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Abstract 5 

 6 

In an attempt to better understand the mechanism underlying lateral collision avoidance in 7 

flying insects, we trained honeybees (Apis mellifera) to fly through a large (95cm-wide) flight 8 

tunnel. We found that depending on the entrance and feeder positions, honeybees would 9 

either center along the corridor midline or fly along one wall. Bees kept following one wall 10 

even when a major (150cm-long) part of the opposite wall was removed. These findings 11 

cannot be accounted for by the ‘optic flow balance’ hypothesis that has been put forward to 12 

explain the typical bees’ ‘centering response’ observed in narrower corridors. Both centering 13 

and wall-following behaviours are well accounted for, however, by a mechanism called the 14 

lateral optic flow regulator, i.e., a feedback system that strives to maintain the unilateral optic 15 

flow constant. The power of this mechanism is that it would allow the bee to guide itself 16 

visually in a corridor without having to measure its speed or distance from the walls. 17 

 18 

Key words: insect flight, honeybee, Apis mellifera, vision, optic flow, collision avoidance, 19 

image motion. 20 

21 
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Introduction 22 
 23 

Winged insects navigate swiftly in unfamiliar environments by processing visual cues. A 24 

major visual cue is the optic flow (OF), that is, the angular velocity at which any 25 

environmental feature sweeps past their eyes, in particular as a consequence of locomotion 26 

(Kennedy, 1939; Gibson, 1950; David, 1978; Lee, 1980, Buchner, 1984; Collett et al., 1993). 27 

Flies and bees possess smart OF sensors, in terms of neurons whose firing rates grow 28 

monotonically with speed (Collett and King, 1975; Ibbotson, 2001, Straw et al., 2008). 29 

Evidence that bees rely on the lateral OF to control their flight was provided by 30 

ingenuous experiments on bees that were trained to enter deep into a corridor formed by two 31 

walls. Each wall carried a pattern consisting of a vertical black-and-white grating, and one of 32 

the two walls could be moved (Kirchner and Srinivasan, 1989). As long as the corridor walls 33 

remained stationary, bees tended to fly equidistant from the two walls, producing what has 34 

been called the ‘centering behaviour’. However, when one of the gratings was moved, the 35 

bee’s trajectory shifted off center. To explain this shift, the authors hypothesised that the 36 

flying bee balances the angular velocities (i.e., the OFs) of the walls, as perceived laterally by 37 

the two eyes (Kirchner and Srinivasan, 1989). 38 

This type of experiment on honeybees was always performed (i) with entrance and 39 

feeder centered along the corridor midline, and (ii) in relatively narrow corridors of either a 40 

constant width D (D=12cm in Kirchner and Srinivasan, 1989, and Srinivasan et al., 1991; 41 

D=15.5cm in Srinivasan et al., 1993; D=10cm to 20cm in Hrncir et al., 2004; D=22cm to 42 

32cm in Baird et al., 2005), or a variable width (a corridor tapering from 38cm to 12cm and 43 

expanding again to 38cm, in Srinivasan et al., 1996). 44 

Honeybees are able to adopt a terrain-following behaviour on the basis of a ventral OF 45 

regulator controlling the bee’s vertical lift (Franceschini et al., 2007). In the present account 46 

we adress the question of whether honeybees are able to adopt a wall-following behaviour on 47 

the sole basis of the lateral OF. 48 

Materials and Methods 49 

 50 

Experimental corridor 51 

 52 

The experiments were carried out in the south of France, near Marseille (43.40°N, 5.55°E, 53 

336m) in September (day temperature: 20-31°C), and October 2005 (day temperature: 18-54 

23°C). Experiments consisted in making video recordings of the free-flight trajectories of 55 
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honeybees (Apis mellifera) under four experimental conditions. The experimental set-up (Fig. 56 

1a) consisted of a relatively wide (95cm) and long (300cm) rectangular corridor (25cm-57 

height). The two walls were wallpapered with a pattern of vertical grey-and-white stripes of 58 

spatial wavelength  = 10cm using a solvent free glue (Sader Fortissimo, MS polymer-59 

based glue). The Michelson contrast was m = 0.41, as measured in the green spectral range 60 

(specific for motion vision in the honeybee: Kaiser and Liske, 1974).  61 

By using a pattern with a relatively large spatial wavelength (10cm), we made sure 62 

that the bee would see it whatever its lateral positioning in the wide corridor, given the small 63 

bee’s interommatidial and acceptance angles, which are both in the order of 2.5 deg for 64 

laterally oriented ommatidia (Seidl and Kaiser, 1981; Horridge, 2003). 65 

In the last experiment, a 1.5m long central part of the left wall was removed (between 66 

abscissae X = 75cm and X = 225cm). Through this wide opening, the nearest (15m) trunk of a 67 

tree that the bee could see produced an OF of only 4°/s (see 4th column in Table 1). 68 

The coarsely textured wooden floor was white, maximizing the contrast between the 69 

insect and the floor in the video sequences. The corridor was roofed with see-through insect 70 

netting allowing efficient corridor ventilation and closed with a white plank at each end. Bees 71 

could enter the corridor only through one of three entrance holes in the insect netting (left 72 

Entrance: EL, central Entrance: EC, right Entrance: ER). This arrangement forced the bees to 73 

enter the corridor with a quasi zero forward speed. 74 

 75 

Bee training 76 

 77 

Experiments were conducted outdoors on clear days with no wind. Bees were trained to enter 78 

the corridor through one of the three entrances (EL, EC, ER, see Fig. 1a), depending on the 79 

experiment. Bees were first trained for three days to feed on a honey-flavoured sweet that was 80 

placed each time deeper and deeper in the corridor, up to the final position shown in Fig. 1a. 81 

At the end of the training session, the sweet was replaced by a sugar solution feeder (35% 82 

w/w, i.e., 1.2M sucrose concentration) for an additional two days to exclude any unwanted 83 

olfactory cues. The feeder was placed at one of the three positions (left FL, central FC or right 84 

FR), depending upon the experiment. After the training session, trajectories of single bees 85 

flying to the feeder were video-filmed from above. Bees’ return paths home across the 86 

corridor were not recorded. 87 

 88 
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Video-recording and flight path analysis 89 

 90 

The bees’ flight trajectories to the feeder were filmed at a rate of 20 frames/s with a high-91 

resolution digital black-and-white CMOS camera (ProsilicaTM EC1280: 1280x1024 pixels) 92 

placed at 220cm above the corridor floor (Fig. 1a). We only consider bees entered one at a 93 

time in the camera field of view during the recordings. The data were stored on a standard 94 

notebook computer equipped with an image sequence acquisition software program. The 95 

camera field of view was adjusted to 150cm in length and 95cm in width, centered on the 96 

corridor. Despite the area covered by the video camera being 64-fold larger than in other 97 

studies (Kirchner and Srinivasan, 1989; Srinivasan et al., 1991), the camera resolution still 98 

made it possible to record an image of the bee's body in the form of an oriented ellipse 99 

consisting of about 14 pixels in length by about 8 pixels in width. Image sequences were 100 

stacked, calibrated and thresholded by ImageJ macros (http://rsb.info.nih.gov/ij/). We 101 

processed all the 156 recorded flight trajectories using a MatlabTM script to determine for each 102 

frame the bee's ordinate (y) as a function of the abscissa (x) along the corridor axis (Fig. 1c).  103 

 104 

Statistical analysis 105 

 106 

For each bee’s trajectory, the current forward speed at each abscissa x was computed using a 107 

four-point derivative smoothing filter. We associate each bee’s trajectory with an average 108 

forward speed Vx and an average ordinate y. Then, we indicate in the Table 1 (2nd column), the 109 

mean value and standard deviation of the average speed calculated for each trajectory. 110 

Statistical data analyses were performed with the ‘R’ software program (http://www.r-111 

project.org/). Student’s t-tests were used to compare two mean ordinates: the significance 112 

level was taken at α0.05 to determine differences. When data-sets were used for more than 113 

one statistical comparison, the significance level was corrected using Bonferroni’s correction: 114 

αc=0.05/N (with N the number of comparisons). 115 

116 
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Results 117 

 118 

Centering and not centering 119 

 120 

Figures 2a-c show trajectories of freely flying honeybees in the straight corridor lined with 121 

vertical stripes (cf. Fig. 1). The arrows show the bees’ entrance position (EL, EC, or ER) and 122 

the circles give the feeder position (FL, FC, or FR). Each solid line corresponds to one bee's 123 

trajectory obtained by processing the successive video frames. 124 

  Figure 2a shows the bees' trajectories observed when both the entrance and the feeder 125 

were centered in the corridor (EC and FC). The bees can be seen to have flown along the 126 

midline of the corridor, consistent with the “centering response” described by Kirchner and 127 

Srinivasan (1989). The mean value of the mean ordinates of the 30 trajectories was 4811cm 128 

( S.D.), which is very close to the corridor midline ordinate: 47.5cm (t-test, t=-0.162, df=29 129 

p=0.872). 130 

By contrast, bees trained to enter and collect the food near one wall were seen to fly 131 

close to that same wall (Figs. 2b,c). In Fig. 2b, for example, where both entrance and feeder 132 

were placed on the left-hand side (EL and FL), the mean value of the mean ordinates of the 27 133 

trajectories is 308cm, a value that departs considerably (t-test, t=-7.01, df=51.9, p<0.001) 134 

from the result obtained in Fig. 2a where bees flew centered on average. This major deviation 135 

from the midline is confirmed by the converse experiment (Fig. 2c), where both entrance and 136 

feeder were on the right-hand side of the corridor (ER and FR): bees can be seen to have 137 

hugged the right wall. In this case, the mean value of the mean ordinates of the 42 trajectories 138 

is 718cm, a value that again is at odds with the centering behaviour observed in Fig. 2a (t-139 

test, t=9.57, df=50.1, p<0.001). 140 

 141 

Removing part of the wall on one side 142 

 143 

We then tested the bees trained as in Fig. 2c (i.e., ER and FR) in a situation where we removed 144 

a major, 150cm long portion (between abscissae X=75cm and X=225cm) of the left wall 145 

during the trials, so as to considerably degrade the OF on that side (see Materials and 146 

Methods). 147 

As shown in Figure 2d, the bees flew near the right wall in much the same way as they 148 

did in Fig. 2c, without seemingly being affected by the absence of the left wall. Indeed, the 149 
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mean value of the mean ordinates of the 57 trajectories is 7110cm, that is, a value strikingly 150 

similar to that (718cm) obtained in the presence of the left wall (Fig. 2c) (t-test, t=0.026, 151 

df=94.6, p=0.979). 152 

 When under this same condition (absence of the left wall), entrance and feeder were 153 

placed on the left-hand side (EL and FL) bees seemed to be highly confused during the trial. 154 

Some bees flew out of the opening and returned to the corridor. Some of these flew backward 155 

towards the starting-point, or attempted to cross the corridor toward the opposite (right) wall 156 

(no trajectory shown here). 157 

Taken together, these results show that bees flying along a straight corridor do not 158 

systematically center along the midline. They may instead adopt a flight path that keeps them 159 

close to one wall. Upon hugging the wall, they seem to rely on a close visuomotor interaction 160 

with it and are not flummoxed by the absence of the opposite wall. 161 

 162 

Comparing the left and right optic flows 163 

 164 

Table 1 gives for each experiment (Fig. 2) the mean and standard deviation values of the right 165 

(R) and left (L) OFs, calculated as the speed divided by the distance from the respective 166 

wall. Right and left OFs did not differ significantly when the bees centered in the corridor (t-167 

test, t=-0.187, df=57.1, p=0.852), but differed markedly in the three cases of wall-following 168 

behaviour (Fig.2b-d: t-test for all right/left pairs of lateral OFs, p<0.001). Most striking is the 169 

fact that the unilateral OF value is nearly the same for the three cases of wall-following 170 

behaviour (Table 1), (t-test, αc=0.025, p>αc for each comparison). 171 

Another striking observation is that bees flew faster when entering and feeding on the 172 

left side than on the right side of the corridor (compare the Vx values in Table 1). One reason 173 

for this may be that the temperature on the day we performed the left wall experiment was 174 

higher (23°C) than on the day we performed the right wall experiment (18°C). Given that 175 

bees’ activity depends notably on temperature, this 5°C increase in temperature might account 176 

for the higher forward speed observed. If speed differs significantly between the two 177 

situations (t-test, t=3.58, df=39.9, p<0.001), so does the distance from the nearer wall (t-test, 178 

t=2.98, df=57.4, p=0.004). Distance and speed appear to be tuned to each other, as if flying 179 

closer to a wall would imply flying at a reduced speed and vice versa (see Table 1). Important 180 

is the fact that in both situations the unilateral optic flow remained virtually the same (t-test, 181 
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t=0.483, df=49.2, p=0.632), as attested by Table 1 (grey shades for L and R corresponding 182 

to Fig. 2b and 2c, respectively). 183 

 184 

185 
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Discussion 186 

 187 

The present experiments on honeybees trained to fly in a wide corridor toward an ‘artificial 188 

nectar source’ show that they do not systematically fly along the corridor midline (Fig. 2b,c). 189 

Clearly, bees can also hug one wall, keeping a tight visual contact with it and controlling their 190 

lateral positioning without caring much about the opposite wall (Fig. 2b,c). This view is 191 

strengthened by the observation that bees keep hugging one wall even when a large part of the 192 

opposite wall is removed (Fig. 2d).  Corridor ‘wall-following’ is thus another visual ability of 193 

the bee that adds to the ‘centering behaviour’ observed repeatedly over the last 20 years 194 

(Kirchner and Srinivasan, 1989, Srinivasan et al., 1991; review: Srinivasan and Zhang, 2004). 195 

In our large corridor, bees adopted a wall-following behaviour whenever both entrance 196 

and feeder were located near the same wall (Fig. 2b,c). In former experiments, bees had been 197 

trained to enter a narrow (12cm-wide) corridor, one wall of which was movable (Srinivasan et 198 

al., 1991). The authors had observed that bees would normally fly along the corridor midline 199 

but shifted off center when the wall was moved. This striking reaction shows that bees gauge 200 

neither the actual distance to the walls (which is not altered by the movement of the wall 201 

whatsoever) nor the angular subtense of the walls (which is not altered by the movement of 202 

the wall either) (Srinivasan et al., 1991). They also observed that the bee’s centering response 203 

is largely independent of the spatial structure of the walls in terms of both spatial frequency 204 

and contrast. All these observations (Srinivasan et al., 1991) showed compellingly that the 205 

visuomotor control mechanism at work in flying bees relies on the OF, which is a dynamical 206 

visual cue. The mechanism therefore differs strikingly from that inferred for walking ants 207 

(Heusser and Wehner, 2002), which were shown to rely on the angular subtense of the walls –208 

a stationary visual cue. 209 

That bees can rely on their self-induced OF is consistent with the finding that several 210 

flying insect species, including bees, have neurons that respond to the angular speed of an 211 

image (i.e., the OF) to a large extent independently of the spatial frequency and contrast 212 

(Ibbotson, 2001; Shoemaker et al., 2005;Straw et al., 2008). 213 

In the three cases of wall-following behaviour observed (Fig. 2b-d), bees were 214 

sometimes heading at a small angle  (Fig. 1c) from the corridor axis towards the wall they 215 

followed (see Table 1). Since the bee’s frontal binocular field in the horizontal plane is not 216 

negligible (about +/- 15 deg: Seild and Kaiser, 1981), the eye contralateral to the wall 217 

followed may have contributed in part to the observed behaviour. Yet the heading remained, 218 

on average, close to the tunnel axis (|Ψ|<15 deg), so that the OF perceived, e.g., by the left eye 219 
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on the right wall (< 50°/s) was much smaller than the OF R perceived by the right eye on 220 

that same wall (see Table 1). 221 

 222 

How can a bee fly so deftly along one side of a corridor at all, caring so little about the 223 

absence of the opposite wall? If, in the experiment shown in Fig. 2d, bees had balanced the 224 

lateral OFs perceived on both sides - as suggested by the “optic flow balance” hypothesis 225 

(Kirchner and Srinivasan, 1989) - they would have rushed out of the large opening in the left 226 

wall, in search of a left OF of comparable size to that perceived on the right-hand side. 227 

Kirchner and Srinivasan (1989) recorded the bees’ trajectories when one wall was replaced by 228 

a homogeneously grey sheet (contrast m<0.05) that generated a poor lateral OF on one side. 229 

The authors reported that the bees’ trajectories shifted toward the homogeneous side, albeit 230 

without bumping into it (Kirchner and Srinivasan, 1989; Srinivasan et al., 1991). In other 231 

experiments, the authors further investigated this ‘lateral response’ by testing bees in a narrow 232 

corridor (15.5cm-wide), one wall of which had a circular window (diameter 21cm) that 233 

displayed no pattern. The bees were observed to shift toward this aperture too (Srinivasan et 234 

al., 1993). 235 

  To explain these behavioural patterns, our working hypothesis is that a bee will follow 236 

the right or left wall by regulating (i.e., maintaining constant) whichever lateral OF (right or 237 

left) is greater. In another context, we have proposed a simple feedback mechanism, termed 238 

the OF regulator, that explains how a miniature air-vehicle can maintain its lateral OF 239 

constant throughout its travel through a corridor (Serres et al., 2008). Simulation experiments 240 

showed that the agent can control its side slip on the sole basis of a unilateral OF regulator 241 

(based on OF sensors mounted on either sides). At all times, the OF regulator strives to 242 

maintain the greater of the lateral OFs perceived from the walls constant. Since by definition 243 

the lateral OF is equal to the speed/distance ratio, this amounts to maintaining the distance to 244 

the wall proportional to the current forward speed. The striking correlation noted above 245 

between forward speed and distance from the wall is fully consistent with this ‘unilateral optic 246 

flow regulation’ hypothesis. Indeed, the value of the optic flow experienced by the bee was 247 

virtually the same (compare L and R for Fig. 2b and c: grey shades in Table 1), even though 248 

both speed and distance were significantly different in the two situations. 249 

There is an infinite number of combinations of flight speed and distance that will generate a 250 

desired level of OF. If the bee has no information on its flight speed, then the OF of 235 251 
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deg/sec can be produced by flying at a speed of 117cm/sec at a distance of 30cm from the 252 

wall, or at 58.5cm/sec at a distance of 15cm, etc. Inspired by the observation that the bee’s 253 

flight speed in a tunnel depends on the sum of the right and left  OFs (Srinivasan et al. 1996), 254 

we showed that this chicken-and-egg problem can be solved by adding a second OF regulator 255 

that would be in charge of controlling the flight speed. In a recent paper dealing with realistic 256 

simulation experiments (Serres et al., 2008), we have shown that the flight of an air vehicle in 257 

a tunnel can be fully determined, as regards both speed and distance from the walls, on the 258 

basis of two interdependent OF regulators. The power of the hypothesis is that sensible 259 

behaviour is achieved without measuring speed, distance and tunnel width at all. Our 260 

simulation experiments also showed (Serres et al., 2008) that by adding the second lateral OF-261 

based feedback loop controlling the forward speed, the robot’s behaviour (in terms of both 262 

speed and distance from the walls) would mimick the one observed on flying honeybees 263 

travelling through a straight or tapered corridor (Kirchner and Srinivasan, 1989; Srinivasan et 264 

al., 1996).   265 

The unilateral OF regulator principle is similar in many respects to the ventral OF 266 

regulator principle that was put forward to explain the behaviour of insects taking off, 267 

following terrain and landing (Ruffier and Franceschini, 2005; Franceschini et al., 2007). But 268 

whereas the ventral OF regulator served to control the bee’s vertical lift (hence the height of 269 

flight), the unilateral OF regulator put forward here serves to control the bee’s sideways 270 

thrust (hence the distance from a wall). Just as the ventral OF regulator maintained automatic 271 

clearance from the ground below (thus preventing ground collisions), the unilateral OF 272 

regulator maintains automatic clearance from the walls (thus preventing lateral collisions). 273 

This simple system requires exclusively OF sensors which, as we now know, may be 274 

provided by specific motion detecting neurons such as the bee’s velocity tuned neurons (VT: 275 

Ibbotson, 2001). On this view, the bee would approach or recess from a wall by simply 276 

attempting to maintain the spike firing rate of some VT neurons constant and equal to a set-277 

point. This control scheme would present two advantages: 278 

• A single parameter, the OF set-point, would allow the insect to keep a safe distance 279 

from a wall without having to measure this distance. Nor would speed need to be measured. 280 

• The OF regulator can be said to tune the animal’s behaviour at all times such that the 281 

OF will deviate little from the OF set-point. As noticed elsewhere (Franceschini et al., 2007), 282 

this requirement to measure a mere OF deviation puts little constraint on the dynamic range of 283 

the motion detecting neurons. 284 
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The control scheme suggested here is consistent not only with the bees’ “wall- 285 

following” behaviour we have described, but also with the existence in bees of visual neurons 286 

that are able to evaluate the lateral OF. The scheme would confer upon the bee a safe 287 

clearance from the walls - a clearance commensurate with its forward speed - whatever the 288 

speed. Though simple, this control scheme is powerful as it would enable honeybees to 289 

prevent lateral collisions without any needs to measure distance and speed. This is consistent 290 

with the diminutive size of the insect’s brain that is obviously not equipped with cumbersome 291 

range finders, Doppler radars or GPS receivers. 292 

293 
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 351 
Fig. 1 Experimental apparatus. a During the training session, bees entered the straight corridor (300x95x25 cm) 352 
one by one, through one of the three Entrances (left: EL, central: EC, or right: ER) and were fed at one of the three 353 
Feeder positions (FL, FC, or FR). During the trials, a high-resolution digital camera placed 220cm above the 354 
corridor filmed the trajectory of single flying bees (at 20 frames/s) over the central (150cm-long) part of the 355 
corridor. An insect netting stretched flat over the flight tunnel prevented the bees from escaping upwards, while 356 
enabling the camera to see through. Both walls were lined with a similar periodic pattern consisting of vertical 357 
white-and-grey stripes (spatial period 10cm, contrast m = 0.41). b In one experiment, a major part (150cm-long) 358 
of the left wall was removed. c Top view of a bee flying at speed V along the corridor. Ψ is the bees’s body yaw 359 
angle with respect to the tunnel axis, x the body abscissa, y the body ordinate, Vx and Vy the forward and sway 360 
components of speed, and D the corridor width. 361 
 362 
 363 
 364 
 365 
 366 
 367 
Fig. 2 Trajectories of individual bees tested in the corridor under four experimental conditions. a Both the bee’s 368 
entrance (EC) and the feeder (FC) were placed on the corridor midline. b and c Entrance and feeder were placed 369 
on one side of the corridor (EL and FL, or ER and FR). d The bee entered the corridor and was fed on the right-370 
hand side as in (c) (ER and FR), but part of the left wall was removed during the trial (see Materials and 371 
Methods). The histograms on top give the distribution of the mean ordinate of each trajectory. The value given 372 
for the mean ordinate is followed by the standard deviation of the distribution. n is the number of trajectories 373 
recorded in each experimental condition. 374 
 375 
 376 
 377 
 378 
Table 1. Comparisons between the bees' ordinate y, the forward speed Vx, and the bee’s body yaw angle Ψ for 379 
each experimental condition (Fig. 2a-d). The last two columns indicate the values and standard deviations of the 380 
right and left lateral optic flows (ωL and ωR) perceived by the bees in each case. These values were calculated as 381 
the speed /distance ratio (in rad/s) and converted into °/s. Notice that the lateral optic flow perceived by the bees 382 
with respect to the wall they choose to follow is of the same order of magnitude for the last three experimental 383 
conditions (grey shade). 384 

385 
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Table 1. 386 
 387 
 388 

Experiments and 
 n = number of trajectories 

y  
(cm)

Vx 
(cm/s) 

Ψ 
(°) 

ωL = Vx/y 
(°/s) 

ωR = Vx /(D-y)
(°/s) 

Fig. 2a, EC→FC (2 walls), n=30 47 ± 11 117 ± 36 0 ± 9 148 ± 54 151 ± 61 
Fig. 2b, EL→FL (2 walls), n=27 30 ±  8 117 ± 38 5 ± 8 235 ± 80 106 ± 39 
Fig. 2c, ER→FR (2 walls), n=42 71 ±  8   88 ± 24 -13 ± 9 73 ± 25 226 ± 68 
Fig. 2d, ER→FR (1 wall ), n=57  71 ± 10   98 ± 31 -9 ± 10  4 ± 1 265 ± 116 

389 
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Figure 1. 390 

 391 
392 
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Figure 2. 393 
 394 

 395 


