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Abstract 19 

The Pandoraviridae is a rapidly growing family of giant viruses, all of which have been 20 

isolated using laboratory strains of Acanthamoeba. The genomes of ten distinct strains 21 

have been fully characterized, reaching up to 2.5 Mb in size. These double-stranded DNA 22 

genomes encode the largest of all known viral proteomes and are propagated in oblate 23 

virions that are among the largest ever-described (1.2 µm long and 0.5 µm wide). The 24 

evolutionary origin of these atypical viruses is the object of numerous speculations. 25 

Applying the Chaos Game Representation to the pandoravirus genome sequences, we 26 

discovered that the tetranucleotide (4-mer) “AGCT” is totally absent from the genomes of 27 

2 strains (P. dulcis and P. quercus) and strongly underrepresented in others. Given the 28 

amazingly low probability of such an observation in the corresponding randomized 29 

sequences, we investigated its biological significance through a comprehensive study of 30 

the 4-mer compositions of all viral genomes. Our results indicate that “AGCT” was 31 

specifically eliminated during the evolution of the Pandoraviridae and that none of the 32 

previously proposed host-virus antagonistic relationships could explain this phenomenon. 33 

Unlike the three other families of giant viruses (Mimiviridae, Pithoviridae, Molliviridae)  34 

infecting the same Acanthamoeba host, the pandoraviruses exhibit a puzzling genomic 35 

anomaly suggesting a highly specific DNA editing in response to a new kind of strong 36 

evolutionary pressure.  37 

Importance 38 

The recent years have seen the discovery of several families of giant DNA viruses all 39 

infecting the ubiquitous amoebozoa of the genus Acanthamoeba. With dsDNA genomes 40 

reaching 2.5 Mb in length packaged in oblate particles the size of a bacterium, the 41 
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pandoraviruses are the most complex and largest viruses known as of today. In addition 42 

to their spectacular dimensions, the pandoraviruses encode the largest proportion of 43 

proteins without homolog in other organisms which are thought to result from a de novo 44 

gene creation process. While using comparative genomics to investigate the evolutionary 45 

forces responsible for the emergence of such an unusual giant virus family, we discovered 46 

a unique bias in the tetranucleotide composition of the pandoravirus genomes that can 47 

only result from an undescribed evolutionary process not encountered in any other 48 

microorganism. 49 
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Introduction 50 

The Pandoraviruses are among the growing number of families of environmental 51 

giant DNA viruses infecting protozoans and isolated using the laboratory host 52 

Acanthamoeba (Protozoa/Lobosa/Ameobida/ Acanthamoebidae/ Acanthamoeba) 1-4. As 53 

of today, they exhibit the largest fully characterized viral genomes, made of linear dsDNA 54 

molecules from 1.9 to 2.5 Mb in size, predicted to encode up to 2500 proteins1-3. After 55 

their internalization  by phagocytosis, these viruses multiply in their amoebal host 56 

through a lytic cycle lasting about 12 hours, ending with the production of hundreds of 57 

giant amphora-shaped particles (1.2 µm long and 0.5 µm wide)1-3. The phylogenetic 58 

structure of the Pandoraviridae family exhibits two separate clusters referred to as  A- 59 

and B- clades2,3 (Fig. 1). Despite this clear phylogenetic signal (computed using a core set 60 

of 455 orthologous proteins), strains belonging to clade A or B did not exhibit noticeable 61 

differences in terms of virion morphology, infectious cycle, host range, or global genome 62 

structure and statistics (e.g. nucleotide composition, gene number, gene density)1-3. 63 

In addition to their unusual virion morphology and gigantic genomes, the pandoraviruses 64 

exhibit other unique features such as an unmatched proportion (>90%) of genes coding 65 

for proteins without any database homologs (ORFans) outside of the Pandoraviridae 66 

family, and strain-specific genes contributing to an unlimited pan-genome1-3. These 67 

features, confirmed by the analysis of additional strains5, led us to suggest that a process 68 

of de novo and in situ gene creation might be at work in pandoraviruses2, 3. Following this 69 

history of unexpected findings, we thought that further analyses of the Pandoraviridae 70 

might reveal additional surprises. 71 
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While searching for hidden genomic patterns eventually linked to evolutionary processes 72 

unique to the pandoraviruses, we used a Chaos Game graphical representation of their 73 

genome sequences6-7. This method converts long one-dimensional DNA sequence into a 74 

fractal-like image, through which a human observer may detect specific patterns. This 75 

representation illustrates in a holistic manner the frequencies of all oligonucleotides of 76 

arbitrary length k (k-mers) in a given DNA sequence. Using this approach led us to 77 

discover that the 4-mer “AGCT” was uniquely absent from the genome of Pandoravirus 78 

dulcis, providing the starting point of the present study (Fig.2).  79 

80 

Results 81 

The absence of any given 4-mer in a long random DNA sequence is highly improbable 82 

After detecting the absence of the “AGCT” word in the Chaos Game graphical 83 

representation of the P. dulcis genome, we computed the number of occurrence of all 4-84 

mers in the ten available Pandoravirus genome sequences using direct counting8. This 85 

revealed that “AGCT” was also absent from the genome of P. quercus. Notice that 86 

although these strains belong to the same A-clade, their genome sequences are 87 

nevertheless far from identical (their orthologous coding-regions share 72% nucleotide 88 

identity on average),  hence the common missing “AGCT” is not a mere consequence of 89 

their sequence similarity. 90 

Such a plain finding might not sound very interesting, until one realizes to what extent not 91 

encountering a single occurrence of “AGCT” in DNA sequences respectively 1.908.524 bp 92 
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(P. dulcis) and 2.077.288 bp (P. quercus) is unlikely, as shown below, using increasingly93 

sophisticated computations.  94 

In the simplest case, let us first consider a random DNA sequence with equal proportions 95 

of the four nucleotides (%A=%T=%C=%G=25%). Since there are 256 distinct 4-mers, the 96 

probability for each of them to occur at a given position in an increasingly long sequence 97 

tends to  𝑝𝐴𝐺𝐶𝑇 = 1
256⁄  . In a random sequence of approximately 2 Mbp, one thus98 

expects an average of about 7800 occurrences for each distinct 4-mers. This already 99 

suggests how unlikely it is for one of them to be absent. 100 

To estimate the order of magnitude of such probability, the DNA sequence is seen as 101 

consisting of 4 sets of non-overlapping 4-mers collected according to 4 different “reading 102 

frames” (e.g. 4-mers 1-4, 5-8, 9-12, …, etc, for frame 1). The different reading frames thus 103 

correspond to approximately 500,000 positions each. 104 

At each of these position, the probability for “AGCT” not to occur is 𝑞𝐴𝐺𝐶𝑇 = 255
256⁄  .105 

For one reading frame, this probability becomes approximately 106 

𝑄𝐴𝐺𝐶𝑇 = (255
256⁄ )

500,000
≅ 1.2 10−850 (1) 107 

and: 108 

4 × 𝑄𝐴𝐺𝐶𝑇 ≅ 5 10−850     (2)109 

for the 4 reading frames (assuming them to be independent for the sake of simplicity). 110 

Such a value is smaller than any that could be computed in reference to a physical 111 

process. For instance, one second approximately corresponds to 2 10-18 of the age of the 112 

universe. 113 



7 

The above probability should actually be corrected to account for the fact that we did not 114 

specifically search for “AGCT” while analyzing the viral genome. Any missing 4-mer would 115 

have raised the same interest. A Bonferroni correction should then be applied to 116 

compensate for the multiple testing of 256 different 4-mers. However, the probability of 117 

not finding any 4-mer, 𝑄𝑎𝑛𝑦 , remains an incommensurably small number. 118 

𝑄𝑎𝑛𝑦 ≅ 256 × 5 10−850 ≅ 1.3 10−847 (3) 119 

We may further argue that this event was bound to occur in at least one genome given 120 

the huge amount of DNA sequence that is now available, for instance in Genbank. The 121 

calculation runs as follows; The april 2019 release of Genbank contains about 3.2 1011bp. 122 

Assuming that all Genbank entries are 2 Mb-long sequences, this would correspond to 1.6 123 

105 theoretical pandoravirus genomes. The order of magnitude of the probability of 124 

observing one of them missing any of the 4-mers remains amazingly small at about 125 

𝑄𝑎𝑛𝑦/𝐺𝑒𝑛𝑏𝑎𝑛𝑘 ≅ 1.6 105 × 𝑄𝑎𝑛𝑦 ≅ 2.1 10−842 (4) 126 

Finally, one may want to make a final adjustment by taking into account that the P. dulcis 127 

genome is 64% G+C rich. This slightly changes the probability of random occurrence of 128 

“AGCT” from  𝑝𝐴𝐺𝐶𝑇 = 1
256⁄ = 0.00391 to 129 

𝑝𝐴𝐺𝐶𝑇 = (0.18)2 × (0.32)2 = 3.31 10−3 (5) 130 

then  131 

4 × 𝑄𝐴𝐺𝐶𝑇 = (1 −  𝑝𝐴𝐺𝐶𝑇)500,000 ≅ 8.9 10−719    (6)132 

Using the same Bonferroni correction as above lead to the final conservative estimate: 133 

𝑄𝑎𝑛𝑦/𝐺𝑒𝑛𝑏𝑎𝑛𝑘 < 4 10−711     (7)134 
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still an incommensurably small probability (e.g. the same as not getting a single head in 135 

2360 tosses of a fair coin). 136 

As the above computation remains an approximation (neglecting the overlap of 137 

neighboring 4-mers), we estimated how unlikely it is that any 4-mer would be missing 138 

from large DNA sequences by a different approach. We computer generated a large 139 

number of random sequences of increasing sizes and recorded the threshold at which 140 

point none of the 4-mers is missing. Fig. 3 displays the results of such computer 141 

experiment. It shows how fast the probability of any 4-mer missing is decreasing with the 142 

random sequence size. In this experiment, we found that the proportion of sequences 143 

larger than 10,000 bp missing anyone of the 256 4-mers was less than 1/10,000. 144 

145 

Caveat: randomized sequences exhibit strongly unnatural 4-mer distributions 146 

The above results already suggested that it is impossible for the P. dulcis and P. 147 

quercus genomes to be missing “AGCT” solely by chance without invoking a biological 148 

constraint. However, this conclusion rests on the assumption that the randomization 149 

process suitably modeled these genomes. However, the frequency distribution of the 150 

various 4-mers found in the actual P. dulcis genome (and of other pandoraviruses) and 151 

the one computed from its randomized sequence are strongly different (Fig. 4). While the 152 

natural sequence consist of 4-mers occurring at frequencies distributed along a large and 153 

rather continuous interval, the randomized sequence exhibits 4-mers occurring around 5 154 

narrow peaks of frequencies with none in between. As expected from a good quality 155 

randomization, these peaks correspond to the frequencies of the five types of 4-mers: 156 

those consisting of only A or T at the lower end, those consisting of only G or C at the 157 
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higher end, and those consisting of (A or T)/(G or C) in proportions 1/3, 2/2, and 3,1  in 158 

between. The more continuous and spread out natural distribution is the testimony of 159 

multiple evolutionary constraints, most of them unknown, that have resulted in a distinct 160 

4-mer usage, like a dialect or a language tic inherited from past generations9. 161 

First, notice that the missing “AGCT” does not correspond to the 4-mer type with the 162 

lowest expected frequency (but the middle one). Second, it is clear that the above 163 

probability calculations based on such distorted model of the natural sequence, cannot 164 

be used as a reliable estimate of statistical significance. This problem is similar to the one 165 

encountered when trying to evaluate the quality of local sequence alignments in similarity 166 

searches10, 11. 167 

We can mitigate the effect of the above stringent randomization (only preserving the 168 

original nucleotide composition) by using the P. dulcis and P. quercus actual genome 169 

sequences to evaluate to what extent the absence of “AGCT” might be the mere 170 

statistical consequence of the frequency of its constituent 3-mers: AGC and GCT.  171 

As shown in Table 1, AGC and GCT are not among the least frequent 3-mers found in the 172 

P. dulcis or P. quercus genomes. As the theoretical average is 1/64 (≈ 0.0156), their173 

proportions range from 0.0156 to 0.0097 within the coding and non-coding regions of the 174 

genomes. On one given strand, AGC and GCT also do not strongly segregate from each 175 

other’s in coding versus intergenic regions (Table 1). By combining the AGC 3-mer 176 

frequency with that of the single nucleotide T (p(t) =0.182 for P. dulcis, p(t) =0.196 for P. 177 

quercus), the expected number of “AGCT” per strand is 4286 for P. dulcis and 4898 for P. 178 

quercus, while none is observed. Such stark contrast between expected and observed 179 

values is unique to the “AGCT” 4-mer. By comparison, the palindromic “ACGT” 4-mer 180 
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(with an identical composition) exhibits a statistical behavior (Table 1, bottom lines) much 181 

closer to the 3-mer-dependent random sequence model. 182 

183 

No 4-mer is missing from the largest actual viral genomes 184 

As vividly illustrated in Fig. 4, the 4-mer distributions in randomized sequences 185 

strongly depart from that in natural genomes. We thus analyzed all complete genome 186 

sequences available in the viral section of Genbank12, to investigate to what extent the 187 

absence of a given 4-mer was exceptional for genomes in the size range corresponding to 188 

Pandoraviruses. 189 

We found that the next largest viral genomes missing a 4-mers were those of five phages 190 

infecting enterobacteria, with unusual genome sizes in the 345kb-359kb range13-16. Except 191 

for P. dulcis and P. quercus, none of the 26 largest publicly available viral genomes 192 

(including 25 large/giant eukaryotic viruses, and phage G) 12 were missing a 4-mer (Fig. 5). 193 

Thus, even by comparison with natural sequences, P. dulcis and P. quercus appear 194 

exceptional.  195 

We noticed that the five large enterobacteria-infecting phages pointed out by our 196 

analysis, were all missing the same “GCGC” 4-mer although they exhibit divergent 197 

genomic sequences and were isolated from different hosts13-16. This palindromic 4-mer 198 

might be the target of isoschizomeric restriction endonucleases functionally homologous 199 

to  HhaI found in Haemophilus haemolyticus, a Gammaproteobacteria. Many of them 200 

have been described (see https://enzymefinder.neb.com). We will return to the 201 

hypothesis that some 4-mers might be missing in response to a host or viral defense 202 

mechanism17 in the discussion section. 203 
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204 

The anomalous distribution of “AGCT” correlates with the Pandoraviridae phylogenetic 205 

structure 206 

The absence of “AGCT” in P. dulcis and P. quercus genomes becomes even more 207 

intriguing when put in the context of the phylogenetic structure of the whole 208 

pandoravirus family. As shown in Fig. 1, the Pandoraviridae neatly cluster into two 209 

separate clades. For well-conserved proteins (such as the DNA polB), the percentage of 210 

identical residues between intra-clade orthologs is in the 82% to 90% range, and in the 211 

72% to 76% range between the two clades. The corresponding genome sequences are 212 

thus far from being identical (and only partially collinear) within each clade. It is thus 213 

quite remarkable that the “AGCT” count exhibits a consistent trend to be very low in A-214 

clade members, and at least 10 times higher in B-clade strains. Such a contrast was strong 215 

enough to pre-classify three unpublished isolates prior to complete genome assembly and 216 

finishing (data not shown). 217 

The large difference in “AGCT” counts could be due to the deletion of a genomic region 218 

concentrating most of them, for instance within a repeated structure absent from the A-219 

clade isolates. However, Fig. 6 shows that this is not at all the case. In B- clade isolates, 220 

the numerous occurrences of “AGCT” are rather uniformly distributed along the whole 221 

genomes. However, we noticed that the “AGCT” distribution in the P. neocaledonia 222 

genome exhibits a change of slope at one of its extremities, as if the corresponding 223 

segment had been acquired from a A-clade strain. Such hypothesis was confirmed using a 224 

dot-plot comparison with the P. salinus genome, to which this terminal segment is clearly 225 

homologous (Fig. 7).  226 
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227 

“AGCT” was specifically deleted from A-clade pandoravirus genomes 228 

We have seen in the previous section that the extreme difference in the “AGCT” 229 

count in P. dulcis (N=0) and P. neocaledonia (N=544) is not due to the local deletion of an 230 

“AGCT”-rich segment. We then investigated if that difference was limited to “AGCT”, or if 231 

other 4-mers exhibited large differences in counts. Fig. 8 shows that this was not the case. 232 

If the frequencies of the various 4-mers within each genome exhibit tremendous 233 

differences (very much at odd with their distribution in randomized sequences, see Fig. 234 

4), the frequency for each 4-mer (low, average or high) was very similar across the two 235 

different viral genomes (Spearman correlation, r=0.9859).  The difference in “AGCT” 236 

count is thus not the consequence of the use of globally distinct 4-mer vocabularies by 237 

the two pandoravirus clades. It appears to be due to a selection specifically exerted 238 

against the presence of “AGCT” in the genomes of A-clade pandoraviruses.  239 

Another argument in favor of an active selection against the presence of “AGCT” is 240 

provided by the following statistical computation. We first identified the orthologous 241 

proteins in P. dulcis and P. neocaledonia, using the best-reciprocal Blastp match criterium. 242 

We identified 585 orthologous ORFs. In P. neocaledonia, 180 of them were found to 243 

contain one or several “AGCT” (for a total of 350 occurrences). We then computed the 244 

average percentage of nucleotide identity in the alignments of these 180 P. neocaledonia 245 

ORFs with their P. dulcis orthologous counterparts. The value was 69%. 246 

According to a neutral scenario (and neglecting multiple hits), the probability is thus 247 

𝑝 = 0.69 that any nucleotide remains the same along the evolutionary trajectory 248 

separating the two pandoraviruses. For a given “AGCT”, the probability to remain intact 249 
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over the same evolutionary distance is  𝑝𝑖𝑛𝑡𝑎𝑐𝑡 = 0.694 = 0.227 , such as none of the250 

four positions is changed. For the sake of simplicity, we will neglect the chance creation of 251 

new “AGCT” during the process. As a result, we then expect P. dulcis orthologous ORFs to 252 

exhibit 68 occurrences (i.e. 0.227 × 350) of “AGCT”. 253 

This simple calculation already indicates that the “AGCT” 4-mer diverged much faster (at 254 

least 80 times faster since 350x0.227/80 < 1) than the rest of the orthologous coding 255 

regions. This result suggests that the absence of “AGCT” in P. dulcis and P. quercus, as 256 

well as its distinctive low frequency in all A-clade strains is the consequence of an active 257 

counter selection. We discuss possible molecular mechanisms in the following section. 258 

The above calculation could not be extended to interORFs regions, due to their much 259 

lower conservation and their unreliable pairwise alignments.  260 

261 

Discussion 262 

Which model for the counter selection of “AGCT”? 263 

Following our statistical computations on random sequences confirmed by the 264 

analysis of actual genome sequences, we can safely assume that the genome of the 265 

common ancestor of the A- and B-clade pandoraviruses was not missing any 4-mers. Our 266 

discussion will thus take for granted that the difference in “AGCT” frequency between the 267 

two Pandoraviridae clades is the consequence of a loss in the A-clade rather than a gain in 268 

the B-clade. Such phenomenon probably predated the split of the two clades as the 269 

number of “AGCT” found in B-clade Pandoravirus genomes (≈500) is already 15 times 270 

lower than expected in the corresponding randomized sequences (≈7800).  271 
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272 

Any model proposed to explain our results must take into account that the two types of 273 

pandoraviruses replicate with the same efficiency in various laboratory strains of 274 

Acanthamoeba. From this we can reasonably assume that both clades do not differ much 275 

in their range of natural hosts (one of which is known to be an Acanthamoeba for A-clade 276 

Pandoravirus inopinatum18). The cause of the marked difference in “AGCT” counts 277 

between the two clades must thus reside within the viruses themselves. Such inference is 278 

further supported by the fact that none of the other families of giant viruses19 infecting 279 

the very same Acanthamoeba hosts exhibit a similar 4-mer anomaly in their genome 280 

composition. 281 

The first model that comes to mind is inspired from the well-documented restriction-282 

modification systems that many bacteria use to counteract bacteriophage infections. The 283 

host bacterial cells express DNA sites (most often short palindromes) specific 284 

endonucleases that cut the invading phage genome before it could replicate. Such 285 

defense mechanism imposes the bacteria to protect the cognate motif in its own genome 286 

using a specific methylase. According to the Red Queen evolutionary concept, the 287 

bacteriophages could counteract the host‘s defense by removing the targeted site from 288 

their own genome17. The absence of the palindrome “GCGC” that we previously noticed 289 

in several large enterobacterial phages13-16 could result from such evolutionary strategy. 290 

Translating such a model in our system thus requires three distinct assumptions: 1) that 291 

the Acanthamoeba cells express an antiviral endonuclease specific for “AGCT”; 2) that B-292 

clade pandoraviruses are immune from it (as other Acanthamoeba-infecting viruses); 3) 293 
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that A-clade pandoraviruses evolved a different strategy by removing the endonuclease 294 

target from their genomes. 295 

Such a model was readily invalidated by simply attempting to digest the B-clade P. 296 

neocaledonia genomic DNA (extracted from infectious particles) with commercial 297 

restriction enzymes (such as PvuII) targeting “cAGCTg” (212 occurrences) and AluI, 298 

targeting “AGCT” (544 occurrences). The resulting Pulsed-field gel electrophoresis (PFGE) 299 

pattern showed that these sites were not protected (Fig. 9). Accordingly, the PacBio data 300 

used to sequence the P. neocaledonia genome2 did not indicate the presence of modified 301 

nucleotides at the “AGCT” sites20. 302 

We must point out that the above results simultaneously invalidate a symmetrical model 303 

where the “AGCT”-specific endonuclease would have been encoded by the 304 

pandoraviruses, together with the protective cognate methylase. Such a hijacked 305 

restriction/modification system would have been attractive as it is found in 306 

chloroviruses21, another family of large eukaryotic DNA viruses. Unfortunately, it does not 307 

apply here. Accordingly, no homolog of the cognate DNA-methyl transferase was 308 

detected among the P. neocaledonia or P. macleodensis protein-coding gene contents. 309 

Further nailing the coffin of such restriction/modification hypothetical model, no 310 

difference in terms of potentially relevant endonuclease or DNA methylase was found 311 

between the gene contents of the A-clade P. dulcis and P. quercus and those of the B-312 

clade P. neocaledonia and P. macleodensis. 313 

A more hypothetical model would assume that the “AGCT” motif is targeted at the 314 

transcript level (i.e. “AGCU”) rather than at the DNA level. Classical endonucleases and 315 
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DNA methylases would thus not be involved in the host-virus confrontation. There are 316 

several arguments against a mechanism directly targeting viral transcripts. 317 

First, as B-clade pandoraviruses exhibit similar proportions of “AGCT” in ORFs and inter-318 

ORF regions, the A-clade strains would have had no incentive to eliminate the motif from 319 

their intergenic regions, as P. dulcis and P. quercus have done totally in reaching zero 320 

occurrences.  “AGCT” is also still present in some protein-coding regions of P. inopinatum 321 

(N=15), P. salinus (N=3), and P. celtis (N=1). 322 

Second, very few motif-specific RNAses are known, and to our knowledge, only one is 323 

viral:    a protein encoded in the bacteriophage T4 RegB gene22. We found no significant 324 

homolog of this protein in the pandoraviruses or Acanthamoeba. We also looked for 325 

mRNA methylases that could act as a protective mechanism for the viral transcript. A 326 

single one was described in another family of eukaryotic DNA virus: the product of the 327 

Megavirus Mg18 gene23. Again, no significant homolog of this protein was detected in the 328 

pandoraviruses.  329 

In conclusion to this section, if the presence of “AGCT” decreases the virus fitness, we 330 

found no evidence that it is due to a DNA or RNA nuclease-mediated defense mechanism 331 

in Acanthamoeba.  However, it could still be due to an unknown inhibitory mechanism 332 

acting at the transcription regulation level to which B-clade pandoviruses would exhibit 333 

some immunity. The corresponding proteins could be encoded among the numerous 334 

ORFans found in pandoravirus genomes1-3. Alternatively, the “AGCT” deficit could be due 335 

to a restriction imposed by unknown additional hosts in nature, although quite an unlikely 336 

scenario given the ubiquity and abundance of Acanthamoeba in the environment. 337 
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Finally, could “AGCT” be deleterious for some intrinsic reasons, for instance due to its 338 

palindromic structure and composition? This is very unlikely, when one compare the 339 

absent “AGCT” in P. dulcis and P. quercus, with other 4-mers with identical structures and 340 

compositions. For instance “ACGT” occurs at 5822 and 6165 positions (in P. dulcis and P 341 

quercus, respectively), and “GATC” occurs at 8114 and 8567 times) in (P. dulcis and P. 342 

quercus, respectively). The presence or absence of “AGCT” does not either exert a strong 343 

constraint on protein sequences, as the amino-acids encoded by “AGC” or “GTC” (Serine 344 

and Alanine, respectively) have many possible alternative codons and are easily 345 

replaceable residues given their mild physicochemical properties. Finally, we found no 346 

evidence that the removal of “AGCT” was due to a specific (for instance, enzyme-347 

mediated) process targeting then replacing the forbidden 4-mer by a constant alternative 348 

word.  Replacement patterns for 72  P. dulcis sites unambiguously mapped to their 349 

homologous P. neocaledonia “AGCT” counterparts are indicated in Table 2. It suggests 350 

that the complete loss of “AGCT” in the A-clade strains is due to a stringent, nevertheless 351 

random (i.e. non-directed) evolutionary process. 352 

The analysis of long nucleotide (and amino acid) sequences as overlapping k-mers 353 

has a long history in bioinformatics. Initially proposed in the context of the RNA folding 354 

problem23, the concept was then quickly applied to many other areas including gene 355 

parsing24, the detection of regulatory motifs25, 26, and has become central to the fast 356 

implementation of large-scale similarity search27, 28, sequence assembly29, and the binning 357 

of metagenomics data30, 31. However, its popularity should not hide that most of the 358 

observed frequency disparities (starting from the simplest mononucleotide composition) 359 

between k-mers within a given organism, or across species have not yet received 360 

convincing biological explanations32, 33. This suggests that profound and unexpected 361 
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biological insights may one day come out from the analysis of k-mer frequencies, and in 362 

particular from their most improbable fluctuations. In a daring parallel with the delayed 363 

understanding of the CRISPR/CAS system from the initial spotting of intriguing repeats34, 364 

we would like to expect that the pandoraviridae “AGCT” distribution anomaly might lead 365 

to the discovery of a novel defense mechanism against viral infection. 366 

367 

Materials and Methods 368 

Chaos game representation 369 

Chaos game representation (CGR) was introduced in 1990 by Jeffrey6 to visually detect 370 

global patterns in large DNA sequences. It was inspired from a method generating fractals 371 

within a polygon as a sequence of points, iteratively positioned according to a rule based 372 

on their distance to one of the vertices of the polygon. To apply this method to DNA 373 

sequences, one uses a square with corners labelled A, T, G and C.  Starting from the 374 

center of the square, the sequence is used to determine the position of the next point at 375 

the center of the line connecting the previous point and the corner corresponding to the 376 

current nucleotide. In addition to global patterns, the resulting graph also reveals the 377 

differential frequencies of substrings (k-mers), for instance leaving a blank area at the 378 

position corresponding to a missing substring (Fig. 2). CGR thus allows the rapid detection 379 

of compositional anomaly of k-mers for increasing n values, instead of comparing large 380 

statistical tables. Once the k-mer (4-mer) distributions of interest were determined by 381 

CGR, they were further analyzed and compared using a standard counting package8. 382 

383 
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Pulse-field gel electrophoresis (PFGE) 384 

Approximately 5,000 pandoravirus particules were embedded in 1% low gelling agarose 385 

and the plugs were incubated in lysis buffer (50mM Tris-HCl pH8.0, 50mM EDTA, 1% (v/v) 386 

N-laurylsarcosine, 1mM DTT and 1mg/mL proteinase K) for 16h at 50°C. After lysis, the387 

plugs were washed once in sterile water and twice in TE buffer (10mM Tris-HCl pH8.0 and 388 

1mM EDTA) with 1mM PMSF, for15 min at 50°C. The plugs were then equilibrated in the 389 

appropriate restriction buffer and digested with 20 units of PvuII or AluI at 37°C for 14 390 

hours. Digested plugs were washed once in sterile water for 15 min, once in lysis buffer 391 

for 2h and three times in TE buffer. Electrophoresis was carried out in 0.5X TAE for 18 h at 392 

6V/cm, 120° included angle and 14°C constant temperature in a CHEF-MAPPER system 393 

(Bio-Rad) with pulsed times ramped from 0.2s to 120s. 394 

395 

Availability of data 396 

All virus genome sequences analyzed in this work are freely available from the public 397 

GenBank repository (URL://www.ncbi.nlm.nih.gov/genbank/). The Pandoravirus 398 

sequences used here correspond to the following accession numbers: P. dulcis 399 

(NC_021858), P. neocaledonia (NC_037666), P. macleodensis (NC_037665), P. salinus 400 

(NC_022098), P. quercus (NC_037667), P. celtis (NC_ ), P. inopinatum (NC_026440), P. 401 

pampulha (LT972219.1 ), P. massiliensis (LT972215.1), P. braziliensis (LT972217). 402 
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Figure 1. Phylogenetic structure of the Pandoraviridae. Adapted from [ref. 3]. The 495 

number of occurrences of the “AGCT” 4-mer is indicated for the genome of each strain. 496 

The counts are given for one DNA strand and are identical for both strands (“AGCT” is 497 

palindromic).  498 

499 

Figure 2. Chaos game representation of the P. dulcis genome. The largest square left 500 

blank (circled in red) corresponds to “AGCT”, indicating the absence of this 4-mer in the 501 

genome.   502 

503 

Figure 3. Influence of random sequence length on the number of missing 4-mers. 10.000 504 

random sequences up to 10.000 bp in size were analyzed. Except for extremely rare 505 

fluctuations, no sequence longer than 4000 bp exhibits a missing 4-mer. 4-mer overlaps 506 

as well as nucleotide compositions are taken into account in this analysis. 507 

508 

Figure 4. Distribution of 4-mer frequencies in natural and randomized genome 509 

sequences. Top: histogram of the number of distinct 4-mers occurring at various numbers 510 

of occurrences in the P. dulcis genome; Bottom:  same analysis after randomization. 511 

512 

Figure 5. Missing 4-mers in the largest viral genomes. Except for P. dulcis and P. quercus, 513 

the largest viral genomes missing a 4-mers are those of 5 distinct bacteriophages 514 

(accession numbers: NC_019401, NC_025447, NC_027364, NC_027399, NC_019526). 515 

516 
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Figure 6. Cumulative distribution of “AGCT” occurrences along the different 517 

pandoravirus genomes. The “AGCT” word appears uniformly spread throughout the B-518 

clade pandoravirus genomes, except for a clear rarefaction at the end of the P. 519 

neocaledonia genome sequence. 520 

521 

Figure 7. DNA sequence dot-plot comparison of P. neocaledonia (horizontal) and P. 522 

salinus (vertical). The two genomes only exhibit remnants of collinearity except for the 523 

terminal region of P. neocaledonia (red circle) coinciding with a low “AGCT” density 524 

typical of A-clade strains (Fig. 6). Dot plot generated using GEPARD35 with parameters: 525 

word size=15, window size=0. 526 

527 

Figure 8. Comparison of the proportion of all 4-mers in P. dulcis (A-clade) vs. P. 528 

neocaledonia (B-clade). The 4 most frequent 4-mers are “GCGC”, “CGCG”, “CGCC”, and 529 

“GGCG”. 530 

531 

Figure 9. Digestion of P. neocaledonia DNA at “AGCT” sites. Lane 1:  undigested P. 532 

neocaledonia DNA (2.2 Mb) migrating as expected. The bottom band (below 48.5 kb) 533 

correspond to an episome not always present. Lane 2:   P. neocaledonia DNA digested by 534 

the PvuII restriction enzyme (cutting site: cAGCTg). Lane 3: P. neocaledonia DNA digested 535 

by the AluI restriction enzyme (cutting site: AGCT). These results demonstrate that the 536 

“AGCT” sites are not protected by modified nucleotides. 537 

538 
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Table 1. Distribution of the AGC (and the complementary GCT) 3-mers 

Statistics P. dulcis P. quercus

Genome size (bp) 1,908,524 2,077,288 

interORF ORF global 

interORF 

ORF global 

AGC frequency (strand 1) 

0.0101 

(1/99) 

0.0112 

(1/89) 

0.0109 

(1/92) 

0.0098 

(1/102) 

0.0110 

(1/90) 

0.0106 

(1/94) 

GCT frequency (strand 1) 

0.0102 

(1/98) 

0.0156 

(1/64) 

0.0138 

(1/72) 

0.0097 

(1/103) 

0.0145 

(1/68) 

0.0129 

(1/77) 

AGC/GCT (2 strands, global) 0.0123 (1/81) 0.0118 (1/85) 

AGC/GCT overall rank 37/64 43/64 

p(AGC).p(T) 2.24 10
-3

 (1/446) 2.31 10
-3

 (1/432) 

AGCT expected number 

(one strand x p(AGC).p(T)) 

4286 4898 

AGCT observed number 0 0 

ACGT expected number 

(one strand x p(ACG).p(T)) 

7884 8387 

ACGT observed number 5822 6165 



Table 2. Homologous site replacements between P. neocaledonia and P. dulcis. 

P. neocaledonia  P. dulcis variant Number 

AGCT  AGTT 31 

AGCT  AACT 18 

AGCT  GGCT 4 

AGCT AACC 4 

AGCT AATT 3 

AGCT GGCG 2 

AGCT[ACGA,ACTT,AGAT,AGCC,AGGC, 

CATT, GGCC, GGTT, GTCT, TGCC, TGGT, TGTC] 

1 




