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1 Robustness Analysis

Figure S1: The PH scores are reported for equivalent simulated networks images depending on their size.

To analyze the robustness of the method with respect to the image size, the PH score was computed for a series of images
representing simulated networks with honeycomb structure, as reported in Figure S1. The image area was normalized by
considering that a single pore has an area of 1. A representative image of such network and its corresponding persistent
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diagram are given in Figure 1 of the main manuscript. The images with sizes lower than 100 (normalized area) provided
lower scores and high error bars. They should therefore not be considered. The standard deviation of the PH score
obtained for image sizes larger than 100 amounts to 0.06, which is of similar order of magnitude as the standard deviation
obtained for a fixed image size with 20 different simulated images (0.05).

2 Overview of the PH Scoring Method

The scoring method can be split into three steps. The first two steps consist in creating a persistent diagram from the
experimental data. The last step is the scoring computation for the regularity of networks.

First, we treat the input image in order to obtain a binarized version. The result is a black and white image where
one of the colors corresponds to the matter. For simplicity, we assume that this is the white part of the image. The
binarization process is done using a simple thresholding method, the threshold being decided depending on the quality of
contrast of the input image.

Then we compute the persistence diagram of the binarized image. Details on the mathematical background of the
method can be found elsewhere (e.g. [S1]). In brief, every pixel is given a numerical value based on its distance to the
boundary between the black and white domains. Pixels are considered adjacent if they touch along an edge. White pixels
adjacent to a black pixel are given the value 0. Other white pixels are given the value -d where d is the distance to the
closest border pixel considering only adjacent pixels to be at distance 1 using the Manhattan distance. Conversely the
black pixels are given a positive value equal to the distance to the nearest white pixel. We then consider the sublevel
sets of this function on pixel and study the evolutions of holes in the structure. Each hole in the structure has a birth
time when the enclosing circle first appears and a death time when the hole is filled. This can be expressed through the
persistence diagram which is a multi-set of points in the plane, each point corresponding to the pair (birth, death) for a
hole. The difference death-birth is called the lifespan of a hole.

In a last step we compute the PH score. A scale factor s is given. For every point p in the persistent diagram, we
count the points located at distance at most its lifespan divided by s. These points correspond to the holes that are
deemed similar to p. The score relative to p is then defined as the number of similar points divided by the total number
of points in the diagram. The score of the diagram is the maximal such score that can be obtained across the diagram.
The score depends on the scale parameter s but is experimentally stable for s values between ∼ 3 and 6. Because the
method is based on a binarized image, a perfectly flat background is required for the experimental image. In some cases
a smoothened image representing the underlying background surface was subtracted to the original image.

The code used for the calculation is available at http://www.geometrie.tugraz.at/buchet/phscore/

3 An Empirical Approach to Digital Images and Persistent Homology

The purpose of this section is to explain in informal terms the persistent homology and how to analyze topological features
of a digital images with it. The topological features of a 2D-image are its holes1. As example, Figure S2 shows a
black-and-white image whose black pixels form two holes.

Figure S2: Digital image with 10 × 10 pixels. The black pixels of the image form a shape with two holes, one “big” on
the left-hand side and one “small” on the right-hand side.

1Just for the purposes of this informal section.
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The base of an image is the set of pixels that form the shape we want to study; the rest of the pixels are background
pixels. For example, in a black-and-white image, we can specify the shape we want to study by refering to its white-base
or black-base; in the black-base of Figure S2, we observe two holes. We want an efficient mathematical procedure that
“estimates” the number of holes of an image and “measures” how “big” these holes are. In the case of the black-base
of Figure S2, this procedure should say in a mathematical way: “there are two holes; one of them is big and the other
small”. Notice that we are not interested in knowing the location of the holes and the method we describe next wont care
about the location neither.

3.1 Extracting Topological Features of an Image via a Filtration

In this subsection, we describe in a informal way how to extract the topological features of an image via a filtration. A
filtration of a black-and-white image I is a series of equal-sized, black-and-white images It=i, It=i+1, . . . , It=i+n which
are labeled with a “time” parameter t and whose respective sets of black pixels “grow” with the time parameter. In
particular, this means that the black pixels of any particular image in the filtration contains all black pixels of all the
previous images in the filtration; it also means that the last image in the filtration will be totally black.

The is no unique way to define a filtration, however, a definition that is convenient for the extraction of the topological
features of an image is by growing from the “deepest” pixels in the image’s base into ever more “distant” pixels2. We
will refer to this filtration as the Manhattan-filtration of the image I or simply as the filtration of I. To illustrate this,
we show the filtration of Figure S2.

Original figure t = -1 t = 0

t = 1 t = 2 t = 3

t = 4 t = 5 Summary of filtration

Figure S3: Filtration of the black-base of Figure S2.

We now focus on how to extract the topological-features of an image with its Manhattan-filtration: we observe in increasing

2This process is formally described in the next subsection.
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order the images of the filtration and at each time, we write down if a hole appears or disappears in the current filtration
image; at the end, we have a multi-set3 of ordered pairs {(x1, y2), . . . , (xm, ym)}. Every pair (xi, yi) refers to a exactly
one hole that appeared at time t = xi of the filtration and died at time t = yi. We will exemplify this process with the
filtration shown in Figure S3
• t = −1 : no holes are destroyed or created;
• t = 0 : two new holes appear. We write two tuples (one for each hole) plus its birth times in the first coordinates:
(0,−), (0,−);
• t = 1 : one of the holes dies 4. We write down in its corresponding tuple, the time of its death: (0,−), (0, 1);
• t = 2 : one hole dies. We write its death time in its corresponding tuple: (0, 2), (0, 1);
• t = 3 : no holes are destroyed or created;
• t = 4 : no holes are destroyed or created;
• t = 5 : no holes are destroyed or created.
We return the multi-set of tuples that was left at the end

{(0, 2), (0, 1)}.

This multi-set of tuples has a close relation with the topological features of the base.
The lifespan of a topological-feature (hole) in a filtration is the subtraction “DeathTime - BirthTime”. This number
quantifies how long a hole remains “alive” during the filtration. It is natural to expect that a “big hole” lives longer than
a “small” one.

The lifespan of a hole with tuple (xi, yi) is given by yi−xi. In the multi-set given in the previous example, we see that
the lifespan of the hole corresponding to the first tuple is 2− 0 = 2 and the lifespan of hole corresponding to the second
tuple is 1− 0 = 1. From here, we conclude that the hole of the first tuple is bigger than the hole of the second tuple.

One usual way to visualize the tuples is by plotting them in the plane. The resulting plot is call the persistence diagram
of the image with base X (this refers to the set of pixels that form the shape we want to study). In the case of the tuples
of Figure S2, we get

x

y

−1 0 1 2 3
0

1

2

3

•

•

Figure S4: Persistence diagram of the black-base of Figure S2.

In the following figure, we show a real image with white-base and its persistence diagram

3A multi-set is a list of elements in which an element is allowed to be repeated.
4The corners do not count as holes. A hole needs to be completely surrounded by

base-pixels.
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Figure S5: Image with white-base and its persistence diagram

In the persistence diagram presented in Figure S5, the points have colors. The color of a point specifies its multiplicity,
i.e. how many times it appears in the multi-set generated by the filtration algorithm. Color red means many repetitions
and color blue not so many; this is quantified in the vertical bar on the right-hand side of the image. Every tuple has the
form

(BirthTime, DeathTime)

and therefore each point appears above the diagonal x = y. This simply reflects the fact that

BirthTime < DeathTime

i.e. a hole can not disappear before it has been created. Lastly, the lifespan of a point is the vertical distance to the
diagonal i.e. if we take a point in the diagram and move it vertically downwards, its lifespan is the distance covered until
it reaches the diagonal. The holes with tuples that are close to the diagonal (“small” lifespan) are normally “small” holes.
On the other hand, the holes which tuples are far from the diagonal (“large” lifespan), are “big” holes. To illustrate this,
lets observe the persistence diagram shown in Figure S5: there are plenty of tuples in the plane region [−2, 5]× [0, 5] (red
points). These holes are born between t = −2 and t = +5 and they die before t = 5. This reflects the fact that there are
plenty of small holes on the shape formed by the white pixels.

3.2 Formal Construction of the Manhanttan-Filtration of a Digital Image

Lets recall that the filtration of a black-and-white image with black base is a series of black-and-white, time-labeled images
whose respective sets of black pixels grow with respect to a time parameter. Given a digital black-and-white image, the
construction process of its filtration consist of two steps: first, label each pixel of the image with an integer time parameter
t 5; then, the black pixels of the filtration image It1 are all the pixels that have label less or equal to t1. For example, the
black pixels of the filtration image I3 are all pixels that have one of the following labels 3, 2, 1,−1,−2, ..., all other pixels
in I3 are white. This process constructs all the images in the filtration.

Let p be a pixel in an image with base B. The label of p is the Manhattan distance of p to the boundary of the
base B if p does not belong to the base and the negative of this distance if p belongs to the base. The boundary of the
base consist of all pixels on the base that share at least one of their sides with a pixel outside the base. The Manhattan
distance of a pixel p to the boundary B is the minimal amount of jumps (up, down, left, right) needed to land on a pixel
of the boundary; in particular, this means that the label of all boundary pixels is zero. Figure S6 illustrates the labeling
process.

5This means that t is a number in the set {. . . ,−2,−1, 0, 1, 2, . . .}
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Figure S6: An image in black-base and the labels for each pixel.

3.3 The PH Score of an Image

In this subsection, we explain a how the persistent diagram of a image can be used to measure its regularity: assume we
are given some real images of 2D networks (e.g. Figure S5), we need to decide if the network is of high quality or not;
we are told that if the network is highly regular (e.g. a regular hexagonal grid) the material is good and not so good
otherwise. We therefore need to quantify the “deviation” of a network from the ideal regular grid; in our case, the regular
hexagonal grid. We do this by scoring the persistence diagrams of the images of the networks.

We propose a way to score the persistence diagram of a network image in order to quantify the “deviation” of the
network from the hexagonal regular grid. The Persistent Homology score (PH score) is a value between 0 and 1 that is
assign to a persistent diagram; 1 is the best score and 0 is the worst score. For example, the perfect hexagonal grid will
have a PH score of 1.

Let be the multi-set obtained by the filtration algorithm applied to the base of an image. Given the user defined
parameter s, we define the s-score of a point (x, y) as the proportion of all topological features that were born between
x± y−x

s and died between y ± y−x
s . The PH score with parameter s is the the maximum over all these s-scores.

The parameter s adjusts the discriminative power between similar holes. A small s means that almost all of the holes
are considered similar; for a large s, only holes with an identical tuple (x, y) are considered similar.
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