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Abstract. The Max-SAT problem consists in finding an assignment
maximizing the number of satisfied clauses. Complete methods for this
problem include Branch and Bound (BnB) algorithms which use max-
resolution, the inference rule for Max-SAT, to ensure that every com-
puted Inconsistent Subset (IS) is counted only once in the lower bound es-
timation. However, learning max-resolution transformations can be detri-
mental to their performance so they are usually selectively learned if they
respect certain patterns. In this paper, we focus on recently introduced
patterns called Unit Clause Subsets (UCSs). We characterize the trans-
formations of certain UCS patterns using the UP-resilience property.
Finally, we explain how our result can help extend the current patterns.
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1 Introduction

Max-SAT is an optimization extension of the satisfiability (SAT) problem. For
a given formula in Conjunctive Normal Form (CNF), it consists in finding an
assignment of the variables which maximizes the number of satisfied clauses.
Complete methods for this problem include SAT based approaches (e.g. MAXHS
[7], OPEN-WBO [13], EVA [14], WPM1 [5]) and Branch and Bound (BnB)
algorithms (e.g. AHMAXSAT [3], AKMAXSAT [9], MAXSATZ [10,12]) among
others. The former which iteratively call SAT solvers are particularly efficient
on industrial instances while the latter are competitive on random and crafted
instances.

BnB based approaches construct a search tree and compute, at each node,
the Lower Bound (LB) by counting the disjoint Inconsistent Subsets (ISs) of the
formula using Simulated Unit Propagation (SUP) [11]. When an IS is found,
it is either temporarily deleted or transformed by max-resolution, the inference
rule for Max-SAT [6,8], to ensure that it will be counted only once. However,
learning max-resolution transformations, i.e., memorizing them in the current
subtree (including the current node), may affect negatively the quality of the
lower bound estimation[2,4,12]. Therefore, state of the art solvers learn trans-
formations selectively mainly in the form of patterns [12].
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Recently, new patterns called Unit Clause Subsets (UCSs) were introduced
and empirically studied in [2]. The most significant feature of these patterns is
producing unit clauses after the transformation by max-resolution. The empirical
study of these patterns lead to the first observations on the relation between
max-resolution transformations and the efficiency of the SUP mechanism which
is indispensable for the lower bound estimation. These observations were formally
stated by the introduction of a new property called UP-resilience [4].

In this paper, we conduct a theoretical study of particular UCS patterns and,
more specifically, their relation with UP-resilience: we prove that binary UCSs
are UP-resilient and we generalize this result on UCSs where only one clause
of any size is involved in the conflict. We also explain how our results can help
extend the current patterns by showing that the current mechanisms in BnB
solvers can’t ensure UP-resilience for these patterns.

This paper is organized as follows. In Section 2, we give basic definitions and
notations. In Section 3, we show how the UP-resilience property highlights the
impact of max-resolution transformations on the SUP mechanism. We charac-
terize UCS transformations and we show the limit of the current mechanisms in
Section 4 and we conclude in Section 5.

2 Definitions & Notations

Let X be a set of propositional variables. A literal l is a variable x ∈ X or its
negation x and a clause is disjunction of literals, represented as a set of literals.
A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses and
can be represented as a set of clauses. An assignment I : X −→ {true, false}
maps each variable to a Boolean value and is represented as a set of literals.
For a given literal l, var(l) denotes the variable appearing in l. A clause c is
satisfied by an assignment I if at least one of its literals is satisfied, i.e., ∃l ∈ c
such that l ∈ I. The empty clause � is always falsified. An Inconsistent Subset
(IS) of a formula Φ is an unsatisfiable set of clauses ψ ⊆ Φ. Solving the Max-
SAT problem consists in finding an assignment which maximizes the number of
satisfied clauses for a given CNF formula.

Definition 1 (Max-resolution [6,8]). The inference rule for Max-SAT, max-
resolution, is defined as follows:

c = {x, y1, ..., ys}, c′ = {x, z1, ..., zt}
cr = {y1, ..., ys, z1, ..., zt}, cc1, ..., cct, cct+1, ..., cct+s

where the compensation clauses are defined as follows:
cc1 = {x, y1, ..., ys, z1}

cc2 = {x, y1, ..., ys, z1, z2}
...

cct = {x, y1, ..., ys, z1, ..., zt−1, zt}
cct+1 = {x, z1, ..., zt, y1}

cct+2 = {x, z1, ..., zt, y1, y2}
...

cct+s = {x, z1, ..., zt, y1, ..., y2, ys}
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Unlike the SAT inference rule, max-resolution replaces the premises in the
rule by its conclusions. Furthermore, it produces an equivalent formula, i.e.,
it preserves the number of unsatisfied clauses for any assignment. The results
established in this paper can be easily extended to weighted Max-SAT formulas
(hard clauses can be included with infinite weights in the case of partial formulas)
using the weighted version of max-resolution introduced in [6].

Notation. Let ψ be an IS of a CNF formula Φ and S = 〈x1, ..., xk〉 be a sequence
of variables appearing in ψ. We denote Θ(ψ, S) the set of clauses obtained from
ψ after the application of max-resolution steps in accordance to the sequence S,
i.e., Θ(ψ, S) = θ(θ...(θ(ψ, x1), x2)..., xk) where θ(ψ, x) denotes the application of
the max-resolution step defined above on two clauses c and c′ such that x ∈ c
and x ∈ c′.

Next, we recall the notion of UP-resilience [4]. The empirical study conducted
in [2] shows a correlation between the decrease of the number of propagations,
the decrease of the number of detected ISs and the increase of the number of
decisions, i.e., if the number of propagations is reduced, then less ISs will be
detected and the quality of the LB estimation will be reduced. This observation
was stated more clearly in [4] as the fragmentation phenomenon which was the
main motivation behind the introduction of the UP-resilience property. This
phenomenon, showcased in Example 1, occurs when clauses are fragmented into
two (or more) clauses after transformation by max-resolution which may obstruct
their exploitation by the SUP mechanism.

Example 1. we consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}}
detected by the sequence of unit propagations represented in the form of an
implication graph [15] in Fig.1. The max-resolution transformation of this IS
with respect to the variable sequence S = 〈x4, x3, x2, x1〉 (in the reverse order of
propagation) is given on the right in Fig.1.
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x4

x3

�
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{x2} {x1, x
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, x4
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{x1, x2, x4} {x3, x4}

{x1, x2, x3} {x3}

{x1, x2} {x2}
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�
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Fig. 1. Implication graph corresponding to a propagation sequence of ψ in example 1
and its transformation by max-resolution, where compensation clauses for each step
are represented in boxes.
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If the unique neighbor of x1 in the implication graph is set to true in the trans-
formed IS, we obtain Θ(ψ, S)|{x4} = {{x1, x3}, {x1, x3}, {x1, x2}, {x1, x2, x3},
{x1, x2, x3}}. Clearly, the literal x1 can’t be propagated in Θ(ψ, S)|{x4}. We can
produce the resolvent x1 if we perform a max-resolution step between the clauses
{x1, x3} and {x1, x3} but the SUP mechanism alone cannot ensure the propaga-
tion of this literal in the transformed IS even with respect to its neighborhood in
the implication graph. We say that the information leading to the propagation
of x1 was fragmented into several compensation clauses.

As an IS can be detected by different propagation sequences each corre-
sponding to an implication graph [15]. So, before recalling the definition of the
UP-resilience property, we give the formal definition of an implication graph of
an IS in the context of BnB solvers for MaxSAT and of possible neighborhoods
of a literal appearing in an IS.

Definition 2 (Implication graph of an IS). Let Ψ be an IS of a CNF formula
Φ and I an assignment. We suppose that exactly one clause is falsified by I (SUP
stopped when the first empty clause is generated). An implication graph of Ψ is
a directed acyclic graph G = (V,A) defined as follows :

– V = {l ∈ I} ∪ {�c|c ∈ Ψ and |c| = 1} ∪ {�}
– A = {(l, l′, c) | l, l′ ∈ I and c ∈ Ψ is reduced by l and propagates l′}

⋃
{(�c, l, c) | l ∈ I and c = {l} ∈ Ψ}

⋃
{(l,�, c) | l ∈ I and c ∈ Ψ is falsified by I and l ∈ Ψ}

The directed edges are labeled by clauses and the nodes � are omitted in G.

Definition 3 (Possible neighborhoods [4]). Let φ be a CNF formula and
ψ an IS. For a literal l appearing in ψ, we define its possible neighborhoods as
pneigh(l) = {neighG(l)|G = (V,A) implication graph of ψ s.t. l ∈ V } where
neighG(l) denotes the neighbors of l in G. We extend this definition on any
set of literals L appearing in ψ as pneigh(L) = {

⋃
l∈L neighG(l)|G = (V,A)

implication graph of ψ s.t. L ⊆ V }.

Definition 4 (UP-resilience [4]). Let φ be a CNF formula, ψ an IS and S a
sequence of variables appearing in ψ. The transformation Θ(ψ, S) is UP-resilient
for a literal l appearing in ψ iff ∀N ∈ pneighψ(l): � ∈ N or l can be propagated
in Θ(ψ, S)|N where Θ(ψ, S)|N denotes the set of clauses in Θ(ψ, S) with the
literals appearing in N set to true. We say that Θ(ψ, S) is UP-resilient if it is
UP-resilient for all the literals appearing in ψ.

We finish this section by a brief overview of UCS patterns which were in-
troduced and empirically studied in order to extend the learning mechanisms in
BnB Max-SAT solvers [2].

Definition 5 (Unit Clause Subset [2]). Let φ be a CNF formula and k ≥ 2.
A k-Unit Clause Subset, denoted k-UCS, is a set of clauses {c1, ..., ck} ⊆ φ such
that there exists a sequence of max-resolution steps on c1, ..., ck that produces a
unit clause resolvent. In particular, if ∀i ∈ {1, ..., k} we have |ci| = 2, it is a
binary k-UCS, denoted kb-UCS.
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Example 2. The following patterns:

{l1, l2}, {l1, l2}
(P1){l1}

{l1, l2}, {l1, l3}, {l2, l3}
(P2)

{l1}, {l1, l2, l3}, {l1, l2, l3}

which are learned in state of the art BnB solvers, correspond respectively to a
2b-UCS and a 3b-UCS.

Definition 6 (First Unique Implication Point [15] ). Let G be an impli-
cation graph. A Unique Implication Point (UIP) is any node in G such that any
path from the literals propagated by unit clauses to the conflict node must pass
through it. The First UIP (FUIP) is the UIP closest to the conflict node.

It is important to note that UCS patterns have a high apparition frequency
(in more than 57% of the detected ISs [2]). Furthermore, certain k-UCS patterns
are easily detectable by analyzing the implication graph of the obtained IS [2].
Indeed, the clauses which are between the conflict and the FUIP produce a
unit resolvent clause if they are transformed by max-resolution in the reverse
propagation order. From here on, we will focus on such k-UCS patterns.

3 Preliminaries and Motivation

In this section, we explain how the notion of UP-resilience quantifies the impact
of max-resolution on the SUP mechanism and thus on the detection of Incon-
sistent Subsets. This is highlighted in Property 1 which proves that UP-resilient
transformations maintain the propagations which are not necessary anymore to
an inconsistent subset. We provide a different proof for this property that is
shorter and simpler than the one in [4]. We also show, in Propositions 1 and
2, that the transformations corresponding to patterns (P1) and (P2) are UP-
resilient which contributes to explain from a theoretical point of view the em-
pirical efficiency of these patterns. We give detailed proofs of these propositions
to emphasize the fact that they are valid for any possible order of application of
max-resolution, a fact that will be of importance in the discussion of our results
in Section 4.

Property 1. Let φ be a CNF formula, ψ an IS of φ and S a sequence of vari-
ables appearing in ψ. For any set of literals L appearing in ψ, if the transforma-
tion Θ(ψ, S) is UP-resilient for L then ∀N ∈ pneigh(L) : � ∈ N or every literal
l ∈ L can be propagated in Θ(ψ, S)|N\{l}.

Proof. We prove this property by induction on |L| = n:

– If n = 1 then L = {l} and the property is verified.
– Suppose the property is true for every set of size n. Let L be of size n + 1

and l a literal in L. We set L′ = L \ {l} and let N ∈ pneigh(L). Clearly,
N = N1 ∪N2 where N1 ∈ pneigh(L′) and N2 ∈ pneigh(l). Moreover, since
|L′| = n, we know by induction that ∀N ∈ pneigh(L′) : � ∈ N or every
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literal l′ in L′ can be propagated in Θ(ψ, S)|N\{l′}. In particular, � ∈ N1

or every literal l′ in L′ can be propagated in Θ(ψ, S)|N1\{l′}. Also, The
transformation Θ(ψ, S) is UP-resilient for L and particularly for l and thus,
we have ∀N ∈ pneigh(l) : � ∈ N or l can be propagated in Θ(ψ, S)|N . In
particular, � ∈ N2 or l can be propagated in Θ(ψ, S)|N2

. Thus, We have the
following cases:
• If � ∈ N1 or � ∈ N2 then � ∈ N
• Else every literal l′ in L′ and l can be propagated respectively in
Θ(ψ, S)|N1\{l′} and Θ(ψ, S)|N2

. Therefore, the clauses that ensure the
propagation of every literal l′ in L′ in Θ(ψ, S)|N1\{l′} also ensure their
propagation in Θ(ψ, S)|(N1∪N2)\{l′} and, similarly, the clauses that en-
sure the propagation of l in Θ(ψ, S)|N2

also ensure its propagation in
Θ(ψ, S)|(N1∪N2)\{l}.

We deduce that ∀N ∈ pneigh(L) : � ∈ N or every literal l in L can be
propagated in Θ(ψ, S)|N\{l}.

�

Proposition 1. Let Φ be a CNF formula, Ψ an IS and Ψ ′ ⊂ Ψ such that Ψ ′
matches the premises of pattern (P1). Then, the max-resolution transformation
described in (P1) is UP-resilient.

Proof. ψ′ = {{l1, l2}, {l1, l2}}. Therefore, there are two possible propagation se-
quences whose implication graphs are represented in Fig.2. Since all possible
neighborhoods of literals l1, l2 and l2 contain the empty clause, the transfor-
mation of ψ′ as in (P1), with respect to the only possible variable sequence
S = < var(l2) >, is UP-resilient.

l1

l2

�

{l1, l2} {l1, l2}

{l1, l2}
l1

l2

�

{l1, l2} {l1, l2}

{l1, l2}

Fig. 2. Implication graphs corresponding to the possible propagation sequences for an
IS containing the premises of pattern (P1).

�

Proposition 2. Let Φ be a CNF formula, Ψ an IS and Ψ ′ ⊂ Ψ such that Ψ ′
matches the premises of pattern (P2). Then, the max-resolution transformation
described in (P2) is UP-resilient.

Proof. ψ′ = {{l1, l2}, {l1, l3}, {l2, l3}}. Therefore, there are two possible prop-
agation sequences whose implication graphs are represented in Fig.3. There
are two max-resolution application orders S1 = < var(l2), var(l3) > and
S2 = < var(l3), var(l2) > that produce the same transformation described
by pattern (P2). Since all possible neighborhoods of l2 and l2 contain the empty
clause, the transformation of ψ by max-resolution is UP-resilient for l2 and l2.
We have pneigh(l1) = {{l3,�} ∪ pred(l1), {l2, l3} ∪ pred(l1)}, where pred(l1))
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denotes the predecessors of l1, and clearly the clause c = {l1, l2, l3} propa-
gates l1 when the literals l2, l3 in its second neighborhood are set to true. Also,
pneigh(l3) = {{l1,�}, {l1, l2}} and similarly the clause c′ = {l1, l2, l3} propa-
gates l3 when the literals in its neighborhood {l1, l2} are set to true.

l1

l3 l2

�

{l1, l3}
{l2, l3}

{l1, l2}

{l1, l2}
l1

l3

l2

�

{l1,
l3}

{l1 , l2}

{l2 , l3}

{l2,
l3}

Fig. 3. Implication graphs corresponding to the possible propagation sequences for an
IS containing the premises of pattern (P2).

�

Corollary 1. For k ∈ {2, 3}, kb-UCSs are UP-resilient.

Proof. 2b-UCSs and 3b-UCSs are all of the respective forms Ψ2b = {{l1, l2}, {l1, l2}}
and Ψ3b = {{l1, l2}, {l1, l3}, {l2, l3}} which correspond to the premises of patterns
(P1) and (P2). Thus, we obtain the wanted result using Propositions 1 and 2.

�

The previous results establish that UP-resilient transformations can’t nega-
tively impact the SUP mechanism and that the transformations learned in state
of the art BnB solvers for Max-SAT in the form of patterns (P1) and (P2) are
UP-resilient. One major challenge is to use this property to help decide the rel-
evance of application of max-resolution transformations either by devising an
efficient algorithm to verify the property on potential transformations or by us-
ing it to characterize the transformation of certain patterns. Since checking the
property on potential transformations seems computationally costly, we tackle
in the next section the second problem by generalizing the result of Corollary 1.

4 Contributions

In this section, we prove that binary k-UCSs are UP-resilient by providing two
different orders that ensure the UP-resilience of their transformation by max-
resolution. We also show that unlike the given orders, the current used mecha-
nisms can’t ensure UP-resilience for these patterns which provides an explanation
to the empirical results in [2] and shows that our results can help extend the
current used patterns in state of the art solvers. Furthermore, we generalize our
result on the resilience of kb-UCSs to k-UCSs where all clauses are binary except
one of any size that is involved in the conflict. We start by proving the following
lemma in order to characterize the detected implication graphs of such k-UCSs.

Lemma 1. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for the
conflict clause of size s ≥ 2, recognized by the FUIP l in an implication graph G
of an IS such that |succ(l)| = s. Then, there exists exactly s disjoint paths from
l to � in G.
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Proof. Since l is a UIP, all the paths from the literals propagated by unit clauses
to the conflict node in G pass through it. We have |succ(l)| = s. Therefore, there
are at least s different paths from l to � in G. Let p1,...,ps be those paths.
Suppose we have a different path ps+1 from l to �. We have two possible cases:

– |pred(�)| 6= s. This is absurd since the conflict clause c is of size s and thus
|pred(�)| = s.

– Else, since |pred(�)| = s, there exists l′ 6= l ∈ ps+1 and i ∈ {1, ..., s} such
that l′ ∈ pi and |pred(l′)| > 1. This is absurd since all clauses of the k-UCS
except c are binary.

We deduce that there are exactly s different paths from l to � in G. The same
argument of the second case ensures that these paths are disjoint.

�

As explained in Section 2, when a UCS is detected, we know that the reverse
propagation order ensures the production of a unit clause after the transforma-
tion but, in general, this is not necessarily true for all the orders. Since this is
the main feature of UCS patterns, we must ensure that the introduced orders
produce unit clauses. It is important to note that the condition on the succes-
sors of the FUIP in Lemma 1 ensures this property for all possible orders. We
start by proving the UP-resilience of kb-UCSs. To this end, we show in the next
proposition that the condition on the FUIP successors in Lemma 1 is always
verified for kb-UCSs. Later, when we generalize our result, we only consider the
graphs described by Lemma 1, i.e., which verify the condition on the successors
of the FUIP.

Proposition 3. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in an
implication graph G of an IS. Then, |succ(l)| = 2.

Proof. Suppose that |succ(l)| 6= 2. We have two possible cases:

– if |succ(l)| > 2 then, since |succ(�)| = 2, there exists a literal with two
predecessors. This is absurd since all the clauses are binary.

– if |succ(l)| = 1 then l is not the FUIP which is absurd.
�

Definition 7 (Path Resolvent Order). Let p1 = 〈l, lp11 , ..., lp1n1
,�〉(n1 ≥ 0)

and p2 = 〈l, lp21 , ..., lp2n2
,�〉(n2 ≥ 0) denote two disjoint paths from l to �.

The Path Resolvent Order (PRO) of p1 and p2 is defined as PRO(p1, p2) =
〈var(lp11 ), ..., var(lp1n1

), var(lp21 ), ..., var(lp2n2
)〉.

Theorem 1. For any k ≥ 2, the transformation of kb-UCSs with respect to
PRO is UP-resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication
graph G of an IS. By Lemma 1 and Proposition 3, we know that there are 2
disjoint paths from l to � in G. Let p1 = 〈l, lp11 , ..., lp1n1

,�〈(n1 ≥ 0) and p2 =
〈l, lp21 , ..., lp2n2

,�〉(n2 ≥ 0) denote these paths in G where n1 + n2 = k − 1. And,
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suppose w.l.o.g that lp1n1
= l′ is the conflict literal, i.e., the last propagated literal.

We have two possible propagation sequences whose implication graphs are G and
G′ represented in Fig.4.

l

lp11

lp21

...

...

lp1n1
= l′

lp2n2

�G l

lp11

lp21

...

...

lp1n1−1

lp2n2 l′

�G′

Fig. 4. Implication graphs corresponding to the possible propagation sequences for
kb-UCSs.

We prove that the max-resolution transformation relatively to the order O =
PRO(p1, p2) is UP-resilient:

– The clause propagating l is not deleted after the transformation by max-
resolution relatively to the order O so it clearly propagates l if its predeces-
sors are set to true and thus the transformation by max-resolution relatively
to the order O is UP-resilient for l. This argument also applies for the literals
that were involved in the propagation of l.

– All possible neighborhoods of literals lp1n1
= l′ and l′ contain the empty clause.

Therefore, the transformation by max-resolution relatively to the order O is
UP-resilient for l′ and l′.

– For i ∈ {1, 2}, we set lpi0 = l. Every literal lpij such that 1 ≤ j < ni admits
exactly one neighborhood neigh(lp1j ) = {lpij−1, l

pi
j+1} that doesn’t contain the

empty clause. Similarly, for lp2n2
we have neigh(lp2n2

) = {lpin2−1, l
′}. The max-

resolution step on var(lp1j )(1 ≤ j < ni) is of the form:

{l, lpij }, {l
pi
j , l

pi
j+1}

{l, lpij+1}, {l, l
pi
j , l

pi
j+1}, {l, l

pi
j , l

pi
j+1}

The clause c = {l, lpij , l
pi
j+1} clearly ensures the propagation of literal lpij+1 if

lpij ∈ neigh(l
pi
j+1) is set to true since l is propagated by the unit resolvent

clause {l}. Also, for j = 1, the clause c′ = {l, lp11 , l
p1
2 } ensures the propaga-

tion of lp11 if l, lp12 ∈ neigh(lp11 ) are set to true. Thus, We deduce that the
transformation is UP-resilient for lpij where 1 ≤ j ≤ ni (j 6= n1).

We conclude that the transformation of ψ by max-resolution relatively to the
order O is UP-resilient.

�

Definition 8 (Path Resolvent Circular Order). Let p1 = 〈l, lp11 , ..., lp1n1
,�〉

(n1 ≥ 0) and p2 = 〈l, lp21 , ..., lp2n2
,�〉(n2 ≥ 0) denote two disjoint paths from l

to �. The Path Resolvent Circular Order (PRCO) of p1 and p2 is defined as
PRCO(p1, p2) = 〈var(lp11 ), ..., var(lp1n1

), var(lp2n2
), ..., var(lp21 )〉.
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Theorem 2. For any k ≥ 2, the transformation of kb-UCSs with respect to
PRCO is UP-resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication
graph G of an IS. By Lemma 1 and Proposition 3, let p1 = 〈l, lp11 , ..., lp1n1

,�〉(n1 ≥
0) and p2 = 〈l, lp21 , ..., lp2n2

,�〉(n2 ≥ 0) denote the two disjoint paths from l to � in
G where n1+n2 = k−1. And, suppose w.l.o.g that lp1n1

= l′ is the conflict literal.
We have two possible propagation sequences whose implication graphs are G
and G′ represented in Fig.4. We prove that the max-resolution transformation
relatively to the order O = PRCO(p1, p2) is UP-resilient:

– The same arguments in the proof of Theorem 1 ensure the UP-resilience of
the transformation respectively to O for lp1j (1 ≤ j ≤ n1) and l′ as well as l
and all the literals involved in its propagation.

– Every literal lp2j such that 1 ≤ j ≤ n2 admits exactly one neighborhood
neigh(lp2j ) = {lp2j−1, l

p2
j+1} that doesn’t contain the empty clause (we set lp20 =

l and lp2n2+1 = l′). The max-resolution step on var(lp2j ) (j 6= 1) is of the form :

{l, lp2j }, {l
p2
j , l

p2
j−1}

{l, lp2j−1}, {l, l
p2
j , l

p2
j−1}, {l, l

p2
j , l

p2
j−1}

The clause c = {l, lp2j , l
p2
j−1} clearly ensures the propagation of literal lp2j when

lp2j−1 ∈ neigh(l
p2
j ) is set to true since l is propagated by the unit resolvent

clause {l}. Also, the clause c′ = {l, lp22 , l
p2
1 }, generated by the max-resolution

step on var(lp22 ), clearly ensures the propagation of lp21 when its neighbors
l, lp22 ∈ neigh(l

p2
1 ) are set to true. Thus, the transformation is UP-resilient

for lp2j where 1 ≤ j ≤ n2.

We conclude that the transformation by max-resolution relatively to the order
O is UP-resilient.

�

There is a major difference between the orders we introduced. Indeed, PRCO
ensures a linear input resolution transformation, i.e., at each intermediary max-
resolution step we use the resolvent obtained in the previous step and a clause
from the detected kb-UCS. This is not always the case for PRO. The following
result is an immediate consequence of either Theorem 1 or 2.

Corollary 2. For any k ≥ 2, there exists a UP-resilient transformation of kb-
UCSs.

Empirical results show that 2b-UCSs and 3b-UCSs, which correspond respec-
tively to the patterns (P1) and (P2) have a positive impact on the performance
of BnB solvers for Max-SAT [2,10]. The result in corollary 1 obtained through
properties 1 and 2 prove that 2b-UCSs and 3b-UCSs are UP-resilient for any
given order of application of max-resolution which explains why learning them
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has a positive impact regardless of the chosen order. This is not the case for kb-
UCSs when k > 3. Empirical studies on the AHMAXSAT solver in [2] show that
learning 4b-UCSs and 5b-UCSs had a major negative impact on its performance.
This can be explained by the inadequacy of the max-resolution application or-
ders used in state of the art BnB solvers for kb-UCSs when k > 3. Indeed, it was
shown in [4] that the order impacts the UP-resilience of the transformations by
comparing the following heuristics:

– Reverse Propagation Order (RPO) which applies max-resolution steps in the
reverse order of propagation.

– Smallest Intermediary Resolvent (SIR) which applies the max-resolution
steps based on the size of the resolvents between clauses, favoring the small-
est ones [1].

In particular, the results show that the average percentage of UP-resilience of the
transformations is comparatively higher with SIR. In the case of kb-UCSs, these
orders don’t always ensure the UP-resilience property on the transformations.
More specifically, the SIR heuristic becomes unusable since all the intermediary
resolvents have the same size (binary) as shown in the proofs of Theorems 1
and 2, whereas the Reverse Propagation Order doesn’t always ensure the UP-
resilience of the transformation as shown in the following example on a 4b-UCS
which can be easily extended to any kb-UCS for k > 4.

Example 3. We consider the IS ψ = {{l}, {l, l1}, {l, l2}, {l1, l3}, {l2, l3}} detected
by one of the possible implication graphs represented on the left in Fig.5 after
the respective propagation of literals l1, l2 and l3 (or l3). Clearly, the subset
ψ′ = {{l, l1}, {l, l2}, {l1, l3}, {l2, l3}} ⊂ ψ is a 4b-UCS recognized by the FUIP l.
The max-resolution transformation of ψ′ with respect to RPO which corresponds
to the variable sequence S = 〈var(l3), var(l2), var(l1)〉 is represented on the right
in Fig.5.

l l1 l3

l2

�
{l} {l, l1} {l1, l3}

{l, l2} {l2,
l3}

{l2, l3}

l l2 l3

l1

�
{l}

{l, l2} {l2, l3}

{l, l1
} {l1 , l3}

{l1, l3}

{l2, l3} {l1, l3}

{l1, l2} {l, l2}

{l, l1} {l, l1}

{l}

{l1, l2, l3}
{l1, l2, l3}

{l, l1, l2}
{l, l1, l2}

var(l3)

var(l2)

var(l1)

Fig. 5. Implication graphs corresponding to the possible propagation sequences of ψ
in Example 3 and the application of max-resolution steps relatively to RPO
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The literal l1 has one neighborhood neigh(l1) = {l, l3} that doesn’t contain the
empty clause. Clearly, the literal l1 can’t be propagated in Θ(ψ, S)|neigh(l1) =

{{l1, l2}, {l1, l2}}. Similarly, the fragmentation phenomenon also occurs for l2 and
we conclude that the transformation of ψ′ relatively to RPO is not UP-resilient.

Now, we want to generalize our result to k-UCSs where all clauses are binary
except one of any size that is involved in the conflict when the implication
graph corresponds to the description in Lemma 1. A clause involved in the
conflict is either the falsified clause or contains the conflict literal, i.e., the last
propagated literal. Unfortunately, although PRCO has the advantage of ensuring
a linear input transformation, we couldn’t generalize it to obtain the wanted
result. Nevertheless, we managed to prove our result using a generalization of
PRO to a multitude of paths.

Definition 9 (Multiple Path Resolvent Order). Let s ≥ 2 and p1 =
〈l, lp11 , ..., lp1n1

,�〉, ..., ps = 〈l, lp21 , ..., lpsns
,�〉 denote s disjoint paths from l to �.

The Multiple Path Resolvent Order (MPRO) of p1, ..., ps is defined inductively
on s as follows:

- If s = 2, MPRO(p1, p2) = PRO(p1, p2)
- Else MPRO(p1, ..., ps) = PRO(〈l,MPRO(p1, ..., ps−1),�〉, ps).

Theorem 3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except
for the conflict clause c of size |c| = s ≥ 3, recognized by the FUIP l in the
implication graph G of an IS such that |succ(l)| = s. The transformation of ψ
with respect to MPRO is UP-resilient.

Proof. We suppose w.l.o.g that c = {l1, ..., ls}. By Lemma 1, there are exactly
s disjoint paths p1 = 〈l, lp11 , ..., lp1n1

,�〉, ..., ps = 〈l, lps1 , ..., lpsns
,�〉 from l to � in

the implication graph G, represented in Fig.6, such that
∑s
i=1 ni = k − 1 and

lpini
= li for i ∈ {1, ..., s}. Other than G, there are exactly

(
s−1
s

)
= s possible

implication graphs all similar to the graph G′ represented in Fig.6.

l

lp21

lp11

...

lps1

...

...

lp1n1
= l1

lp2n2
= l2

...

lpsns
= ls

�
c

c

c
l

lp21

lp11

...

l
ps−1
1

lps1

...

...

lp1n1
= l1

lp2n2
= l2

...

...

l
ps−1
ns−1 = ls−1

ls

lpsns−1

�
c

c

c

Fig. 6. Implication graphs corresponding to the possible propagation sequences for
k-UCSs with binary clauses except for the conflict clause

We prove that the max-resolution transformation relatively to the order O =
MPRO(p1, ..., ps) is UP-resilient:
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– The same arguments in the proof of Theorem 1 ensure the UP-resilience of
the transformation respectively to O for lpij where 1 ≤ i ≤ s and 1 ≤ j < ni
as well as l and all the literals involved in its propagation. Furthermore, all
the neighborhoods of literals l1, ..., ls contain the empty clause.

– For i ∈ {1, ..., s}, ∀N ∈ pneigh(lpini
) (ni > 1) s.t � /∈ N , we have lpini−1 ∈ N

(exists since ni > 1). Clearly, the clause c = {l, lpini−1, l
pi
ni
} obtained by the

application of max-resolution on var(lpini−1) ensures the propagation of lpini
in

any of these neighborhoods when lpini−1 is set to true since l is propagated by
the unit resolvent clause {l}. We deduce that the transformation relatively
to the order O is UP-resilient for lpini

where 1 ≤ i ≤ s and ni > 1.
– We still need to prove the UP-resilience of the transformation for literals
lpini

= li when ni = 1, with respect to their possible neighborhoods {l, lj} for
j ∈ {1, .., s} \ {i} not containing the empty clause. For this end, we prove by
induction on |c| ≥ 3 that the compensation clauses produced by the max-
resolution steps on var(l1), ..., var(ls) ensure the propagation of each literal
li if we consider the neighborhoods as mentioned above. For simplification,
in the first max-resolution step, we replace c by the clause c′ = {l, l1, ..., ls}.
This doesn’t affect our result since we only omit a single clause containing
the literal l:

• If |c| = 3, c = {l1, l2, l3}. The max-resolution steps are represented on
the left in Fig.7 and we can easily check that the compensation clauses
ensure the propagation of the literals li, for 1 ≤ i ≤ 3, if we consider the
neighborhoods mentioned above.

• Suppose the property is true for any clause of size s ≥ 3. Let c =
{l1, ..., ls+1} of size s + 1. The first max-resolution step is represented
on the right in Fig.7. The resolvent clause is {l, l2, ..., ls+1} and if we
consider c′ = {l2, ..., ls+1} of size s we ensure by induction the propaga-
tion of any literal li where 2 ≤ i ≤ s + 1 with respect to the neighbor-
hoods {l, lj} for j ∈ {2, .., s + 1} \ {i}. Thus, each compensation clause
cck = {l, l1, l2, ..., lk, lk+1} for k ∈ {1, ..., s} ensures the propagation of
literal l1 with respect to the neighborhood {l, lk+1} since by induction
the propagation of literals l2, ..., lk is ensured in the same neighborhood.
Now, we prove by induction on k ∈ {1, ..., s} that the clause cck ensures
the propagation of lk+1 with respect to the neighborhood {l, l1}:

∗ If k = 1, cc1 = {l, l1, l2} clearly ensures the propagation of l2 with
respect to the neighborhood {l, l1}.

∗ Suppose for 1 ≤ k′ < k ≤ s, cck′ ensures the propagation of lk′+1

with respect to the neighborhood {l, l1}. cck = {l, l1, l2, ..., lk, lk+1}
clearly ensures the propagation of literal lk+1 with respect to the
neighborhood {l, l1} since by induction the propagation of l2, ..., lk
is ensured in the same neighborhood by the clauses cc1, ..., cck−1.

We conclude that the transformation by max-resolution relatively to the order
O is UP-resilient.
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{l, l1, l2, l3} {l, l1}

{l, l2, l3} {l, l2}

{l, l3} {l, l3}

{l}

{l, l1, l2}
{l, l1, l2, l3}

{l, l2, l3}

var(l1)

var(l2)

var(l3)

{l, l1, ..., ls+1} {l, l1}

{l, l2, ..., ls+1} {l, l2}

cc1 = {l, l1, l2}
...

ccs = {l, l1, l2, ..., ls, ls+1}

...

var(l1)

Fig. 7. Application of max-resolution steps on the variables of the non binary clause c
by induction on its size

�

Corollary 3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for
a single clause c of size |c| = s ≥ 3 involved in the conflict, recognized by the
FUIP l in the implication graph G of an IS such that succ(l) = s. There exists
a UP-resilient transformation of ψ.

Proof. If c is the conflict clause then we obtain the result by Theorem 3. Else, c
contains the conflict literal and the detected implication graph G has the same
form as the second graph represented in Fig.6. Clearly, there is a propagation
sequence where c is falsified, i.e., corresponding to an implication graph G′ sim-
ilar to the first graph represented in Fig.6. Thus, we deduce the UP-resilience of
the transformation with respect to MPRO through the same arguments in the
proof of Theorem 3.

�

The SIR order is defined relatively to the size of the intermediary resolvents.
Thus, it may theoretically simulate any order when the sizes of the resolvents
are the same or many different orders when many resolvents share the same
size which is the case of the studied UCSs. That’s why this heuristic remains
practically unusable even in the generalized case. Furthermore, RPO doesn’t
necessarily ensure the UP-resilience of k-UCSs described in the previous corol-
lary. We finish this section by an example that highlights this fact. This example
where the non binary clause is tertiary can be easily extended to any size s > 3.

Example 4. We consider the IS ψ = {{l}, {l, l1}, {l, l2}, {l, l3}, {l1, l4}, {l2, l3, l4}}
(we name the tertiary clause c) detected by the first implication graph repre-
sented on the left in Fig.8 after the respective propagation of literals l1, l2, l3
and l4. In the second graph on the left in the same figure, we represent an-
other possible propagation sequence which outlines the possible neighborhood
of l4, neigh(l4) = {l1, l3} not containing the empty clause. Clearly, the sub-
set ψ′ = ψ \ {{l}} is a 5-UCS recognized by the FUIP l such that c partici-
pates in the conflict and |succ(l)| = |c| = 3. The max-resolution transforma-
tion of ψ′ with respect to RPO which corresponds to the variable sequence S =
〈var(l4), var(l3), var(l2), var(l1)〉 is represented on the right in Fig.8. Clearly, the
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literal l4 can’t be propagated in Θ(ψ, S)|neigh(l4) = {{l}, {l, l2}, {l2, l4}, {l2, l4}}.
We conclude that the transformation of ψ′ relatively to RPO is not UP-resilient.

l l1 l4

l2

l3

�
{l} {l, l1} {l1, l4}

{l, l2}

{l, l3 }

c

c

c

l l1 l4

l2

l3

�

{l} {l, l1} {l1, l4}
{l, l2}

{l, l3}

c

{
l,l3 }

c

{l1, l4} {l2, l3, l4}

{l1, l2, l3} {l, l3}

{l, l1, l2} {l, l2}

{l, l1, l2} {l, l1}

{l}

{l1, l2, l3, l4}
{l1, l2, l4}
{l1, l2, l3, l4}

{l, l1, l2, l3}
{l, l1, l3}
{l, l1, l2, l3}

{l, l1, l2}

var(l4)

var(l3)

var(l2)

var(l1)

Fig. 8. Implication graphs corresponding to the possible propagation sequences of ψ
in Example 4 and the application of max-resolution steps relatively to RPO

5 Conclusion

In this paper, we proved that kb-UCSs are UP-resilient with respect to two
different orders PRO and PRCO. Then, we generalized this result to k-UCSs
where all clauses are binary except one of any size involved in the conflict. We
showed that unlike our orders, the current mechanisms don’t necessarily ensure
UP-resilience for these patterns. Thus, our orders can help extend the current
patterns used in state of the art BnB solvers.

Until now, UP-resilience was mainly used to explain the impact of max-
resolution transformations on the SUP mechanism. To our best knowledge, this
is the first work in which this property is used to characterize the transformations
by max-resolution in order to decide the relevance of their application. Indeed,
this can be a starting point of a new approach to extend max-resolution patterns.
In our case, we chose UCS patterns because they present several advantages: the
introduction of unit clauses as well as the high frequency of their apparition. We
also showed the limits of the current orders of application of max-resolution. In
fact, this is the first work in which the proposed orders are introduced relatively
to the structure of the implication graphs representing the possible propagation
sequences of an IS.

The prospects of our research include the extension of our studies to k-UCSs
in general. It also opens a new perspective for finding orders of application of
max-resolution that ensure UP-resilience or maximizes its percentage by thor-
oughly studying the implication graphs corresponding to the propagation se-
quences of certain ISs. Finally, increasing knowledge about max-resolution can
be useful for SAT-based solvers, which are mainly efficient on industrial in-
stances, as some solvers, such as EVA [14], already exploit max-resolution to
transform cores returned by SAT solvers.



16 M. S. Cherif, D. Habet

References

1. Abramé, A., Habet, D.: Efficient application of max-sat resolution on inconsistent
subsets. In: O’Sullivan, B. (ed.) Principles and Practice of Constraint Program-
ming. pp. 92–107. Springer International Publishing, Cham (2014)

2. Abramé, A., Habet, D.: On the extension of learning for Max-SAT. In: Endriss, U.,
Leite, J. (eds.) Proceedings of the 7th European Starting AI Researcher Symposium
(STAIRS 2014). Frontiers in Artificial Intelligence and Applications, vol. 241, pp.
1–10. IOS Press (2014)

3. Abramé, A., Habet, D.: ahmaxsat: Description and Evaluation of a Branch and
Bound Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Compu-
tation 9, 89–128 (2015)

4. Abramé, A., Habet, D.: On the resiliency of unit propagation to max-resolution.
In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI 2015). pp. 268–274. AAAI Press (2015)

5. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: Kullmann, O. (ed.) Theory and Applications of Satisfiabil-
ity Testing - SAT 2009. pp. 427–440. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

6. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artificial Intelligence
171(8), 606–618 (Jun 2007)

7. Davies, J., Bacchus, F.: Solving maxsat by solving a sequence of simpler sat in-
stances. In: Lee, J. (ed.) International conference on principles and practice of
constraint programming. pp. 225–239. Springer (2011)

8. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: Cohn,
A. (ed.) Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI 2006). pp. 68–73. AAAI Press (2006)

9. Küegel, A.: Improved exact solver for the weighted max-sat problem. In: Berre,
D.L. (ed.) POS-10. Pragmatics of SAT. EPiC Series in Computing, vol. 8, pp.
15–27. EasyChair (2012)

10. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds
in maxsat. Constraints 15, 456–484 (Oct 2010)

11. Li, C.M., Manyà, F., Planes, J.: Detecting Disjoint Inconsistent Subformulas for
Computing Lower Bounds for Max-SAT. In: Proceedings of the 21st National Con-
ference on Artificial Intelligence (AAAI-06). vol. 1, pp. 86–91. AAAI Press (2006),
event-place: Boston, Massachusetts

12. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. Journal of Arti-
ficial Intelligence Research 30, 321–359 (Oct 2007)

13. Martins, R., Manquinho, V., Lynce, I.: Open-wbo: A modular maxsat solver,. In:
Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT
2014. pp. 438–445. Springer International Publishing, Cham (2014)

14. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided maxsat res-
olution. In: Proceedings of the Twenty-Eighth Conference on Artificial Intelligence
(AAAI-14). pp. 2717–2723. AAAI Press (2014)

15. P. Marques-Silva, J., A. Sakallah, K.: Grasp: A search algorithm for propositional
satisfiability. Computers, IEEE Transactions on 48, 506–521 (06 1999)


	Towards the Characterization of Max-Resolution Transformations of UCSs by UP-Resilience

