slightly better singlet than triplet states.

For most of molecules, several pure valence excited singlet and triplet states occur in the low

energy region. They are usually of nσ* type, but there are also several states of σσ* or mixed

nσ* - σσ* type. These states emerge upon excitations from the highest HOMO orbitals of

non-bonding or σ type to the lowest-lying LUMO and LUMO+1 orbitals. In these cases,

the lowest-lying LUMO orbitals are anti-bonding σ*(C-Br) or σ*(C-Cl). Exceptions to this

behavior are CF4 and C2F6 molecules, where the LUMO orbitals are Rydberg ones. This

induces the lowest-lying excited states of CF4 and C2F6 to be Rydberg. Since the energies

of the σ*(C-F) orbitals are higher than the energies of the Rydberg orbitals, states of pure

nσ* and σσ* character do not occur, whereas states with mixed Rydberg and nσ* config-

urations occur only in the upper parts of their spectra, contrary to the other molecules in

the set (Table XI and Table XII, Supporting Information). In all cases, the medium part of

the excited state spectrum is characterized by numerous multiconfigurational excited states

featured by considerable valence-Rydberg mixing.

The highest excited states are mostly purely Rydberg states. In several cases, few delocalized

states of nσ* character appear in the upper part of the spectrum. These states arise from

excitations from the compact non-bonding orbitals of fluorine to the σ*(C-Br) or σ*(C-Cl)

orbitals, which have a small spatial overlap.

This pattern occurring in the excited states spectrum could be explained by energy ordering

of molecular orbitals, common to all molecules, σ(C-F) < σ(C-Cl) < σ(C-Br) < n(F) <

n(Cl) < n(Br) < σ*(C-Br) < σ*(C-Cl) < Rydberg < σ(C-F). The compositions of the low-

est Rydberg orbitals varies, but in most of cases they are represented as linear combinations
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of several atomic orbitals rather than as a pure one. Based on this ordering of orbitals, it

could be predicted that in the molecules containing C-Cl and C-Br bonds, the lowest-lying

excited states would be of nσ* character, while in molecules containing only C-F and C-C

bonds, the lowest lying excited states would be Rydberg states.

B. TD-DFT results

A summary of statistical evaluation, including mean errors (ME), mean absolute errors

(MAE), standard deviations (SD), maximum and minimum errors for TD-CAM-B3LYP and

DFT/MRCI results with respect to EOM-CCSD results is given in Table IV and Figure 3,

separately for valence, mixed valence-Rydberg, Rydberg, and all studies states. Comparing

TD-CAM-B3LYP vertical excitation energies with the corresponding EOM-CCSD values, it

could be noticed that among all the excited states, valence states are described the best on

TD-CAM-B3LYP level. Their MAE from the EOM-CCSD results is 0.58 eV. Analyzing the

valence state compositions, we find that the lowest-lying valence states, arising upon exci-

tations from the highest occupied non-bonding orbitals to the LUMO orbital, are described

fairly well. The MAE of their vertical excitation energies from EOM-CCSD values is 0.38

eV for singlet (18 states) and 0.48 eV for triplet (20) excited states. These states are mostly

nσ* states represented mainly by a single configuration (Table II, Table III, and Table XI,

Table XII in the Supporting Information).

The description of the higher excited states deteriorates in the upper region of the spec-

trum. In several cases, the ordering of the states obtained with TD-CAM-B3LYP differs

from that obtained with EOM-CCSD. The excitation energies of higher valence, mixed

valence-Rydberg, and Rydberg states are severely underestimated. The high-energy nσ*

valence excited states occurring in CCl2F2, CBrClF2, and C2Cl2F4 are placed significantly

lower compared to the EOM-CCSD results (their maximum deviation is 1.1 eV). The most

dominant configurations contributing to these states involve transitions from the highest

HOMO orbitals to LUMO+1 orbitals, which is the σ*(C-Cl) orbital (in the cases of CCl2F2

and C2Cl2F4 this is the higher σ*(C-Cl) orbital).

The excitation energies of the pure Rydberg states are also systematically underestimated

compared to the EOM-CCSD results, with MAE of 0.76 eV and maximum error of 1.20 eV.

We employ the Λ diagnostic to analyze the correlation between the degree of delocalization
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of the states with dominant Rydberg character and the errors of their excitation energies.

The obtained Λ values of the studied Rydberg states are in the range between 0.2 and 0.65

(Figure 1 in the Supporting Information). Analyzing the deviations of TD-CAM-B3LYP

excitation energies of Rydberg states against the corresponding Λ values for Rydberg ex-

cited states, it could be noticed that in the cases of three molecules (C2F6, CBrF3, C2Cl2F4)

there is no correlation between excitation energy errors and Λ values. In the majority of

cases, however, the deviations of the excitation energies are larger in the cases of more de-

localized states, which are characterized by smaller Λ values. The excitation energy errors

for most of molecules slowly reduce upon increasing of Λ values (Figure 1 and Table XI in

the Supporting Information), but they still remain large (close to 1 eV) even for Rydberg

states with relatively large Λ values.

A tendency of improvement of the excitation energies for the states with larger Λ values

could indicate that CAM-B3LYP functional does not describe correctly the long-range be-

havior of the exchange functional and that additional asymptotic correction of the functional

is necessary. This behavior of CAM-B3LYP functional has already been observed before in

several different benchmark studies (e.g. Ref.74). However, in the case of halons, the MAE

of the Rydberg states’ excitation energies (0.76 eV) is close to the one of the valence states

(0.56 eV), and it is smaller than the corresponding value of the mixed valence-Rydberg states

(1.06 eV). This indicates that the eventual incorrect description of the long-range behavior

of the exchange functional with TD-CAM-B3LYP is not the most important source of the

errors of excitation energies of halons.

The excitation energies of the states with mixed valence-Rydberg character are also severely

underestimated on TD-CAM-B3LYP level. The MAE of the excitation energies compared

to EOM-CCSD results is 1.06 eV, whereas the maximum deviation is 1.33 eV. Such large

excitation energy errors are due to underestimation of the excitation energies of Rydberg

orbitals, but also seem to be correlated to the pronounced multiconfigurational character of

these states.

The Λ values of the states with mixed valence-Rydberg character are spread in similar region

as pure Rydberg states (Figure 1, Supporting Information), from 0.2 to 0.7, but their mean

Λ value (0.73) is larger than the mean Λ value for pure Rydberg states (0.65). Also, their

mean deviation from the EOM-CCSD results (1.06 eV) is larger than one for Rydberg states

(0.76 eV). The low-lying valence states have Λ values concentrated in the region from 0.55
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to 0.65 (Figure 1, Supporting Information).

One of the interesting features occurring in the case of CCl2F2 and CBrF3 molecules are the

several nσ* excited states arising from excitation from non-bonding orbital of fluorine to

antibonding σ*(C-Cl) or σ*(C-Br) orbitals, which could be classified as delocalized. These

states are featured by very small Λ values, since the overlaps between localized non-bonding

fluorine orbitals and antibonding σ* orbitals are small in these molecules. According to

EOM-CCSD results, these states occur in the highest part of the spectrum, above Ryd-

berg states. TD-CAM-B3LYP underestimates significantly the excitation energies of these

states.

TD-CAM-B3LYP performs the best in the case of the excited states of CH3Br molecule

(MAE is 0.65 eV), whereas it gives the largest errors for the excited states of CF4 (1.03 eV)

and C2F6 (0.93 eV), which are mainly Rydberg states.

Considering all states, TD-CAM-B3LYP systematically underestimates the excitation en-

ergies in the Halons-9 set, with a MAE of 0.82 eV (Table IV). This error is astonishingly

large given the usual 0.3 eV MAE usually observed in benchmarks based on organic molec-

ular sets,13 which are biased towards low-lying nπ* and ππ* states. This deterioration of

the TD-DFT energies for high excitations was recognized long ago by Casida et al.68, who

traced it back to a wrong asymptotic behaviour of the exchange-correlation (XC) potential.

Since then, diverse schemes have been proposed to fix the asymptotic behavior,68,83,84 al-

though none of them has yet been adopted as standard in TD-DFT calculations. One of the

features of this problem with the XC potential is the strong underestimation of −EHOMO

(the negative of the HOMO energy), lying much lower than the true IP; with a consequent

collapse of the higher excited states in the region between −EHOMO and the IP.49 It goes

beyond the scope of this work to attempt to correct this feature here, as our focus is at the

performance of standards methods. However, given the strong deviation between −EHOMO

and the IP at CAM-B3LYP level (see Table I), we note that an adequate treatment of the

XC potential may help to improve the TD-DFT description of the excited state of halons.

Finally, the obtained oscillator strengths agree well with the EOM-CCSD values. The

largest discrepancies are found in the cases of several multiconfigurational states, which are

poorly described with TD-CAM-B3LYP.
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C. DFT/MRCI results

The DFT/MRCI excitation energies for all studied states are also underestimated com-

pared to the EOM-CCSD values, but they provide much better description of the excited

states; the DFT/MRCI excitation energies lie much closer to the EOM-CCSD values. The

ordering of the excited states according to DFT/MRCI coincides with the one predicted by

EOM-CCSD.

Similarly as in the case of TD-CAM-B3LYP, the description of the lowest-lying valence

states, which arise upon excitations from the several highest occupied orbitals to the LUMO

orbital, is fairly good. However, the description of the higher excited states deteriorates.

The deviations of the excitation energies from the corresponding EOM-CCSD values are

larger for the higher valence, Rydberg, and mixed valence-Rydberg states. The largest de-

viations occur in the case of the higher valence states, where the maximum deviation from

the EOM-CCSD results is 1.02 eV (Table IV, Figure 3). These states mainly arise due to

excitations to LUMO+1 orbitals. The MAE of all valence states (including those formed by

excitations to LUMO and to LUMO+1 orbitals) is 0.44 eV, reflecting an overall satisfying

performance of DFT/MRCI for these states.

The medium and upper parts of the excited state spectra of halons are mainly featured

by states with strong valence-Rydberg mixing. As a CI-based method, it is expected that

DFT/MRCI should be flexible enough to treat properly these states. In principle, the

DFT/MRCI description of these states is more reliable compared to TD-CAM-B3LYP, but

the obtained deviations from EOM-CCSD are still significant; the MAE of the states with

mixed valence-Rydberg character is 0.66 eV and their maximum error is 0.80 eV. The de-

scription of Rydberg states, on the other hand, is significantly improved compared to TD-

CAM-B3LYP results; the MAE of the Rydberg states is 0.47 eV and the maximum error is

0.80 eV. Insufficiently good performances of DFT/MRCI in the cases of multiconfigurational

highly-correlated excited states of several systems have already been noted before.53,80

DFT/MRCI describes slightly better singlet than triplet excited states. The mean average

error of the triplet states (0.53 eV) is a little bit larger compared to the error of the singlet

states (0.47 eV). The trend of inferior description of triplet states, common to all DFT-based

methods, has already been noticed in the case of some other benchmarking sets44,77.

DFT/MRCI describes very well excited states of CF4, C2F6, CF3Br, and CH3Br molecules,

12
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whereas the largest deviations are found in the cases of CCl2F2, C2Cl2F4, and CBrClF2

molecules. The bad performance in these cases is due to occurrence of the highly corre-

lated multiconfigurational valence and valence-Rydberg states, for which the performance

of DFT/MRCI is not good enough. Globally, considering all states the MAE if 0. 53 eV.

Most of the computed DFT/MRCI oscillator strengths are in the range of the corresponding

EOM-CCSD values. Only in a number of high-lying Rydberg and valence-Rydberg states

with strong configuration mixing, which are not described very well with DFT/MRCI, there

are sometimes discrepancies between DFT/MRCI and EOM-CCSD oscillator strengths.

In the last several years a lot of effort is put into development of a new method which

unites advantages of multireference methods and DFT, the time-dependent multiconfigu-

rational short-range density functional theory (TD-MC-srDFT) method85. It consists in

combining a long-range multi-configuration self-consistent field (MCSCF) treatment with

an adiabatic short-range density-functional (DFT) description extended for computation of

excited states in time-dependent regime. Benchmarked on a set of small organic molecules86

and nucleobases87, the TD-MC-sdDFT method in the CAS-srPBE variant generally showed

good performance. It is suitable for computation of doubly-excited states and excited states

in molecules with multirefence ground-state functions. However, the TD-MC-srDFT method

is not reliable for description of states which display Rydberg-valence mixing86,87. In their

cases large errors of excitation energies are observed, and it is found that they are dependent

on a chosen value of range-separation parameter86,87. However, it is expected that different

variants of TD-MX-srDFT method obtained combining other functionals and multireference

methods, which are not tested yet, might provide better results for mixed valence-Rydberg

states.

D. Comparison with the experimental data

The computed vertical excitation energies and the positions of band peaks of available

experimental UV photoabsorption spectra are compiled in Table V. However, comparison

of the computed excitation energies with the peak positions is problematic due to influences

of spin-orbit and adiabatic effects which were not taken into account in computations of

excitation energies. It is expected that spin-orbit coupling would be particularly intensive

in the case of molecules which contain bromine, which is a relatively heavy element.
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Man et al.19 computed absorption spectrum of bromomethane using time-dependent ap-

proach to resonance Raman scattering. They deconvoluted the A-band in gas-phase absorp-

tion spectra into three transitions: 3Q1 at 45260 cm−1 (5.61 eV), 3Q0 at 48272 cm−1 (5.98

eV), and 1Q1 at 51372 cm−1 (6.37 eV). The positions of 3Q0 and 1Q1 bands are close to the

values of EOM-CCSD excitation energies of the first triplet (6.01 eV) and singlet (6.64 eV)

states, respectively (Table V).

In the cases of other molecules the recorded UV spectra are not resolved into spin compo-

nents. In several cases the positions of band peaks are closer to S1 and in some cases to T1

excitation energies. In the cases of highly symmetric molecules (CF4, C2F6, CCl2F2, CBrF3,

CH3Br) with doubly-degenerate S1 and T1 states, comparison the reference EOM-CCSD

results with the experimental ones is even more difficult, because of vibronic interactions

which influence the excitation energies of these states. For these reasons, we cannot draw

any conclusion about validity of the reference EOM-CCSD method. A more comperhensive

study of excited states with inclusion of spin-orbit and adiabatic effects is necessary in order

to compare ab initio and experimental data.

IV. CONCLUSIONS

Given the complete lack of excited state information about halo-organic compounds in

excited state benchmarks, we have introduced a new molecular set tailored for evaluation of

molecular properties of such systems. The Halons-9 set is composed of nine small gaseous

halons, including F, Cl, and Br elements. Vertical excitation energies were assessed with

two DFT-based methods, TD-DFT with CAM-B3LYP functional and DFT/MRCI methods,

taking CCSD as the reference method.

The present benchmark shows that the evaluated methods only provide semi-quantitative

results, with errors in the order of several tenths of an eV. Overall, we observed a superior

performance of multi-reference DFT/MRCI method in the calculation of the excited states

of halons (MAE is 0.53 eV), compared to TD-CAM-B3LYP method (MAE is 0.82 eV)

(Table IV, Figure 3).

TD-CAM-B3LYP method performs the best for the lowest-lying valence states represented

mainly by single configurations (MAE is 0.56 eV). In the case of higher valence states, states
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with pronounced valence-Rydberg mixing, and Rydberg states, TD-CAM-B3LYP vertical

excitation energies are significantly underestimated compared to EOM-CCSD values. The

description of the mixed valence-Rydberg states with TD-CAM-B3LYP is the most chal-

lenging; the MAE of the mixed valence-Rydberg states is the largest (1.06 eV), whereas the

MAE of the pure Rydberg states (0.76 eV) is considerably larger than the one of the valence

states (0.56 eV).

On the other hand, DFT/MRCI method performs reasonably well for most of the studied

states. It gives much more reliable description of states with pronounced multiconfigura-

tional character, which appear in the middle and upper parts of the spectrum, compared to

TD-CAM-B3LYP. The largest deviations from the EOM-CCSD values are observed in the

case of higher-lying multiconfigurational mixed valence-Rydberg states.

Contrary to expectations based on previous numerous benchmarking studies, where valence

excited states are usually described with errors around 0.2 to 0.3 eV with TD-DFT or

DFT/MRCI, the valence excited states of Halons-9 molecular set are described only semi-

quantitatively with both methods (the MAE of valence states’ excitation energies obtained

with TD-CAM-B3LYP and DFT/MRCI are 0.58 and 0.44 eV, respectively). The reason for

this is in the fact that most of benchmark studies focus on organic molecules with low-lying

nπ* or ππ* excited states. By construction, the excited states in the Halons-9 molecular

set (nσ*, σσ*, n-Rydbergs, and mixed valence-Rydbergs) are much higher. In this spectral

region, the effects of wrong asymptotic behaviour of the XC potential are much more pro-

nounced, leading to a deterioration of the results.

Oscillator strengths for most of the transitions are described satisfactorily with both meth-

ods. The exceptions are strongly-correlated multiconfigurational states, where, in the cases

of several states, oscillator strengths strongly deviate from the EOM-CCSD values.

All molecules in the Halons-9 set are featured by electronic transitions in far- and extreme

UV-region, implying that these transitions cannot be photoactivated close to the Earth’s

surface, although they may play a role in the photochemistry of the high atmosphere.

We were not able to evaluate the validity of the EOM-CCSD method, which was used as

the reference, because of the UV excitation of most of molecules in the Halons-9 set should

be strongly affected by spin-orbit couplings. For this reason, we limited our analysis to

computational methods. The effect of spin-orbit coupling and adiabatic effects on excited

state of Halons-9 set will be investigated in our future work.
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84S. Hirata, C.-G. Zhan, E. Aprà, T. L. Windus, and D. A. Dixon, “A new, self-contained

asymptotic correction scheme to exchange-correlation potentials for time-dependent den-

sity functional theory,” The Journal of Physical Chemistry A 107, 10154–10158 (2003).

85E. Fromager, S. Knecht, and H. J. A. Jensen, “Multi-configuration time-dependent

density-functional theory based on range separation,” The Journal of Chemical Physics

138, 084101 (2013).

86M. Hubert, E. D. Hedegard, and H. J. A. Jensen, .

87M. Hubert, H. J. A. Jensen, and E. D. Hedegard, .

24



UV Excitations of Halons

FIG. 1. The molecular structures of the nine studied halon molecules (Halons-9 molecular set).
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FIG. 2. The correlation diagrams of vertical excitation energies (in eV) for the Halons-9 molecular

set obtained with DFT/MRCI and TD-CAM-B3LYP methods, with vertical excitation energies

obtained with EOM-CCSD method.
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TABLE I. Vertical ionization potentials (IP in eV) computed on CCSD/def2-TZVPP level at the

MP2/def2-TZVPP optimized geometries and negative values of HOMO energies (-EHOMO in eV)

obtained with CAM-B3LYP/def2-TZVPP of the Halons-9 molecular set.

Molecules IP (eV) -EHOMO (eV)

CH3Br 10.54 9.29

CHCl2F 11.86 10.54

CHBrF2 11.44 10.24

CBrClF2 11.48 10.29

CCl2F2 12.21 10.87

CBrF3 11.68 8.70

CF4 16.60 14.24

C2Cl2F4 12.60 11.24

C2F6 14.67 12.99

TABLE II: Computed vertical excitation energies (eV), oscil-

lator strengths, assignment of the states and Λ values for the

Halons-9 molecular set.

EOM-CCSD DFT/MRCI TD-CAM-B3LYP

State Ev f configurations weights Ev f Ev f Λ

CH3Br

S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 6.64 0.0020 nσ ∗ +nRydb 0.62, 0.22 6.37 0.0002 6.39 0.0024 0.532

S2 6.64 0.0020 nσ* + nRydb 0.62, 0.22 6.37 0.0002 6.39 0.0024 0.527

S3 8.91 0.0087 nσ ∗ +nRydb 0.20, 0.69 8.50 0.0077 8.50 0.0063 0.375

S4 8.91 0.0087 nσ ∗ +nRydb 0.20, 0.69 8.50 0.0077 8.50 0.0063 0.382

S6 10.40 0.0031 nRydb 0.88 9.79 0.0014 9.87 0.0023 0.278

S7 10.40 0.0031 nRydb 0.88 9.80 0.0015 9.87 0.0023 0.348

S8 10.41 0.0020 nRydb+ nσ∗ 0.77, 0.10 9.82 0.1241 9.89 0.0198 0.367

S9 10.59 0.8266 σσ ∗ +nRydb 0.63, 10.15 0.9426 10.32 0.7346 0.676

CBrF3
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S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 6.84 0.0000 nσ∗ 0.90 6.68 0.0014 6.54 0.0001 0.578

S2 6.84 0.0000 nσ∗ 0.90 6.68 0.0014 6.54 0.0001 0.580

S3 10.33 0.2644 σσ ∗ +nRydb 0.71, 0.16 10.03 0.2605 9.79 0.2075 0.686

S4 11.34 0.1550 nRydb 0.84 10.88 0.1401 10.78 0.0889 0.412

S5 11.34 0.1550 nRydb 0.84 10.88 0.1401 10.78 0.0889 0.406

S7 11.48 0.0040 nRydb 0.77 10.92 0.0489 10.83 0.0350 0.358

S8 11.48 0.0040 nRydb 0.77 10.92 0.0489 10.83 0.0350 0.358

CF4

S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 14.23 0.0000 ns 0.75 14.41 0.0000 13.51 0.0000 0.405

S2 14.23 0.0000 ns 0.75 14.41 0.0000 13.51 0.0000 0.368

S3 14.23 0.0000 ns 0.75 14.41 0.0000 13.51 0.0000 0.392

S4 15.57 0.0000 nRydb+ nσ∗ 0.68, 0.13 15.17 0.0003 14.78 0.0000 0.455

S5 15.57 0.0000 nRydb+ nσ∗ 0.68, 0.13 15.17 0.0003 14.78 0.0000 0.407

S6 15.65 0.2455 nRydb 0.68 15.24 0.2060 14.83 0.2103 0.461

S7 15.65 0.2455 nRydb 0.68 15.24 0.2060 14.83 0.2103 0.476

S8 15.65 0.2455 nRydb 0.68 15.24 0.2060 14.83 0.2103 0.473

CHCl2F

S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 7.58 0.0159 nσ∗ 0.82 7.19 0.0149 7.27 0.0147 0.596

S3 7.93 0.0038 nσ ∗ +nRydb 7.53 0.0028 7.61 0.0005 0.563

S4 8.35 0.0007 nσ ∗ +nRydb 7.95 0.0013 8.06 0.0005 0.574

S5 9.52 0.0017 nRydb+ nσ∗ 8.96 0.0011 8.83 0.0002 0.565

S6 9.81 0.0569 nRydb+ nσ∗ 9.29 0.0758 9.12 0.0389 0.584

S7 10.05 0.0156 nσ∗ 9.44 0.0084 9.24 0.0085 0.562

S8 10.23 0.0056 nσ∗ 9.69 0.0044 9.60 0.0025 0.376

S9 10.54 0.0104 nσ∗ 9.96 0.0542 9.78 0.0128 0.515

S10 10.58 0.0129 nσ∗ 10.04 0.0243 9.94 0.0095 0.469

S11 10.64 0.0348 nσ∗ 10.12 0.0028 9.97 0.0095 0.489
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S12 10.72 0.0011 nσ∗ 10.19 0.0064 10.04 0.0006 0.381

S13 10.86 0.0026 nσ∗ 10.39 0.0042 10.26 0.0029 0.483

S14 10.98 0.1553 nσ∗ 10.47 0.2121 10.32 0.0091 0.425

S15 11.17 0.0125 nσ ∗ +σσ∗ 10.64 0.0157 10.36 0.1059 0.554

S16 11.41 0.0381 nσ ∗ +σσ∗ 10.85 0.0434 10.70 0.0271 0.412

S17 11.62 0.7122 nσ ∗ +σσ∗ 11.01 0.9102 10.98 0.4998 0.489

CHBrF2

S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 6.62 0.0012 nσ* 0.81 6.39 0.0022 6.34 0.0014 0.565

S3 9.27 0.2670 σσ* 0.71 8.97 0.2732 8.72 0.2130 0.662

S4 10.22 0.0317 nσ* 0.80 9.53 0.0340 9.60 0.0273 0.318

S5 10.27 0.0146 nσ* 0.81 9.58 0.0148 9.62 0.0157 0.238

S6 10.33 0.0114 nσ* 0.82 9.67 0.0013 9.70 0.0037 0.327

S7 10.63 0.1441 nσ* 0.64 10.00 0.1853 10.00 0.0905 0.465

S8 11.24 0.0107 nσ ∗ +σσ ∗ +nRydb 10.56 0.0109 10.83 0.0793 0.453

S9 11.32 0.0170 nσ ∗ +σσ ∗ +nRydb 11.09 0.0018 10.61 0.0110 0.301

S10 11.33 0.0424 nσ ∗ +σσ* 10.77 0.1722 10.53 0.0025 0.460

CBrClF2

S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 6.32 0.0095 nσ* 0.86 6.02 0.0088 6.02 0.0089 0.602

S4 7.86 0.0247 nσ* 0.81 7.52 0.0206 7.48 0.0196 0.580

S5 9.16 0.0846 nσ* 0.77 8.35 0.0172 8.35 0.0157 0.524

S6 9.50 0.0012 nσ* 0.84 8.57 0.0000 8.59 0.0005 0.404

S7 9.50 0.1985 nσ ∗ +σσ* 9.05 0.3428 8.84 0.1751 0.639

S9 10.13 0.0554 nσ* 0.72 9.47 0.0840 9.37 0.0778 0.580

S11 10.98 0.1863 nσ ∗ +nRydb+ σσ* 10.34 0.3504 10.31 0.1084 0.586

S12 11.16 0.1566 nσ ∗ +nRydb+ σσ* 10.62 0.0226 10.37 0.0893 0.563

S13 11.22 0.0915 nσ ∗ +nRydb+ σσ* 10.76 0.0782 10.49 0.0008 0.246

S14 11.36 0.0905 ns 0.82 10.79 0.0815 10.48 0.0589 0.457

CCl2F2
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S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 7.49 0.0171 nσ* 0.88 7.13 0.0146 7.10 0.0150 0.611

S6 10.30 0.0011 nσ* 0.84 9.62 0.0000 9.27 0.0005 0.568

S8 10.31 0.2091 (n+ σ)σ ∗ +nRydb 0.79, 0.08 9.97 0.2481 9.62 0.1128 0.624

S9 10.89 0.0442 nσ ∗ +nRydb 0.68, 0.16 10.23 0.1152 10.04 0.0675 0.583

S11 11.68 0.0150 (n+ σ)σ + nRydb 0.41, 0.40 11.21 0.0089 10.89 0.0159 0.682

S12 11.82 0.1841 nRydb+ nσ* 0.69, 0.10 11.22 0.3770 11.00 0.1927 0.537

S13 11.93 0.1942 nRydb 0.81 11.40 0.0110 11.05 0.0026 0.260

S15 12.21 0.0040 nRydb 0.74 11.63 0.0000 11.27 0.0052 0.616

C2F6

S0 0.00 – gs 1.00 0.00 – 0.00 –

S1 12.66 0.0427 (n+ σ)σ* 0.84 12.49 0.0663 11.89 0.0354 0.631

S2 12.66 0.0427 (n+ σ)σ* 0.84 12.49 0.0661 11.89 0.0354 0.643

S4 14.11 0.0278 nσ* 0.76 13.77 0.0182 13.11 0.0249 0.495

S5 14.11 0.0278 nσ* 0.76 13.78 0.0220 13.11 0.0249 0.477

S8 14.31 0.2143 nσ ∗ +ns 0.58, 0.14 13.92 0.0000 13.36 0.0000 0.410

C2Cl2F4

S0 0.00 – gs 1.00 0.00 – 0.00 – –

S1 8.29 0.0009 nσ* 7.81 0.0003 7.88 0.0006 0.582

S3 8.38 0.0020 nσ* 7.91 0.0033 8.01 0.0001 0.600

S5 10.34 0.0863 nσ*+ σσ* 9.9 0.0715 9.39 0.0456 0.609

S6 10.38 0.1039 nσ*+ σσ* 9.84 0.0909 9.45 0.0502 0.604

S7 10.75 0.0034 nRydb 10.05 0.0024 9.65 0.0025 0.588

S8 10.87 0.0052 nRydb 10.14 0.0044 9.68 0.0004 0.596

S9 11.09 0.0462 nRydb 10.46 0.0676 9.98 0.0364 0.606

S10 11.17 0.0447 nRydb 10.52 0.0577 10.18 0.0344 0.622

S11 11.37 0.0020 nRydb 10.77 0.0040 10.41 0.0045 0.427

S13 11.62 0.0016 nRydb+nσ* 10.92 0.0144 10.73 0.0030 0.498

S14 11.66 0.0183 nRydb 10.97 0.0115 10.82 0.0007 0.459

S15 11.89 0.0003 nRydb 11.12 0.0004 10.89 0.0037 0.552
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S16 11.95 0.0076 nRydb 11.25 0.0196 10.93 0.0061 0.551

S17 12.06 0.0052 nRydb+nσ* 11.28 0.0342 11.12 0.0017 0.431

S19 12.19 0.0053 nRydb 11.72 0.0225 11.38 0.0046 0.537

S20 12.50 0.1489 nRydb 12.02 0.1056 11.44 0.0001 0.342
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TABLE III: Computed vertical excitation energies (eV), as-

signment of the states and Λ values of the triplet excited

states for the Halons-9 molecular set.

EOM-CCSD DFT/MRCI TD-CAM-B3LYP

State Ev configurations weights Ev Ev Λ

CH3Br

T1 6.01 nσ* 0.87 5.70 5.62 0.529

T2 6.01 nσ* 0.87 5.70 5.62 0.529

T3 8.05 σσ* 0.80 7.91 7.76 0.702

T4 8.73 nσ* 0.89 8.27 8.27 0.377

T5 8.73 nσ* 0.89 8.27 8.27 0.384

CBrF3

T1 6.08 nσ* 0.90 5.87 5.65 0.575

T2 6.08 nσ* 0.90 5.87 5.65 0.578

T3 7.91 σσ* 0.87 7.85 7.52 0.725

T4 10.76 np 0.76 10.29 10.20 0.539

T5 10.90 ns 0.80 10.46 10.28 0.407

CF4

T1 13.87 ns + nσ* 0.60, 0.11 13.60 12.95 0.415

T2 13.87 ns + nσ* 0.60, 0.11 13.60 12.95 0.384

T3 13.87 ns + nσ* 0.60, 0.11 13.60 12.95 0.391

T4 14.57 nRydb + nσ* 0.54, 0.31 14.23 13.74 0.445

T5 14.57 nRydb + nσ* 0.54, 0.31 14.23 13.74 0.470

CHCl2F

T1 6.79 nσ* 6.38 6.30 0.591

T2 7.14 nσ* 6.71 6.63 0.612

T3 7.17 nσ* 6.74 6.68 0.564

T4 7.46 nσ* 7.04 6.99 0.571

T5 8.71 nσ* + σσ* 8.39 8.14 0.571

CHBrF2
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T1 5.95 nσ* 0.82 5.66 5.53 0.564

T2 5.96 nσ* 0.81 5.69 5.55 0.543

T3 7.16 σσ* 0.86 7.06 6.72 0.693

T4 9.91 nσ* 0.76 9.25 9.33 0.348

T5 9.92 nσ* 0.78 9.28 9.34 0.450

CBrClF2

T1 5.61 nσ* 0.97 5.27 5.19 0.601

T2 5.77 nσ* 0.86 5.45 5.35 0.549

T3 6.89 nσ* 0.83 6.44 6.44 0.591

T4 7.06 nσ* 0.89 6.57 6.56 0.465

T5 7.63 nσ* + σσ* 7.41 7.18 0.618

CCl2F2

T1 6.66 nσ* 0.90 6.29 6.16 0.610

T2 7.00 nσ* 0.90 6.61 6.49 0.567

T3 7.28 nσ* 0.90 6.88 6.79 0.567

T4 7.42 nσ* 0.87 7.00 6.93 0.597

T5 8.70 nσ* + σσ* 8.52 8.21 0.597

C2F6

T1 11.70 (n+ σ)σ* 0.89 11.42 10.82 0.633

T2 11.70 (n+ σ)σ* 0.89 11.42 10.82 0.645

T3 13.29 ns 0.65 12.91 12.35 0.471

T4 13.46 nσ ∗ +ns 0.49, 0.11 13.08 12.61 0.491

T5 13.45 nσ* 0.67 13.11 12.45 0.483

C2Cl2F4

T1 7.41 nσ* 6.96 6.91 0.587

T2 7.45 nσ* 7.00 6.95 0.598

T3 7.48 nσ* 7.01 6.97 0.600

T4 7.49 nσ* 7.03 6.99 0.586

T5 9.00 nσ* + σσ* 8.72 8.37 0.652
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TABLE IV. Mean error (ME), mean absolute error (MAE), standard deviation (SD) and maximum

and minimum deviations (in eV) of the DFT/MRCI and TD-CAM-B3LYP excitation energies from

EOM-CCSD results for the Halons-9 molecular set.

TD-CAM-B3LYP DFT-MRCI

Valence (64 states) ME -0.58 -0.44

MAE 0.58 0.44

SD 0.63 0.48

Max. error 1.10 1.02

Min. error 0.27 0.06

Mixed (85 states) ME -1.06 -0.66

MAE 1.06 0.66

SD 0.80 0.51

Max. error 1.33 0.80

Min. error 0.28 0.18

Rydberg (91 states) ME -0.76 -0.47

MAE 0.76 0.47

SD 0.85 0.54

Max. error 1.20 0.80

Min. error 0.51 0.19

Total (240 states) ME -0.82 -0.53

MAE 0.82 0.53

SD 0.78 0.51

Max. error 1.33 1.02

Min. error 0.27 0.06
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TABLE V. Computed vertical excitation energies (Ev in eV) compared to the corresponding posi-

tions of the band maxima in the available experimental UV photoabsorption spectra of the Halons-9

set. The computed oscillator strengths for the transitions are also given (f).

Molecule State
EOM-CCSD DFT/MRCI TD-CAM-B3LYP Exp.

Ev f Ev f Ev f Ev

CH3Br
T1 6.01 – 5.70 – 5.62 – 5.9819

S1 6.64 0.0020 6.37 0.0002 6.39 0.0024 6.3719

CBrF3

T1 6.08 – 5.878 – 5.65 –
6.0520

S1 6.84 0.0000 6.68 0.0014 6.54 0.0001

CF4

T1 13.87 – 13.60 – 12.95 –
13.6, 13.922

S1 14.23 0.0000 14.41 0.0000 13.51 0.0000

CHCl2F
T1 6.79 – 6.38 – 6.30 –

7.2921

S1 7.58 0.0159 7.19 0.0149 7.27 0.0147

CHBrF2

T1 5.95 – 5.66 – 5.53 –
6.5221

S1 6.62 0.0012 6.39 0.0022 6.34 0.0014

CBrClF2

T1 5.61 – 5.27 – 5.19 – 6.0221

S1 6.32 0.0095 6.02 0.0088 6.03 0.0089

CCl2F2

T1 6.66 – 6.29 – 6.19 –
6.9724

S1 7.49 0.0171 7.13 0.0146 7.10 0.0150

C2F6

T1 10.70 – 11.42 – 10.82 –
12.128

S1 12.66 0.0427 12.49 0.0663 11.89 0.0354

C2Cl2F4

T1 7.41 – 6.96 – 6.91 –
7.2129

S1 8.29 0.0009 7.81 0.0003 7.88 0.0006
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