Adsorption properties, the pH-sensitive release of 5-fluorouracil and cytotoxicity studies of mesoporous silica drug delivery matrix

Eva Beňová, David Bergé-Lefranc, Vladimír Zeleňák, Miroslav Almáši, Veronika Huntosova, Virginie Hornebecq

To cite this version:
Eva Beňová, David Bergé-Lefranc, Vladimír Zeleňák, Miroslav Almáši, Veronika Huntosova, et al.. Adsorption properties, the pH-sensitive release of 5-fluorouracil and cytotoxicity studies of mesoporous silica drug delivery matrix. Applied Surface Science, 2021, 504, pp.144028. 10.1016/j.apsusc.2019.144028. hal-02295579

HAL Id: hal-02295579
https://amu.hal.science/hal-02295579
Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Adsorption properties, the pH-sensitive release of 5-fluorouracil and cytotoxicity studies of mesoporous silica drug delivery matrix

Eva Beňováa,b, David Bergé-Lefrancc, Vladimír Zeleňákb,v, Miroslav Almášia, Veronika Huntošovád, Virginie Hornebecqb,v

a Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Mlynská 11, SK-041 54 Košice, Slovakia
b Aix Marseille Univ, CNRS, IM2R, Faculté de Pharmacie, Marseille, France
c Aix Marseille Univ, CNRS, MADRE, Marseille, France
d Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenna 5, 041 54 Košice, Slovakia

\textbf{A B S T R A C T}

Mesoporous silica materials were investigated as the carriers for pH-sensitive drug delivery systems. Porous silica SBA-15 was first functionalized by anchoring N-[3-(trimethoxysilyl) propyl] aniline groups on the surface. After loading of an antineoplastic agent 5-fluorouracil, the pores were capped by β-cyclodextrin molecules. The studied samples were characterized by N_2 adsorption/desorption measurements, thermal analysis, powder X-Ray Diffraction, and Transmission Electron Microscopy. Adsorption properties of 5-fluorouracil were explored via the construction of adsorption isotherms. The amount of 5-FU adsorbed on amine-functionalized SBA-15 was 60 mg per 1 g of solid. The adsorption of 5-fluorouracil on silica was also monitored by microcalorimetry, showing low adsorption enthalpies. Drug release properties from matrices were studied using UV–Visible spectroscopy with the un-blocked and blocked pores configuration to demonstrate the efficiency of the pH-responsive nanovesicles and evaluated using different kinetic models. It was shown that no drug release occurred at neutral pH and that more than 80% of drug adsorbed amount was released at pH = 5. Working at the equilibrium, the initial burst of the drug from the silica surface, usually observed in other porous silica drug delivery systems, was avoided. The interaction between the β-cyclodextrin molecules and grafted amine functions were also studied as a function of pH. Finally, the cytotoxicity tests were performed using human glioma U87 MG cells.

1. Introduction

The unfavorable physicochemical properties of many drug compounds affect their bioavailability and consequently the pharmacokinetic efficiency of the medical treatment. For example, drug molecules with a lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with a narrow therapeutic window or cytotoxic chemotherapeutics [1]. Lack of specificity of a drug molecule leads to the high-dosage regimen and cause undesired interactions of a drug with healthy tissues or cells [2]. The possible solution to overcome these problems is to design the efficient Drug Delivery Systems (DDSs) that enable to control the rate, time, and place of drugs release in the body [3]. The DDSs improve the pharmacological properties of drug molecules by modifying their pharmacokinetic profile, solubility and bio-distribution [4]. Among structurally stable materials that have been investigated, mesoporous silica materials (MSMs) have become apparent as a promising drug vehicle due to their unique mesoporous structure that preserves a level of chemical stability, surface functionality, and biocompatibility. The MSMs have been used for delivery of a variety of drug molecules, e.g.: chemotherapeutics agents [5–7], antibiotics [8,9], antimicrobial drugs [10], anti-inflammatory molecules [11–14]. One of their main advantages is their ability to be used for both hydrophilic active agents and poorly water-soluble drugs by increasing their solubility [15]. For example, Mellaerts et al. reported the increase of the oral bioavailability of the poorly water-soluble drug, itraconazole using mesoporous silica nanoparticles as drug delivery agents [16].

Another advantage of porous silica drug delivery system is the possibility to design zero-premature cargo release nanosystems by blocking the pore openings using various gatekeepers [17–19]. Lately, most of the research effort for drug delivery has been committed to cancer therapy and internal stimuli such as pH, redox potential, enzymes, etc. that are typical of the treated pathology [20–22]. pH-
responsive cyclodextrins have attracted extensive research interest because cancer cells cause the decrease of pH environment to more acidic values compared to the pH environment of healthy cells, which provides an efficient way to control the drug release behavior by pH variations [23,24]. There are many strategies to construct pH-responsive drug delivery systems, e.g. using polyelectrolyte gatekeepers [25], pH-sensitive linkers (such as acetal bond, hydrazone bond, ester bond) [26], acid-decomposable inorganic gatekeepers [27] and supramolecular nanovolves [28]. The latter includes an immobilized stalk molecule covalently attached to silica surface and a mobile cyclic molecule encircling the stalk via non-covalent interactions [29]. A lot of cucurbituril and cyclodextrin (CD) molecules have been demonstrated to be effective supramolecular pore gatekeepers for mesoporous silicas [30,31]. Particularly for CD, different molecules were grafted on the porous silica surface and then tested as pH-responsive gatekeepers. Meng et al. reported a novel MSM delivery system for doxorubicin, a chemotherapeutic agent, based on β-cyclodextrin nanovolves testing different aromatic amines. Best results were obtained using N-methylbenzimidazole as stalks with a maximum release percentage of 40% in acidic conditions (pH = 5) [32]. The delivery of doxorubicin was also tested in the work of Bai et al. who constructed a controlled release system using p-anisidine stalks. Even if the pH-dependency of release properties were successfully studied for short release time (< 6 h), the loading efficiency of doxorubicin was very low (4.5%), that represented 2.44 mg of doxorubicin per 1 g of silica support [33].

Considering silica DDSs, several important parameters have to be optimized all together both in terms of loading and release properties. In this way, the loading efficiency i.e. the amount of available drug that is incorporated in and only in the porous volume should be as high as possible and the release profile in time should be as progressive as possible, avoiding the burst effect. Therefore, in the present paper, both adsorption and pH-sensitive release properties of a model drug on mesoporous silica material SBA-15 were studied and optimized in this context. The antineoplastic agent 5-fluorouracil (5-FU), that is a first line anti-cancer drug, commonly used to treat colorectal, gastrointestinal and breast cancer, was employed as a drug molecule in our study. However, the efficiency of S-FU is limited by high rate of metabolism in the body, short biological half-life, non-uniform oral adsorption and cytotoxicity. To be effective it has to be administrated at higher concentrations or more frequent doses. In this work, we assume that its encapsulation in a host delivery system can reduce the frequency of dosing or it could help the drug to be more effective even at lower concentrations.

In our DDSs, supramolecular nanovolves based on β-CD units were used as gatekeeper and three different amines were grafted onto the mesoporous silica surface and used as stalk molecules. For the grafting, we have used aliphatic amines namely propylamine (AP), tetra-ethylendiamine (TEPA) aromatic amine propyl aniline (N-ANI). Our study showed, that the DDSs based on studied aliphatic amines and β-cyclodextrin molecules do not work effectively and showed poor tightness and premature drug release (see Supporting information, Fig. S1). The more promising results were obtained using a gatekeeper system composed of aromatic propyl aniline based stalk (N-ANI) and β-CD units, which properties are described in the present study. It is note, that combination of N-ANI ligands and β-CD molecules in construction of pH-responsive DDSs have been already reported [34,35]. However, in our study adsorption properties of drug were studied on pure silica matrix and functionalized one from a thermodynamic point of view. Moreover, the construction of adsorption isotherms and their modeling as well as the determination of enthalpies of adsorption using calorimetric measurements were realized. As far as our knowledge, such an extensive study concerning thermodynamic description has not been reported in the literature yet. Moreover, the cytotoxicity of the prepared DDS using U87 MG cancer cells complete our study.

2. Experimental section

All chemicals used in the syntheses were obtained by Sigma-Aldrich and Across Organics companies in the highest purities and used without further purification. Anhydrous solvents were obtained after standard procedures described in the literature [36] and stored over molecular sieves.

2.1. Synthesis and functionalization mesoporous silica SBA-15

The synthesis of porous silica was carried out according to the procedure reported in [37]. 4 g of triblock copolymer P_T200 (Poly (ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) was dissolved in 30 g of distilled water at T = 308 K under high acidic conditions produced by the addition of 120 g of HCl (2 M). The mixture was stirred until it became homogenous. Then, 8.5 g of TEOS was added dropwise to the solution followed by continuous stirring for 20 h at T = 308 K. After this time, the solution was aged at 80 °C for 24 h. The white solid product was filtered off, washed with distilled water and dried at room temperature.

Porous SBA-15 matrix was obtained by calcination of as-synthesized SBA-15 in airflow at 600 °C. The calcination procedure was as follows: the sample was heated to 150 °C with a heating rate 3 °C/min and the sample was held at this temperature for 3 h. Subsequently, the temperature was increased to 600 °C by the rate 1 °C/min and the sample was held at this temperature for 7 h. In the last step, the sample was cooled down to room temperature.

The surface modification (functionalization) of silica was carried out by a post-synthetic grafting procedure. Typically, 1 g of calcined SBA-15 was dispersed in anhydrous toluene, mixed with 3 mL of N-[3-(trimethoxysilyl) propyl] aniline (12.5 mmol) and refluxed under N2 for 20 h. The obtained product was centrifuged, several times washed with toluene and ethanol and dried at T = 313 K for 24 h. The material was denoted as SBA-15-N-ANI.

2.2. Drug loading and pores capping

5-fluorouracil (5-FU) was taken as a model drug to estimate the loading and release performance from both SBA-15 and SBA-15-N-ANI. Various information concerning the solubility of 5-FU in water are reported in the literature, i.e.: 5 mg/ml [38], 8.62 mg/ml [39], 12 mg/ml [40]. Since the drug 5-FU is sparingly soluble in the water, the upper concentration limit of 5-FU in our experiments was set to 6.5 mg/ml.

2.2.1. Adsorption experiments

Adsorption isotherm experiments were carried out using a solution depletion method. The experimental process consisted in the following steps: 20 mg of samples were dispersed in a series of plastic vials containing 2 mL of 5-FU aqueous solution with different initial concentrations (from 0.1 to 6.5 mg/ml). Then, the adsorption process was carried out, with continuous stirring, at T = 310 K for 24 h to ensure equilibrium. The separation of a solid phase from the supernatant liquid was achieved by centrifugation at 10 000 rpm (corresponding to a relative centrifugal force of 7400 g) for several minutes. The supernatant was then analyzed by using UV-Vis spectroscopy (wavelength range 200 – 350 nm) to determine the equilibrium concentration of 5-FU (C_eq) at the maximum of the absorption band (λ = 266 nm). Prior to the determination of the concentration of 5-FU, a calibration curve has been established based on solutions with different concentrations of 5-FU (see Fig. S2 in the Supplementary information). The linearity of the calibration curve was confirmed by the correlation coefficient R² = 0.99996. Then, the amount adsorbed, Q_ads was calculated as follows:

\[
Q_{\text{ads}} = \frac{V(C_i - C_\text{eq})}{m_i}
\] (1)
where C_i is the initial concentration in mol dm$^{-3}$ (abbreviation M), C_{eq} is the equilibrium concentration (M), V is the volume of the drug solution (dm3 or l), and m_i is the mass of adsorbent used (g).

Microcalorimetric experiments were performed on TGM 2277 microcalorimeter in order to determine the adsorption enthalpies. During these experiments, solids (SBA-15 and SBA-15-N-ANI) were maintained in water suspension using a stirring system and a stock solution of 5-FU was added by 5 µL aliquots step by step (20 injections). Next, the heat flow peaks were time-integrated and after correction of dilution effects, the integral enthalpies were obtained.

2.2.2. Preparation of β-CD capped SBA-15_N-ANI_5-FU material

A solution of 5-FU (6.5 mg/ml) was prepared in distilled water at room temperature. Then, 100 mg of the SBA-15-N-ANI and 10 mL of 5-FU solution were mixed and stirred at $T = 310$ K until the mesoporous silica stopped adsorbing the drug, which was monitored by UV–Vis absorption spectroscopy. It was found that 24 h of the adsorption process was sufficient to achieve equilibrium. Then, the pH of the solution was adjusted to 7.4 with the addition of NaOH solution (1 M) and 600 mg of β-CD was added to the mixture and stirred overnight at $T = 310$ K. The 5-FU-loaded β-CD-capped mesoporous silica was washed with water with pH adjusted to 7.4 by the same NaOH solution, centrifuged and used in further experiments.

2.3. Drug release experiments

The experiments involving 5-FU release by sample SBA-15_N-ANI were performed by two different procedures. For both, the adsorption of 5-FU and pores capping were carried out first as described above. In both cases, the mixtures were stirred at 37°C in a tube rotator. The release amount of 5-FU was calculated from a standard curve using UV–Vis spectroscopy at $\lambda = 266$ nm.

1st procedure: after adsorption of 5-FU and pores blocking by β-CD molecules, the suspension was centrifuged and the supernatant was removed to recover the solid phase. Then, 100 mg of the solid phase was dispersed in 10 mL solution at pH = 7.4 and pH = 5. The drug release process was checked at fixed time intervals (1 h, 3 h, 5 h, 8 h, 18 h, 24 h, and 48 h).

2nd procedure: after adsorption of 5-FU and pores blocking by β-CD, pH was kept at 7.4. The solution was checked every 2 h during 10 h period to verify that there is no drug release. Then, pH was adjusted to 5 and the drug release process was again checked at fixed time intervals (1 h, 3 h, 5 h, 8 h, 18 h, 24 h, and 48 h).

2.4. Characterization of porous solids and analytical techniques

Nitrogen sorption measurements were carried out using an ASAP 2010 Micrometrics apparatus at -196° C. Prior to adsorption, samples (~80–100 mg) were outgassed at 120°C during 12 h under the vacuum of 2.10$^{-3}$ mbar. The specific surface area was determined with Brunauer, Emmet, and Teller (BET) method, the pore size distribution was calculated from the adsorption branch using the Barrett-Joyner-Halenda (BJH) method [41].

TEM micrographs were obtained using a JEOL 2000FX microscope. Samples were ground and afterward suspended in methanol. The suspension was added to a carbon grid and dried in air. UV–Vis spectroscopy measurements in the liquid phase were performed on a Varian Cary 300 spectrometer in the 300–800 nm range.

Thermogravimetric (TGA) measurements were carried out with a TGA Q500 apparatus (TA Instruments) using air as a carrier gas. The samples (~5–20 mg) were treated up to 800°C.

Small-angle X-Ray diffraction measurements were recorded on a Siemens D5000 KXD diffractometer using Cu Kα radiation in the 0.5 – 3° 20 range with a 0.04° step associated with a step time of 4 s.

2.5. The interaction of mesoporous silica SBA-15 and SBA-15,N-ANI,5-FU_β-CD with cancer cells

The human glioma cells U87 MG (Cells Lines Services, Germany) were used as a model of cancer cells for microscopy and cell viability study. The cell cultures were grown in the complete cell culture medium Dulbecco’s modified Eagle medium (D-MEM, GlutaMAX™, Gibco-Invitrogen, Life Technologies Ltd., France) supplemented with 10% fetal bovine serum (FBS, biosera, France) in dark at 37°C, 5% CO$_2$ and 80% humidified atmosphere.

2.5.1. The cytotoxicity of SBA-15 and SBA-15,N-ANI,5-FU_β-CD: MTT assay

The U87 MG cells were seeded into 96-well plates (104 cells/well) and 24 h after seeding the 5-FU, SBA and SBA-15,N-ANI,5-FU_β-CD aliquots (dissolved in the distilled water) were administered into the complete cell culture media. The cells were treated during 24 h with the 0.02 and 0.05 mg/mL of 5-FU, 0.6 and 1.5 mg/mL of SBA-15, and 0.8 and 2 mg/mL of SBA-15-N-ANI,5-FU_β-CD at pH = 7.3 and 6.3. The pH of cell culture media was adjusted with HCl (Sigma-Aldrich, Germany) 24 h before administration of the nanoparticles. After the treatment, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma-Aldrich, Germany) assay was detected at 560 nm and 750 nm by 96-well plate absorption reader (GloMax™ Multi + Detection System with Instinct Software, Promega Corporation, USA). The ten µl of the yellow MTT reagent (5 mg/mL dissolved in phosphate saline buffer solution (PBS, Sigma-Aldrich Germany) at pH = 7.4 were added to 100 µL of cell culture media per well. The cells were incubated with MTT in dark and 37°C during 1 h. After the incubation, the medium was replaced with dimethyl sulfoxide (DMSO, Sigma-Aldrich, Germany) to dissolved purple formazan crystals. The results were performed in triplicates.

2.5.2. The cytotoxicity of SBA-15 and SBA-15,N-ANI,5-FU_β-CD: The mitochondria membrane potential dissipation

The U87 MG cells were seeded in Petri dishes (35 mm) and grown in the complete cell culture media at pH 7.3 and 6.3. The 1.5 mg/mL of SBA-15 and 2 mg/mL of SBA-15,N-ANI,5-FU_β-CD were administered to cells 24 h before observation. The mitochondria potential probe a MitoTrackerTM Orange CMTM/Ros (MTO, 0.2 µM, ThermoFisher Scientific, USA) was administered to cells last 15 min of incubation with the nanoparticles. The cells were detached with the trypsin/ethylenediaminetetraacetic acid (Gibco-Invitrogen, Life Technologies Ltd., France), centrifuged at 1200 rpm/10 min and resuspended in 0.5 mL of PBS.

Alternatively, cells were harvested with the trypsin/EDTA, centrifuged and resuspended in the serum-free D-MEM. Subsequently, cells were incubated with 0.01 and 0.05 mg/mL of 5-FU, 0.3, 0.6 and 1.5 mg/mL of SBA-15, and 0.4, 0.8 and 2 mg/mL of SBA-15,N-ANI,5-FU_β-CD in the 100 µL of D-MEM during 1 h in dark, at pH = 7.3 and 37°C. The mitochondria and lysosomes were stained 15 min before measurement with the MTO and the LysoTracker™ Green DND-26 (0.2 µM, ThermoFisher Scientific, USA).

The harvested cells were measured with the flow cytometer (MACSQuant™ Analyzer, Miltenyi, Germany) in B1 (525/50 nm) and B3 (655–730 nm) channel at the excitation 488 nm.

2.5.3. The intracellular distribution and uptake of SBA-15 and SBA-15,N-ANI,5-FU_β-CD by U87 MG cells

The U87 MG cells were seeded in glass coverslip bottom Petri dishes (35 mm, No. 0, MatTek, USA) at the density of 10⁶ cells per Petri dish. The white field and fluorescence images were recorded with the inverted LSM700 confocal microscope (Zeiss, Germany), equipped with a 20X Fluar (NA = 0.75, µm, Zeiss, Germany) and a CCD camera (AxioCam HRm, Zeiss, Germany). The mitochondria were detected with the MTO. The lysosomes were stained with LysoTracker™ Green DND-2000.
26 and the nuclei of the cells were contrasted with 10 µg/mL Hoechst, 15 min, ThermoFisher Scientific, Slovakia). The fluorescence of mitochondria and lysosomes was stimulated by 488 nm and 555 nm cw solid-state lasers, and the emission was detected in the spectral range 490–540 nm and > 580 nm, respectively. The nuclei were visualized by 405 nm laser excitation and the emission was detected in the range 410–490 nm. The images were analyzed in Zen 2011 software (Zeiss, Germany) or ImageJ software (National Institutes of Health, USA). The aliquots of 5-FU, SBA and SBA-15, N-ANI, 5-FU, β-CD were administered 24 h before observation with the microscope. The pH of cell culture media was adjusted with HCl (Sigma-Aldrich, Germany) 24 h before administration of the nanoparticles. The cells were grown in the complete cell culture media at pH = 7.3 and 6.3.

3. Results and discussion

There are different types of periodic mesoporous silicas, like MCM-41, MCM-48, SBA-16, SBA-12, SBA-15 which can be used as matrices in the design of DDSs. All of these we have tested in our previous studies as DDS [12–14,42,43]. For example, when we prepared materials, which release the drug using electromagnetic radiation as physical stimulus, we have used MCM-41 [43] or SBA-12 [12], since these materials have pore size around 3–4 nm, which is suitable for grafting of photocative ligands and reversible formation/splitting of dimers by cycloaddition reaction. When using silica with larger pores, e.g. SBA-15, this cycloaddition reaction would be less favorable to regulate pore closing/opening. However, in the present study, we have used SBA-15 silica with larger pores. In materials like MCM-41, with narrower pores or SBA-16, with ink bottle pores, the grafting of bulky ligands, like N-ANI, would lead to pore blocking. In SBA-15 silica, the pore size is large enough to adapt both bulky amines as well as the drug. Moreover, SBA-15 material has large pore volume and possesses high stability.

For the silica modification and formation of the stalls on the surface, the different amines were grafted onto the mesoporous silica surface. Aliphatic amines namely propylamine (AP), tetraethylene pentamine (TEPA) and the aromatic amine propyl aniline (N-ANI) were used.

In the study, we have used 5-FU as a model drug. This drug is used in the clinical medicine for cancer treatment, however, at the present time, its efficiency is limited by many factors such as high rate of metabolism in the body, short biological half-life, non-uniform oral adsorption, and cytotoxicity. We expect, that its encapsulation in a host porous system presenting sustained drug release properties will potentially reduce the frequency of administration of the drug, reduce the adverse side effects and prolong its delivery time and elimination in the body [44].

3.1. Structure and porosity of SBA-15 and SBA15_N-ANI

The porosity of the starting SBA-15 material and its modified forms was studied using Transmission Electron Microscopy (TEM). TEM images (see Fig. 1a) shows a regular hexagonal array of unimodal channels perpendicular to the pore direction and parallel to the channels (Fig. 1b). The average pore size and the particle size determined from TEM images were 7 nm and 550 × 350 nm, respectively. After surface modification, 5-fluorouracil loading and β-CD capping the mesostructured, as evident by TEM, remained unchanged (Fig. 1c–f).

In addition TEM, the periodicity of the samples was also studied using SAXS. Fig. 2 displays the XRD patterns of SBA-15 and SBA-15_N-ANI. For both samples, the XRD patterns are similar and show three resolved diffraction peaks that can be indexed with (1 0 0), (1 1 0), (2 0 0) reflections of the p6mm hexagonal structure [45].

Textural properties of the prepared mesoporous materials were further studied using N₂ adsorption/desorption measurements at 77 K. The N₂ adsorption/desorption isotherms of the SBA-15 and SBA-15_N-ANI are shown in Fig. 3.

Adsorption isotherms are characterized by an initial sharp uptake at a relative pressure below 0.05 followed by a more gradual uptake before a second sharp upswing in the curves between relative pressures of 0.6 and 0.7 depending on samples. A final plateau ends the adsorption branch. Such isotherms can be defined by the IUPAC as mixed type I and type IV isotherms, attributed to samples containing both microporosity and mesoporosity [46]. Furthermore, the adsorption isotherms exhibit well-defined H1 hysteresis loops that are typical for SBA-15 mesoporous silica. The presence of the H1 hysteresis loop confirms the open-ended hexagonal cylindrical pore geometry [47]. Hysteresis loops have sharp adsorption-desorption branches indicating a narrow pore size distribution in prepared mesoporous samples. The equivalent surface areas were calculated using the BET method. The values of the BET surface area can be taken only to estimation because of the presence of microporosity, so the term “equivalent” BET surface area is used. These BET values are given in Table 1. The size of the mesopores was estimated using the BJH method applied to the adsorption branch of the isotherms and the values obtained are also given in Table 1 with the ones of mesopore volumes [41].

As expected, the specific surface areas and total pore volumes decrease significantly upon functionalization of SBA-15 by N-ANI (400 m².g⁻¹, 0.46 cm³.g⁻¹) compared to the corresponding values for pure SBA-15 (790 m².g⁻¹, 0.57 cm³.g⁻¹). The functionalization also downshifts the capillary condensation step to lower pressures. The shift of the adsorption step to lower relative pressures reflected the ‘filling’ of the pores. It also decreases the pore size in the modified materials from the 7 nm (pure SBA-15) to 6 nm (SBA-15_N-ANI). Thermogravimetric analysis (TGA) measurements were performed in order to estimate the amounts of the amine groups grafted on the silica surface (see Fig. 5). As solvents losses occur in the 25–150 °C range, all TGA curves were normalized at T = 150 °C to not take into account their presence. The original TGA curves are shown in Supplementary information Fig. S3. The TGA curve of calcined SBA-15, 5-FU and SBA-15_N-ANI samples were grown in the complete cell culture media at pH = 7.3 and 6.3. The pH of cell culture media was adjusted with HCl (Sigma-Aldrich, Germany) 24 h before administration of the nanoparticles. The cells were grown in the complete cell culture media at pH = 7.3 and 6.3.

4. Loading of 5-fluorouracil

The adsorption isotherms of 5-FU both on SBA-15 and SBA15_N-ANI porous solids determined at 25 °C in water conditions are presented in Fig. 4 (left). For both solids, similar adsorption isotherms of Langmuir type were found. The shape of isotherms corresponds to an L-type one [49]. This type of adsorption isotherm is frequently found in the case of a homogeneous and narrow distribution of energetic adsorption sites. L-type isotherm can be plot by the mathematical expression:

\[
q_{\text{calc}} = q_{\text{max}} \frac{K \cdot C_{eq}}{1 + K \cdot C_{eq}}
\]

where \(q_{\text{max}}\) (mol.g⁻¹), K (M⁻¹) and C_{eq} (M) represent the maximum adsorbed amount, the apparent equilibrium constant and the 5-FU equilibrium concentration. Very good correlation coefficients, 0.997 for SBA-15 and 0.993 in the case of SBA-15_N-ANI samples, were found between L-type isotherm expression and experimental results. The fits
of the adsorption isotherms lead to maximum 5-FU adsorbed amounts of $(12.8 \pm 0.8) \times 10^{-4} \text{ mol} \cdot \text{g}^{-1}$ and $(8.6 \pm 1.8) \times 10^{-4} \text{ mol} \cdot \text{g}^{-1}$ corresponding to around $170 \text{ mg} \cdot \text{g}^{-1}$ and $107 \text{ mg} \cdot \text{g}^{-1}$ for SBA-15 and SBA-15_N-ANI respectively. The affinity for each solid obtained by the fit appears weak from (29 ± 3) for SBA-15 to (22 ± 7) for SBA-15_N-ANI. These values are clearly evidenced considering the slope of adsorption isotherms at low concentrations. Thus, the main difference between the two solids concerns the maximum adsorbed amount and not especially the affinity, the former parameter is directly related to the surface area of solid. To illustrate this point, a direct calculation of the adsorbed amount corresponding to a 5-FU equilibrium concentration of $(4.5 \times 10^{-2}) \text{ mol} \cdot \text{L}^{-1}$ leads to values of $(7.3 \times 10^{-4}) \text{ mol} \cdot \text{g}^{-1}$ for SBA-15 versus $(4.2 \times 10^{-4}) \text{ mol} \cdot \text{g}^{-1}$ for SBA-15_N-ANI. This diminution, close to 45%, is the same than the one observed between the surface areas calculated by BET for the two solids. The loading efficiency of 5-FU was 8.46% which represents 55 mg of 5-FU per 1 g of solid. Furthermore, the thermodynamic parameters determined from adsorption isotherms are very interesting. Indeed, high adsorbed amounts coupled with weak affinities should facilitate the release of a sufficient dose of 5-FU. In order to complete the adsorption study, calorimetric experiments were performed.

Obtained calorimetric results are very similar for both solids and confirm the interpretation of adsorption isotherms. Indeed, the plots of the integral enthalpies of displacement against the adsorbed amounts onto SBA-15 and SBA-15_N-ANI indicate a constant enthalpy of adsorption during the adsorption process. The associated values are close to $(-3 \pm 1) \text{ kJ} \cdot \text{mol}^{-1}$ and $(-4 \pm 1 \text{ kJ} \cdot \text{mol}^{-1})$ for SBA-15 and SBA-15_N-ANI respectively (Fig. 4 (right)). These weak values of adsorption enthalpies coupled with the absence of significative evolution along the surface coverage are characteristic of a narrow and homogenous energetic sites distribution. This set of parameters corresponds to a weak affinity during the physisorption of 5-FU on the two solids. The specific surface area limits the adsorbed amount and the presence of N-ANI limits the adsorbed amount and the presence of N-ANI.
groups do not seem involved in the interaction.

The 5-FU loading was also studied using TGA measurements. First, the thermal behavior of the pure drug molecule was studied: it decomposes in one single step below 320 °C (Fig. S3, left in the Supplementary information) and in the range of 200–750 °C for the 5-FU loaded SBA-15_N-ANI_5-FU sample (Fig. 5, blue curve). The extended decomposition range for the 5-FU loaded sample is due to the interactions of a drug molecule with mesoporous channels and N-ANI ligands on the surface of silica. The trend of TGA curve of SBA-15_N-ANI_5-FU (Fig. 5, blue curve) is the same as the trend we observed for SBA-15_N-ANI sample (Fig. 5, green curve), but a total mass loss in the same temperature range is 22.46 wt%. The corresponding amount of the loaded 5-FU was calculated from the mass differences observed for SBA-15_N-ANI and SBA-15_N-ANI_5-FU samples. This difference represents 5.89 wt% that corresponds to 58.9 mg of 5-FU per 1 g of the carrier SBA-15_N-ANI_5-FU. This mass of loaded 5-FU is in good agreement with the one obtained from adsorption isotherms described above.

From the results obtained, it looks that the larger amount of the 5-FU was encapsulated in the pure, unmodified SBA-15 (92.63 mg g\(^{-1}\), 0.712 mmol g\(^{-1}\)) compared to the modified silica SBA-15_N-ANI (55.3 mg g\(^{-1}\), 0.425 mmol g\(^{-1}\)). However, these values do not reflect the ability of the material to adsorb the drug because they exhibit different specific surface areas. Taking into account this fact, the adsorbed amounts of the drug are 0.901 mmol m\(^{-2}\) for SBA-15 and 1.0625 mmol m\(^{-2}\) for SBA-15_N-ANI, thus in the same order of magnitude.

3.3. pH-sensitive release of 5-Flourouracil

3.3.1. Description of the system containing \(\beta\)-cyclodextrin

The typical thermogram (in the air) of the studied \(\beta\)-CD is presented in Fig. S4 (right) in the Supplementary information. Weight loss found at 307 °C was related to the decomposition of \(\beta\)-CD structure due to the transition from solid to liquid phase and formation of a residue ("char"). At high temperatures > 350 °C complete oxidation (combustion) of the residue occurs (between 350 and 570 °C) with one step of weight loss [50]. Using the total mass loss for the sample SBA-15_N-ANI_5-FU_\(\beta\)-CD (Fig. S4 in the Supplementary information) the ratio of the N-ANI ligands on the external surface of silica and \(\beta\)-CDs capped is close to 1:4.

The 5-FU loading and \(\beta\)-CD capping were also studied by adsorption/desorption of \(N_2\) measurements at 77 K (see Fig. S5 in the Supplementary information). As expected, the specific surface areas and total volumes decrease upon 5-FU loading (285 m\(^2\) g\(^{-1}\), 0.33 cm\(^3\) g\(^{-1}\)) and particles capping by \(\beta\)-CD (60 m\(^2\) g\(^{-1}\), 0.06 cm\(^3\) g\(^{-1}\)) compared to the corresponding values for pure SBA-15_N-ANI (400 m\(^2\) g\(^{-1}\), 0.46 cm\(^3\) g\(^{-1}\)). This decrease of around 80% demonstrates the very good efficiency of the use of \(\beta\)-CD molecules as nanovalves. The porous structure is almost not accessible after capping pores by \(\beta\)-CD molecules.

3.3.2. Zeta potential

Zeta (ζ) potential measurements were performed in aqueous suspensions at different pH values to determine the surface charge and stability of the prepared materials (see Fig. 6). The pure SBA-15 showed a negative ζ potential of about −78.8 mV due to the presence of terminal silanol groups on the surface of silica that was deprotonated at neutral pH, which is above the isoelectric point of silica. When pH decreases to 5 the ζ potential slightly changed to less negative values, in accordance with data obtained for other silica-based materials [51,52]. For the material SBA-15_N-ANI, the deprotonation of amines present on the surface occurs at pH 7.4, as reflected by the values of ζ potential with a negative surface charge −87.7 mV. Furthermore, a high zeta potential above 40 mV indicates that the grains of the samples do not agglomerate and are physically stable [53]. The change in pH to 5 led to an increase of ζ potential to positive values +5.7 mV (pH N-ANI = 5.04) [32], corresponding to the protonation on the N-aniline ligands. Obtained results indicated that material SBA-15_N-ANI, with protonation/deprotonation of amines on the surface, is promising for
3.3.3.1 Static conditions

Dynamic conditions. Experiments were performed by two different procedures in static and dynamic conditions. As it was mentioned above the release experiments were performed in solution, at two different pH values (7.4 and 5). The total loaded amount of 5-FU was established from the adsorption isotherm (Fig. 4) to be 55 mg (0.425 mmol g⁻¹) per 1 g of solid SBA-15_N-ANI_5-FU_β-CD, what was also confirmed by TGA measurements (Fig. 5). This amount was taken as 100% in the release studies and was used to calculate the percentage of the released amount in the respective time intervals. As it was mentioned above the release experiments were performed by two different procedures, in static and dynamic conditions.

3.3.3.2 Dynamic conditions. The main purpose of the 1st procedure was to study the drug release behavior when the pH is changed from basic to acidic in the same release media. As shown in Fig. 6 and as expected, no additional release of 5-FU was observed at pH = 7.4 (compared with static conditions). After adjusting the pH to lower value (pH 5), the release process started immediately. After changing pH, 86% of 5-FU was released gradually in 24 h.

The mechanism of 5-FU in-vitro release from SBA-15_N-ANI_5-FU_β-CD system was also studied from a kinetic point of view. In general, the release kinetics of drugs from ordered mesoporous materials mainly follows First order model or Higuchi one. While the First Order model is general, the Higuchi one can be used for the description of drug release from spherical systems and various geometric porous matrices [58]. Equation of Higuchi model is reuniting the main factors that take part in the release of a drug, e.g.: diffusion of the drug in

\[
\text{Cumulative released } 5\text{-FU} = \frac{Q_s - Q_t}{Q_s} = k t^n
\]

where \(Q_s\) is the total loaded amount of 5-FU, \(Q_t\) is the amount of 5-FU released at time \(t\), \(k\) is the rate constant, and \(n\) is the release exponent.
3.4. The cytotoxicity of SBA-15 and SBA-15_N-ANI_5-FU

E. Be 0.9914 respectively. The values of kinetic constants were
appreciably with the coefficient of determination (COD) equal to 0.9913 and 0.9914 respectively. The values of kinetic constants were
K₁ = 0.0663 h⁻¹ for First order model and Kᵢ = 17.486 h⁻⁰.₅ for Hi-
guchi model. The quasi-identical values of COD can be explained con-
sidering that the drug kinetics release from the porous system is not affected by the oversaturation step inherent from the Higuchi model.

Table 3

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>N-ANI grafted, n [mmol g⁻¹]</th>
<th>Sₚₐₐₜ [μg·g⁻¹]</th>
<th>5-FU, nₜₐₓₜ [mmol·g⁻¹]</th>
<th>5-FU, nₐₓₜₜ [mmol·m⁻²]</th>
<th>5-FU, mₜₐₓₜ [mg·g⁻¹]</th>
<th>5-FU, mₐₓₜₜ [mg·m⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBA-15</td>
<td>790</td>
<td>0.712</td>
<td>0.091</td>
<td>92.63</td>
<td>0.117</td>
<td></td>
</tr>
<tr>
<td>SBA-15_N-ANI</td>
<td>400</td>
<td>0.425</td>
<td>1.0625</td>
<td>55.3</td>
<td>0.138</td>
<td></td>
</tr>
</tbody>
</table>

dissolution, the tortuosity factor of the system, the porosity of the ma-
trix, total amount of drug in the matrix and the solubility of the drug in the solvent used [59]. The limitation linked to drug solubility that is one basis of the Higuchi model is not validated in our case. Never-
theless, as shown in Table 3, it was found that the in vitro release of 5-
FU from SBA-15_N-ANI_5-FU_βCD at pH 5 could be explained by both Higuchi’s and First order models, as the plots showed the highest lin-
earity with the coefficient of determination (COD) equal to 0.9913 and 0.9914 respectively. The values of kinetic constants were
K₁ = 0.0663 h⁻¹ for First order model and Kᵢ = 17.486 h⁻⁰.₅ for Hi-
guchi model. The quasi-identical values of COD can be explained con-
sidering that the drug kinetics release from the porous system is not affected by the oversaturation step inherent from the Higuchi model.

Table 3

<table>
<thead>
<tr>
<th>Coefficient of determination values for the two drug release kinetics models of SBA-15_N-ANI_5-FU_βCD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First order</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0.9913</td>
</tr>
</tbody>
</table>

The human glioma U87 MG cells were demonstrated to represent the glycolytic type of the cancer cells model [60]. Since certain tissue and the tumors have more acidic pH than the normal tissue [61], we have investigated the 5-FU, SBA-15 and SBA-15_N-ANI_5-FU_βCD at physiological (pH = 7.3) and acidic (pH = 6.3) pH of the cell culture media.

The morphology of U87 MG cells at both pH in the presence of 0.05 mg/mL of 5-FU, 1.5 mg/mL of SBA-15 and 2 mg/mL of SBA-15_N-ANI_5-FU_βCD is presented in Fig. 9a. The cells were incubated with the systems 24 h and the significant changes in the morphology of the cells were not found (see white arrows that identify the cells). The SBA-15 and SBA-15_N-ANI_5-FU_βCD systems were observed in the dark clouds localized in the extracellular media close to the cells. It can be seen that the localization of these clouds is not homogeneous.

The viability of cells in the presence of 0.05 mg/mL of 5-FU, 1.5 mg/mL of SBA-15 and 2 mg/mL of SBA-15_N-ANI_5-FU_βCD at pH = 7.3 and 6.3 was assessed with MTT assay (Fig. 9b). The drop of the extra-
cellular pH caused inhibition of the cell proliferation in comparison with the cells at pH = 7.3. The 24 h treatment with 5-FU significantly decreased the proliferation. However, more than 80% of the cells were still active. This finding is in the agreement with previously published studies [62,63]. In those studies, the cytotoxic effect of 5-FU was ob-
erved at a concentration above 0.5 mg/mL but 48 h after 5-FU ad-
ministration.

In the present study, the formation of formazan in the mitochondria of U87 MG cells was significantly inhibited in the presence of SBA-15 and SBA-15_N-ANI_5-FU_βCD (Fig. 9b). Regarding the cell morphology detected by microscopy, these observations were unexpected. When we compare the results from microscopy images and MTT-assay it is evi-
dent that the morphology of the cells in the presence of SBA-15 and SBA-15_N-ANI_5-FU_βCD did not change compared to the morphology of the controlled cells (Fig. 9a, right). We expected that results of the MTT-assay would also be similar to the control as it was with micro-
scopy results. However, MTT-assay has shown that formation of for-
mazan in the cells was significantly inhibited in the presence of SBA-15 and SBA-15_N-ANI_5-FU_βCD (Fig. 9b).

In Hu and Zhao works [62,63], the 5-FU application increased the oxidative stress level in the cancer cells and resulted in the mitochondrial membrane potential (ΔΨm) dissipation in further. The mitochond-
drial probes, especially MTO, can indicate oxidative stress and ΔΨm in living cells [60,64]. The MTO fluorescence intensity in U87 MG cells detected by flow cytometry and fluorescence microscopy is demonstrated in Fig. 9c. While SBA-15 system slightly decreased the MTO fluorescence, the SBA-15_N-ANI_5-FU_βCD system completely di-
sipated the ΔΨm. The mitochondrial localization of MTO was observed in the control and SBA-15 treated cells. No fluorescence was detected in the SBA-15_N-ANI_5-FU_βCD treated cells. The similar results were observed at pH = 7.3 and 6.3. It suggests that the extracellular pH did not significantly influence the cell response to treatments.

The U87 MG cells express a higher number of receptors, which fa-
cilitate the endocytotic type of drugs transport [65]. It was demon-
strated that in a relatively short time (within 1 h), the transport system can pass the membrane via endocytosis and subsequently localize in lysosomes of cancer cells [60]. The lysosomes of cells are the cellular compartiments with acidic pH (pH = 5.5) [61]. As it was mentioned above, the SBA-15_N-ANI_5-FU_βCD system is pH sensitive and 5-FU should be released from the system at pH = 5.5. The 5-FU is not fluorescent. For this reason, the indirect method was used to identify the release of 5-FU from the SBA-15_N-ANI_5-FU_βCD.

The representative confocal fluorescence images of U87 MG cells 24 h treated with 5-FU, SBA-15, and SBA-15_N-ANI_5-FU_βCD system are depicted in Fig. 10a. The cells were stained with MTO to visualize the mitochondria and LysoTracker™ Green to identify the lysosomal compartments. The nuclei of the cells were contrasted with Hoechst. The control group is represented with tubular mitochondria and glob-
ular lysosomes. The application of 0.02 mg/mL of 5-FU did not induce significant modifications. However, the application of 0.6 mg/mL of SBA-15 amplified fluorescence of LysoTracker™ Green. The tubular mitochondria were observed in the SBA-15 treated cells. It should be noted that the clouds of SBA-15 system in the extracellular area en-
trapped the number of fluorescent probes and significantly reduced Hoechst staining of nuclei. This effect was amplified in the SBA-15_N-
ANI_5-FU_βCD treated cells. The blue (Hoechst) fluorescence was mostly attributed to the SBA-15_N-ANI_5-FU_βCD system localization (Fig. 10a). The MTO fluorescence completely disappeared in these cells. The swollen lysosomes can be identified from the images of Lyso-
Tracker™ fluorescence.

The cancer cells became highly adaptive to intracellular oxidative stress and revealed the way how to rescue and survive [60,67]. Re-
cently, it was shown that the nanoceria applied to the U87 MG cells locally increased the oxidative stress level in the perinuclear area without affection of the cell proliferation [68]. One can expect the same behavior in cells treated with SBA-1. The MTT-assay, performed in the same cell as detected in Fig. 10a demonstrates a significant reduction of formazan production in SBA-15 and SBA-15_N-ANI_5-FU_βCD treated cells (Fig. 10b). The almost 50% decrease observed could be the result of ΔΨm dissipation, lysosomal destabilization, and induction of mitochondria-mediated apoptosis.

The correlation between MTO and LysoTracker™ Green fluores-
cence was measured by flow cytometry. The characteristic shift into
upper right quadrant was observed in the non-treated controlled cells labeled with the probes (Fig. 10c). This character maintained in the cells 1 h treated with 5-FU (0.01 and 0.05 mg/mL) and SBA-15 (0.3 and 0.6 mg/mL). The reduction of MTO fluorescence was found in the 50% of cells treated with 1.5 mg/mL of SBA-15. Lysosomal integrity has persevered. In contrast to SBA-15, the SBA-15_N-ANI_5-FU_β-CD system triggered dissipation of ΔΨm and destabilization of lysosomes. The 79.68% of cells were detected in lower left quadrant (MTO negative and LysoTracker™ green negative) at 0.4 mg/mL concentration and 96.26% was observed at 2 mg/mL of the SBA-15_N-ANI_5-FU_β-CD.

These results demonstrated that the 5-FU did not induce cell death at the studied concentration and during 24 h. Furthermore, SBA-15 application to cells slightly decrease mitochondria membrane potential but SBA-15 adsorbed the certain number of applied fluorescent probe’s molecules. Due to this effect, it could be assumed that the MTT was similarly entrapped into SBA-15 during MTT-assay, and subsequently resulted in a reduction of formazan production. The mitochondria dysfunction and SBA-15 absorption properties could be the reason for reduced formazan production, which was observed in the present study. For this reason, the direct estimation of the cell viability (MTT-assay) should be supplemented with indirect approaches (ΔΨm and destabilization of lysosomes). These indirect approaches confirmed the cytotoxic effect of the SBA-15_N-ANI_5-FU_β-CD. Regarding to the total loading concentration of 5-FU, appropriate concentration of free 5-FU represents 0.018 mg/mL in 0.4 mg/mL SBA-15_N-ANI_5-FU_β-CD. As it was reported, this concentration of 5-FU was not cytotoxic if applied into cell culture media, neither after 48 h [62]. However, when it was delivered into the cells by SBA-15_N-ANI_5-FU_β-CD it possessed significant cytotoxic effects. The degradation of lysosomes was probably induced with 5-FU released from SBA-15_N-ANI_5-FU_β-CD within the lysosomes at pH = 5.5. The presence of SBA-15 within the cell could be suggested from the elevated levels of oxidative stress, which partially
Fig. 10. The representative a) confocal fluorescence images of U87 MG cells detected 24 h after application of 0.02 mg/mL 5-FU, 0.6 mg/mL SBA-15 and 0.8 mg/mL SBA-15_N-ANI_5-FU_β-CD at pH 6.3. Mitochondria were visualized with MTO, the lysosomes with LysoTracker™ Green and nuclei were contrasted with Hoechst. The fluorescent images of lysosomes are depicted below the overlapped images. The MTT-assay b) was assessed in the cells at the same conditions as in a). The level of significance was calculated from the controls (***p < 0.001). The correlations of MTO and LysoTracker™ Green fluorescence c) were estimated by flow cytometry in cells 1 h treated with the 5-FU, SBA-15 and SBA-15_N-ANI_5-FU_β-CD at pH 7.3. The correlation plot was divided into four quadrants. The upper right quadrant represents the control cells positive for MTO and LysoTracker™ Green. The lower left quadrant characterizes the dissipation of the ΔΨ_m and destabilization of lysosomes. The number of cells is identified by the color-code (blue – minimum, red – maximum).
caused the dissipation of ∆V_m. The SBA-15-N,ANi-5,FU-β,CD systems seems to be more effective in anti-cancer treatment than sole 5-FU.

4. Conclusions

A system based on mesoporous silica material was studied as a potential pH-sensitive drug delivery system for the antineoplastic agent 5-fluorouracil (5-FU). This system is composed of SBA-15-type porous structure (hexagonal) functionalized with aromatic primary amines (N-ANi) and β-cyclodextrin molecules (β-CD) that are used as nanovales.

Starting from the synthesis and characterization of SBA-15 material, the successful functionalization of N-ANi groups was evidenced using thermogravimetric measurements (\(T_{2\%\text{loss}} = 1.26 \text{ mmol/g}\)). Textural properties of functionalized samples were investigated using small angle XRD, TEM, and nitrogen sorption measurements that allow us to conclude that even if a decrease was observed in terms of specific surface area (~50%) and porous volume (~25%), the whole porous structure was preserved and available for drug molecules.

Then, the loading of the drug 5-FU in pure SBA-15 and SBA-15-N-ANi was studied from a thermodynamic point of view via the construction of adsorption isotherms and calorimetric measurements. For both solids, isotherm adsorptions are of Langmuir type. The affinity of 5-FU molecules (linked to the slope of isotherms at low concentrations) towards both solids is weak. Calorimetric measurements evidenced a weak constant enthalpy of adsorption for both solids (\(\Delta H = -3.4 \text{ kJ/mol}\)). Finally, the only difference observed between both solids lies in the maximum adsorbed amounts of 5-FU determined both experimentally (7.3 \(10^{-4} \text{ mol/g} \text{ vs} 4.2 \times 10^{-4} \text{ mol/g}\)); this difference is linked to the difference in specific surface area. The maximum loading of 5-FU determined from both the adsorption isotherm and thermogravimetric measurements for the N-ANi functionalized porous material was 55 mg/g.

The pH-sensitive release of 5-FU from SBA-15-N,ANi solid, using β-CD molecules as nanovales, was finally investigated in static and dynamic conditions: it was shown that there was almost no release of 5-FU at pH = 7.4 whereas more than 80% of adsorbed 5-FU was progressively released at pH = 5. The modeling of the 5-FU release was successfully done using both first order and Higuchi models. The cytotoxicity tests were performed using human glioma U87 MG cells. The results demonstrated that the 5-FU did not induce cell death at the studied concentration if applied into cell culture media. However, when it was delivered into the cells by SBA-15-N,ANi-5,FU-β,CD it possessed significant cytotoxic effects.

Acknowledgements

This work was supported by the Slovak Research and the Development Agency under the contracts APVV-15-0520 and APVV-15-0485 and national bilateral grant APVV-SK-FR-2017-0011. E.B. thanks to the financial support from VVGS-PG-2017-677 grant. E.B. also thanks to the French Government for the financial support linked to the implementation of a joint French-Slovak doctorate. The authors thank the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Accreditation Commission for the financial support of the TRIANGEL team in the frame of the scheme “Top Research Teams in Slovakia”.

References
