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Abstract. We construct a spatiotemporal frame for the study of optimal growth

under transboundary pollution. Space is continuous and polluting emissions orig-

inate in the intensity of use of the production input. Pollution flows across loca-

tions following a diffusion process. The objective functional of the economy is to

set the optimal production policy over time and space to maximize welfare from

consumption, taking into account a negative local pollution externality and the

diffusive nature of pollution. Our framework allows for space and time dependent

preferences and productivity, and does not restrict diffusion speed to be space-

independent. This provides a comprehensive setting to analyze pollution diffusion

with a close account of geographic heterogeneity. The involved optimization prob-

lem is infinite-dimensional. We propose an alternative method for an analytical

characterization of the optimal paths and the asymptotic spatial distributions.

The method builds on a deep economic concept of pollution spatiotemporal wel-

fare effect, which makes it definitely useful for economic analysis.
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1. Introduction

Because air pollution is diffusive and transboundary, the problem of pollution
control is deeply intricate. It raises several keys issues. One has to do with the
strategic ingredients of the problem either at the international level (refer to the
successive failures or at least questioning of internationals agreements to control
global warming, from the Kyoto protocol in 1991 to the Paris agreement in 2016)
or at the regional scale. We abstract away from these considerations here. Several
papers have been written in the last decade on this topic from 2-country setting
(Boucekkine et al., 2011) to continuous space modelling (see in particular, de Frutos
and Martin-Herran, 2018 and 2019) through multi-country frameworks (for example,
Dockner and Long, 1993).

We rather concentrate on a second set of issues, those related to the fact that
the impact of air pollution is first of all local, and its magnitude and persistence
depend pretty much on the local conditions. If a central planner at a country
or international level has to set a pollution control policy for the benefit of all
the individuals concerned, then she should take as much as possible into account
the heterogeneity across locations, in addition to the fact that air pollution, being
transboundary, requires the internalization of spatial externalities.

There are several spatial heterogeneity features to account for. Obvious ones are
technological heterogeneity and heterogeneity in preferences (which covers cultural
discrepancies with respect to the environment among others). But there are also
more geographic and ecological differences, which matter a lot both in the diffusion
of pollution across locations and in its local impact. The self-cleaning capacity of
Nature may vary from a region to a close one, the local topography, land use and
infrastructures may speed up pollution diffusion or slow it down...etc. These issues
are quite known across disciplines (see Tiwari and Closs, 2010, for an excellent book
on air pollution), including the economic literature. For example, Camacho and
Perez-Barahona (2015) studied the problem of atmospheric transboundary pollution
in the context of an optimal land use problem. Other economists have also provided
highly significant contributions to the analysis of the spatiotemporal deep nature of
the transboundary pollution control problem (see a recent survey in Augeraud-Véron
et al., 2019). None of these papers however poses the latter problem in a full-fledged
analytical spatiotemporal frame incorporating the above mentioned technological,
preference, geographic and ecological spatial discrepancies.

Clearly, taking up the challenge would involve plenty of technical problems, with
a very likely lack of tractability and the forced use of numerical solutions. Contrary
to other disciplines (like quantitative geography, climate science or ecology) in which
the use of black-box disaggregated models is routine, the economists, being more
interested in identifying mechanisms, are more keen to develop parsimonious models.
In this paper, we build up a spatiotemporal optimal control framework allowing to
encompass the heterogeneity traits outlined above in the presence of transboundary
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pollution, and still producing a comprehensive analytical characterization. To this
end, we build on Boucekkine et al. (2019a) who worked out a production-induced
pollution social planner problem with transboundary diffusive pollution, negative
environmental externalities and space-dependent environmental awareness across
population. We depart from this contribution essentially in two respects.1 First of
all, we considerably enrich the geography of the model. On the technological ground,
we allow productivity to be not only space-dependent but also time-dependent:
any pattern of technology diffusion across time and space can be accommodated.
As to preferences, we make them time and space-dependent as well. Finally, to
account for the local geographic and ecological conditions discrepancy, we not only
have a space-dependent self-cleaning capacity but also a space-dependent pollution
diffusion speed.

Another drastic departure is the fact that we move away from the linear-quadratic
setting used in Boucekkine et al. (2019a). Rather, we use the standard CRRA spec-
ification for instantaneous utility from consumption with time and space varying
coefficients. This has a methodological implication though: to produce analytical
results, we do not implement the specific dynamic programming method used by
the authors (see also Boucekkine et al., 2019b). Nor do we invoke the maximum
principle (see Brito, 2004, Brock et al, 2014, and more recently Ballestra, 2016,
for the use of this technique to solve infinite-dimensional optimization problems in
different contexts). Instead, we apply a functional transformation technique observ-
ing that the objective functional can be rewritten in a way that allows for a direct
maximization method, ultimately finding the explicit form of the optimal control.
The argument we use is related to the one employed in Barucci and Gozzi (1998,
2001) in a different economic and mathematical context. An extremely appealing
feature of this method is that it builds one a pivotal spatial function (denoted α(.)
in Section 3), which admits a neat economic interpretation: it corresponds at any
location x to the the discounted sum of future disutility stream of a unit of pollutant
initially located at x. Indeed, in our spatiotemporal framework with transboundary
pollution, a unit of pollutant has a different effect on social welfare depending on
where it is initially located and how it is going to spread over space in the future.
Our alternative method has the virtue to put forward this deep economic concept,
which makes it definitely transparent and useful for economic analysis.

The paper is organized as follows. Section 2 presents the basic economic problem
and defends its economic relevance. Section 3 develops the method used to solve
the generic spatiotemporal optimal growth model under transboundary pollution.
In particular, closed-form solutions of the optimal strategies are identified. We show
also further analytical results on transition dynamics and asymptotics (that’s the

1As it will be clear in the modelling section, other differences can be put forward, in particular

the geographic space chosen.
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computation of asymptotic spatial distributions). Of course, our aim in this ultimate
section is not to exploit entirely the richness of our setting but only to indicate how
far the analytical study can go. Appendix A contains the formal proofs.

2. The basic economic problem

The basic problem builds on Boucekkine et al. (2019a) and Boucekkine et al.
(2011) who study optimal growth in the presence of pollution externalities. With
respect to the latter work, which uses the usual two-country framework, we in-
troduce continuous space and pollution diffusion over space, leading to an infinite
dimensional optimization problem. With respect to the former, denoted BFFG here-
after, two sets of major departures are noticeable, as mentioned in the introduction
section.

(1) Contrary to BFFG, the induced optimization problem is no longer linear-
quadratic. As explained in the introduction, we address the new problem
using a direct method, and not the dynamic programming approach followed
in BFFG. The advantage is to build the optimal paths on clear economic
foundations, with a an essential role devoted to the social spatiotemporal
cost of pollution, which is finely characterized in Section 3.

(2) Moreover, we also considerably generalize the spatial setting by considering
space and time-dependence of both preferences and production technology
and space-dependent diffusion.

Let us now describe briefly the basic economic problem. Consider a continuum of
locations, say along the circle in R2. The choice of the circle is made for simplicity.2

Call it S1:

(1) S1 :=
{
x ∈ R2 : |x|R2 = 1

}
.

Each location uses a linear (Leontief) production function: at any location x in time
t ≥ 0, production is

(2) y(t, x) = a(t, x) i(t, x),

where y(t, x) is the output, i(t, x) is the capital input, and a(t, x) is productivity
at location x in time t. A few comments are in order already at this stage. First,
and contrary to BFFG, we allow productivity per location to be not only space-
dependent but also generically time-dependent, so that our setting can include for
example the typical exponential exogenous technological progress in neoclassical
growth theory. Actually, our modelling allows for much more: as argued in the in-
troduction section, a(t, x) can be specified to model possible technological spillovers

2Our approach allows generalizations to compact finite dimensional manifolds without boundary

(see, e.g., Fabbri, 2016).
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across locations, uneven technological development over space (that’s barriers to
technological diffusion) and the like. Admittedly, the latter are key features in re-
gional development. Second, it’s worth noticing that our production technology
mimics the AK technology, which is a basic ingredient in endogenous growth theory
(see Barro and Sala-i-Martin, 2004, Chapter 4), but with full depreciation of capital.
This is essential to get our closed-form solutions, and actually this is a well known
trick in optimal growth theory either to generate analytical solutions and/or to sim-
plify the analysis (reduction of the dimension of the dynamic systems involved) and
focus on other state variables (see again Barro and Sala-i-Martin, 2004, Chapter 6).
In our case, both arguments hold: given the extreme complexity of our problem (in-
finite dimensional optimization) and the economic target (economic performance in
the heterogenous space with transboundary pollution), we find it convenient to shut
down capital accumulation to be able to develop a comprehensive enough analytical
spatiotemporal framework to approach the latter economic objectives.

At any location, output is produced, consumed and locally invested (no trade
across locations), implying:

(3) c(x, t) + i(t, x) = y(t, x),

where c(t, x) is consumption at location x at time t. The unique link among loca-
tions is transboundary pollution. Just like BFFG, we target air pollution, but we
consider a broader specification incorporating ecological efficiency at any location
x and time t. Precisely, the accumulation of pollution spatial profile is assumed to
evolve following the following parabolic partial differential equation (PDE):

(4)


∂p

∂t
(t, x) =

∂

∂x

(
σ(x)

∂p

∂x
(t, x)

)
− δ(x)p(t, x) + ψ(t, x)i(t, x), (t, x) ∈ R+ × S1,

p(0, x) = p0(x), x ∈ S1,

where p(t, x) is the pollution stock at location x in time t. First, notice the gen-
eral shape of the pollutants’ emissions term ψ(t, x)i(t, x) in the pollution spa-
tiotemporal dynamics depicted above. Indeed, the unusual function ψ(t, x) is
meant to reflect that the pollution impact of emissions arising from the use of
one unit of input may not be the same over time and space. It can be read-
ily observed that: (i) taking ψ(t, x) = 1 brings to consider, as in BFFG, the
case where polluting emissions at location x are exactly equal to input use in-
tensity; (ii) if we specify ψ(t, x) = a(t, x)φ(t, a), the term ψ(t, x)i(t, x) reads as
a(t, x)φ(t, x)i(t, x) = φ(t, x)y(t, x), and we are able to give a specification of the
model where emissions depend on output rather than on input used; (iii) the tem-
poral dependence allows in general to incorporate exogenous ecological efficiency
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technological progress (such that those conveyed by abatement activities), and fi-
nally that: (iv) independent spatial heterogeneities can also be taken into account
with this more general specification.

Second, another major difference with respect to BFFG is the transboundary pol-
lution diffusion term, that is ∂

∂x
(σ(x) ∂p

∂x
(t, x)), where σ(x) is the pollution diffusion

speed at location x. In BFFG, the latter parameter is constant (equal to a positive

constant σ), yielding a transboundary pollution diffusion term σ ∂
2p
∂x2

(t, x).3 There
is a large bunch of works documenting the role of local conditions in air pollution
diffusion (see Tiwary and Colls, 2010, Chapter 1). Therefore, this generalization sig-
nificantly increases the relevance of our analytical frame. Also notice that pollution
diffusion also depends on nature local regeneration capacity (the term δ(x)p(t, x)),
and on current emissions (as captured by the term ψ(t, x)i(t, x)).

Finally, since our setting is spatiotemporal, an initial spatial distribution of pollu-
tion is needed, it is given by function p0(x) defined on S1. The whole state variable
dynamics follows the parabolic partial differential equation (PDE) (4). The infinite
dimensional nature of the involved optimization problem derives from the latter
characteristic of the state dynamics.

A last major departure from BFFG concerns the objective functional of the prob-
lem. As argued in the introduction and at the beginning of this section, BFFG
consider an LQ utility function. To be precise, they consider a per location in-
stantaneous utility function which is separable in consumption and the pollution
externality, quadratic in consumption and linear in local pollution. Here we choose
the instantaneous per location utility to be:

U (c(t, x), p(t, x)) =
c(t, x)1−γ(t,x)

1− γ(t, x)
− w(x)p(t, x),

where γ(t, x) ∈ (0, 1) ∪ (1,+∞) measures the inverse of the elasticity of intertem-
poral substitution in consumption at location x and time t, and w(x) measures for
instance local environmental awareness at location x. Observe that our negative
pollution externality is local. Our framework is not designed primarily to study
global warming and therefore global pollution, but the diffusion of air pollutants
with local health impact like particles for example (again a comprehensive account
of air pollutants can be found in Tiwari and Colls, 2010, Chapter 1). The local im-
pact of pollution is also captured via function w(x), which can be indeed interpreted
as local awareness and sensitivity to environmental problems. It can also reflect spe-
cific priorities of the planner to cope with particular local conditions. Notice also
that our frame allows for time and space varying preferences through the parameter
γ(t, x). The utility from consumption follows a CRRA formulation, it is strictly

3To clarify, in BFFG the geography is modeled in Rn and the diffusion term is simply σ2

2 ∆p(t, x),

where ∆ is the Laplace operator.
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concave, and no longer quadratic. This motivates the change in methodology to
solve the optimization problem as explained in the introduction; full details on the
alternative methodology implemented and obtained results will come in the next
section. Before, let us just display the objective functional. We consider a planner
problem who has to maximize the following social welfare under the above specified
technological constraints of the economy and the transboundary pollution faced:

J
(
p0; i

)
:=

∫ ∞
0

e−ρt
(∫

S1

(
c(t, x)1−γ(t,x)

1− γ(t, x)
− w(x)p(t, x)

)
dx

)
dt,

where ρ is the parameter at which the planner discounts time. Further, by using
equations (1) and (2), we can rewrite the functional in terms of the control i(t, x):

J
(
p0; i

)
=

∫ ∞
0

e−ρt

(∫
S1

((
(a(t, x)− 1)i(t, x)

)1−γ(t,x)

1− γ(t, x)
− w(x)p(t, x)

)
dx

)
dt.(5)

Notice we do not incorporate population density in our analysis, and notably
in the functional, nor do we introduce mortality (possibly related to pollution).
We fundamentally focus on handling spatial heterogeneity abstracting away from
demography, which is an already daunting task. At the minute, one could simply
interpret the social welfare function above as a Benthamite welfare function summing
individual welfare over locations and time with one infinite-lived individual at each
location.

3. Theoretical analysis

In this section we give a precise description of our results, specifying hypotheses
and formalizing the statements. To increase the readability of the text we postpone
the proof in Appendix A and we divide the section in four parts.

To apply the functional transformation technique that we exploit to solve the
optimal control problem (Theorem 3.6), we start by rewriting the problem in a
suitable Hilbert space formalism (Subsection 3.1), then we identify a spatial function
α that will be essential in the transformed expression of the functional (Subsection
3.2), and finally we will characterize the optimal control and the corresponding social
welfare (Subsection 3.3). Subsection 3.4 contains transitional and long-run analysis
of the dynamics via series expansions.

3.1. Infinite dimensional formulation and preliminary results. On the space
support S1 introduced in (1) we consider the metrics induced by the Euclidean
metrics of R2. In this way S1 can be isometrically identified with 2πR/Z and the
(class of) functions S1 → R with 2π-periodic function R → R; differentiation of
functions S1 → R is defined according to this identification. Consequently, the
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initial pollution distribution and the space dependent parameters δ, σ and w are
measurable functions

p0, δ, σ, w : S1 → R+;

similarly the time and space dependent parameters γ, a, ψ are measurable functions

γ : R+×S1 → (0, 1)∪ (1,+∞), a : R+×S1 → (1,+∞), ψ : R+×S1 → (0,+∞).

We proceed now to our infinite dimensional reformulation of the problem. We
will use the framework of Lebesgue and Sobolev spaces, for more details we refer
to Brezis (2011). The infinite dimensional space H, where we will reformulate our
maximization, is the Lebesgue space L2(S1;R), i.e.4

H := L2(S1;R) :=

{
f : S1 → R measurable :

∫
S1

|f(x)|2dx <∞
}
,

endowed with the usual inner product 〈f, g〉 =
∫
S1 f(x)g(x)dx, which makes it a

Hilbert space. We denote by ‖ · ‖ the associated norm, by H+ the nonnegative cone
of H, i.e.

H+ := {f ∈ H : f ≥ 0},
and by 1 the constant function equal to 1 on S1. Moreover, we introduce the Sobolev
space5

W 2,2(S1;R) :=
{
f ∈ L2(S1;R) : f is twice weakly differentiable, f ′, f ′′ ∈ L2(S1;R)

}
.

Some degree of regularity of the parameters will be necessary in the analysis. We
will work with the following assumptions.

Assumption 3.1.

(i) p0 ∈ L2(S1;R+), δ ∈ C(S1;R+), σ ∈ C1(S1; (0,+∞)), w ∈ C(S1; (0,+∞));

(ii) the function γ : R+ × S1 → (0, 1) ∪ (1,+∞) is measurable and there exists

κ ∈ (0, 1) such that, for every (t, x) ∈ R+ × S1,

either (Case (A)) κ ≤ γ(t, x) ≤ 1− κ

or (Case (B)) 1 + κ ≤ γ(t, x) ≤ 1

κ
.

4Actually, rather than a space of functions, L2(S1;R) is a space of equivalence classes of func-

tions, with the equivalence relation identifying functions which are equal almost everywhere, i.e.

out of a null Lebesgue measure set. For details we refer again to Brezis (2011).

5We refer to Brezis (2011) for the notion of weak differentiability.
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(iii) There exist L > 0, and g ≥ 0 such that, for every (t, x) ∈ R+ × S1,(
a(t, x)− 1

ψ(t, x)

) 1
γ(t,x)

−1

≤ Legt;

(iv) ρ > g.

Hereafter, our arguments will make use of the theory of unbounded linear op-
erators and semigroups of linear operators, for which we refer to Engel and Nagel
(1995). Denote by L(H) the space of bounded linear operators on H. We consider
the differential operator L : D(L) ⊂ H → H, where

D(L) = W 2,2(S1;R); (Lϕ)(x) = (σϕ′)
′
(x)− δ(x)ϕ(x), ϕ ∈ D(L).

Proposition 3.2. Let Assumption 3.1 hold. Then L generates a strongly continuous

contraction semigroup (etL)t≥0 ⊂ L(H). Moreover, ρ belongs to the resolvent set of

L, i.e. ρ−L : D(L) → H is invertible with bounded inverse (ρ−L)−1 : H → D(L)

and

(6) (ρ− L)−1h =

∫ ∞
0

e−(ρ−L)th dt ∀h ∈ H.

Proof. See Appendix A �

Given i : R+ × S1 → R+, define

I : R+ → H+, I(t) := i(t, ·).
Morever, define

Ψ : R+ → H+, Ψ(t) := ψ(t, ·).
Finally, given h, k ∈ H, define (hk)(x) := h(x)k(x). Then, with the identification
P (t) = p(t, ·), we reformulate (4) in H as

(7)

{
P ′(t) = LP (t) + Ψ(t)I(t), t ≥ 0,

P (0) = p0 ∈ H,

According to Definition 3.1(v), Chapter 1, Part II, of Bensoussan et al. (2007),
given I ∈ L1

loc(R+;H+), we define the mild solution to (7) as

(8) P (t) = etLp0 +

∫ t

0

e(t−s)LΨ(s)I(s)ds, t ≥ 0.

Setting A(t) := a(t, ·), Γ(t) := γ(t, ·), and[(
(A(t)− 1)I(t)

)1−Γ(t)

1− Γ(t)

]
(x) :=

(
(a(t, x)− 1)i(t, x)

)1−γ(t,x)

1− γ(t, x)
, x ∈ S1,
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the functional (5) is rewritten in this formalism as

(9) J(p0, I) =

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I(t)

)1−Γ(t)

1− Γ(t)
,1

〉
− 〈w,P (t)〉

]
dt.

We introduce the following set of admissible controls

A :=

{
I ∈ L1

loc(R+;H+) :

∫ ∞
0

e−ρt‖Ψ(t)I(t)‖ dt <∞
}
.

The following result shows that the functional is well defined on A.

Proposition 3.3. Let Assumption 3.1 hold. The functional J(p0, I) is well defined

for all p0 ∈ H and I ∈ A.

Proof. See Appendix A. �

Finally, we define the value function as the optimal value of J over A, i.e.

v(p0) := sup
I∈A

J(p0; I).

Note that this function may possibly be infinite. The function

(10) α := (ρ− L)−1w ∈ H.
will play a key role in the transformation of the functional J that we will perform: it
represents the core of the solution. In the next subsection we will investigate some
properties of it.

3.2. The function α and its properties. By definition α is the unique solution
in W 2,2(S1;R) of the abstract ODE

(11) (ρ− L)α = w.

More explicitly, α, as defined in (10), is the unique solution in W 2,2(S1;R) to

(12) ρα(x)− d

dx

(
σ(x)

d

dx
α(x)

)
+ δ(x)α(x) = w(x), x ∈ S1,

meaning that it verifies (12) pointwise almost everywhere in S1. The latter ODE can
be viewed as on ODE on the interval (0, 2π) with zero-order and first-order periodic
boundary conditions6, that is

ρα(x)− d

dx

(
σ(x)

dα

dx
(x)

)
+ δ(x)α(x) = w(x), x ∈ (0, 2π),

α(0) = α(2π), α′(0) = α′(2π),

6falling into the Sturm-Liouville theory with periodic boundary conditions (see Coddington and

Levinson, 1955).
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where α′(0) and α′(2π) are, respectively, the right derivative at 0 and the left
derivative at 2π of α.

As better argued below the value of α at a certain spatial point x has the meaning
of the the sum of all future (discounted) disutility of a unit of pollutant initially
located at x. By Sobolev embedding W 2,2(S1;R) ⊂ C1(S1;R), so α ∈ C1(S1;R).
With a little more subtle analysis something more can be said about the properties
of α as shown in next proposition.

Proposition 3.4. Let Assumption 3.1 hold. Then α ∈ C2(S1;R) and

0 < min
S1

w

ρ+ δ
≤ α(x) ≤ max

S1

w

ρ+ δ
∀x ∈ S1.

Proof. See Appendix A. �

We have the following interesting result on the dependence of α on the diffusion
coefficient σ when the latter is constant over space.

Proposition 3.5. Let Assumption 3.1 hold. Denote by ασo the solution to (12)

when σ(·) ≡ σo > 0. We have

(13) lim
σo→0+

ασo(x) =
w(x)

ρ+ δ(x)
, lim

σo→+∞
ασo(x) =

∫
S1 w(x)dx∫

S1(ρ+ δ(x))dx
, ∀x ∈ S1.

Proof. See Appendix A. �

As will be clearer shortly, the function α has a key role both in expressing the
functional in its transformed form and in describing the optimal behavior of the
planner. For this reason, understanding its behavior is interesting to describe the
behavior of the model.

In Proposition 3.5 two limit cases are analyzed: the case where the diffusivity
vanishes and the one when it tends to infinity. The first corresponds to the case
where the pollution does not move among the locations and accumulates in the
production site. As recalled above, in the model the only link among the locations
is the transboundary pollution. Letting the diffusivity to zero means to reset this
channel of interdependence and therefore the model reduces to an independent (uni-
dimensional) optimization problem to each point of the space whose solution can
be obtained plugging the first expression of (13) in (18). Conversely the second
limit of (13) correspond to the infinite diffusivity benchmark that is the case where,
at each moment, the speed of the diffusion process is so fast that the pollution
is instantaneously redistributed uniformly throughout the space. For this reason,
whatever the specific value of δ or of w in the precise point of the emission is not
relevant but only global averages of the parameters matters.
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We can exploit a little more the elements we gathered so far to better describe
the economic intuition about the function α. In the non-spatial version of the
model or, equivalently, in a specification of the model where all the parameters are
constant in space, the value of α is w

ρ+δ
. This is, not surprisingly, also the pointwise

expression appearing in (13) when σo → 0+ because, as already remarked, in absence
of diffusion the model reduces to a juxtaposition of independent one-dimensional
problems. This expression can be rewritten as∫ +∞

0

e−ρte−δtw dt.

Recalling that δ is the natural decay of the pollution, the previous expresion is
exactly the sum (the integral indeed) of all future (discounted) disutility of a unit
of pollutant.

When we add the space to the model a second order term, depending on σ,
appears in the equation which defines α, see (12). This comes of course from the
spatial diffusion process of the pollution. The solution of that equation (except when
both w and δ do not depend on time) is given by a space-heterogeneous function
α. This heterogeneity is due to the fact that, in the model, a unit of pollutant has
different effect on the social utility depending on where it is located and how it is
going to spread in the future. In terms of pollution-disutility, locations are indeed
different for two reasons: the different decay of pollutions and the different unitary
instantaneous disutilities w(x). In the general spatial case, the function α at a point
x is the (total/social) future discounted disutility of a unit of pollutant initially
located at point x. This fact is particularly transparent is one look at equation (31)
in the Appendix. It reads as

〈α, p0〉 =

〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
.

If one takes p0 to be the Dirac delta in a certain spatial point x, denoted by ∆{x},
the previous expression formally gives

(14) α(x) =

∫ ∞
0

e−ρt
(∫

S1

w(ξ)ϕ(t, ξ;x) dξ

)
dt

where ϕ(t, ξ;x) is the fundamental solution of the parabolic equation{
∂ϕ
∂t

(t, ξ) = ∂
∂ξ

(
σ(ξ)∂ϕ

∂x
(t, ξ)

)
− δ(ξ)ϕ(t, ξ),

ϕ(0, ξ) = ∆{x}(ξ)
,

i.e. the spatial density (with respect to the variable x) at time t of a pollutant
initially concentrated at point x, once one takes into account the diffusion process
and the natural decay. Thus, the term

∫
S1 w(ξ)ϕ(t, ξ;x) dξ measures the instanta-

neous disutility all over the space and the whole expression in the right side hand
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of (14) is the total spatial (temporally discounted) future social disutility of a unit
of pollutant initially concentrated at x.

3.3. Characterization of the optimal control. We describe now how previous
results can be used to rewrite the functional in a tranformed form and then to
use it to explicitly find the optimal solution of the problem, the related trajectory
and welfare. The main results are described first (Theorem 3.6) in the Hilbert space
formalism introduced above and then restated (Corollary 3.7) using a more readable
PDE notation.

Theorem 3.6. Let Assumption 3.1 hold.

(i) The functional (9) can be rewritten as

(15)

J
(
p0; I

)
= −〈α, p0〉+

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I(t)

)1−Γ(t)

1− Γ(t)
,1

〉
− 〈α,Ψ(t)I(t)〉

]
dt.

(ii) The control I∗ given by

I∗(t)(x) := (ψ(t, x)α(x))−
1

γ(t,x) (a(t, x)− 1)
1

γ(t,x)
−1.(16)

belongs to A and is the unique optimal control of the problem.

(iii) The optimal state at time t ≥ 0, that is P ∗(t), is given by

(17) P ∗(t) := etLp0 +

∫ t

0

e(t−s)LΨ(s)I∗(s)ds.

(iv) The value function is finite and affine in p0; more precisely,

v(p0) = J
(
p0; I∗

)
= 〈α, p0〉+ q,

where

q :=

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I∗(t)

)1−Γ(t)

1− Γ(t)
,1

〉
− 〈α,Ψ(t)I∗(t)〉

]
dt.

Proof. See Appendix A. �

In the following corollary we summarize the results we have obtained so far
rephrasing them in the PDE setting, where we use the identification of S1 with
the real interval [0, 2π] with the identification of the extremes 0 and 2π.

Corollary 3.7. Let Assumption 3.1 hold.
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(i) The optimal investment production input is given by

i∗(t, x) = (ψ(t, x)α(x))−
1

γ(t,x) (a(t, x)− 1)
1

γ(t,x)
−1.(18)

where α is the unique solution to the following ODE
ρα(x)− d

dx

(
σ(x)

dα

dx
(x)

)
+ δ(x)α(x) = w(x), x ∈ (0, 2π),

α(0) = α(2π), α′(0) = α′(2π).

(ii) The dynamics of the pollution profile p∗ along the optimal path is the unique

solution to the following parabolic PDE

(19)

∂p∗

∂t
(t, x) =

∂

∂x

(
σ(x)

∂p∗

∂x
(t, x)

)
− δ(x)p∗(t, x) + α(x)

− 1
γ(t,x)

(
a(t, x)− 1

ψ(t, x)

) 1
γ(t,x)

−1

, x ∈ (0, 2π),

p∗(t, 0) = p∗(t, 2π),
∂p∗

∂x
(t, 0) =

∂p∗

∂x
(t, 2π), t ≥ 0,

p∗(0, x) = p0(x), x ∈ [0, 2π].

(iii) The social welfare is

v(p0) =

∫ 2π

0

α(x)p0(x)dx+

∫ ∞
0

e−ρt
(∫ 2π

0

γ(t, x)

1− γ(t, x)

(
a(t, x)− 1

ψ(t, x)α(x)

) 1
γ(t,x)

−1

dx
)

dt,

In the previous statements we have seen the explicit solution of the optimal prob-
lem of the planner. A first, eminently technical, observation concerns the transfor-
mation of the functional. In fact, the first result of Theorem 3.6 is that the functional
(9) can be rewritten in the form (15). The new form is particularly useful as, in
this expression, the state P no longer appears and it is only given in terms of the
control I; this fact greatly simplifies the analysis. Thanks to this transformation,
it is indeed much easier to find the expression of the optimal investment and the
subsequent results.

Looking at the expressions that appear in Corollary 3.7, it is immediately evident
that all the heterogeneities of the problem enter directly and in a non-trivial way in
the solution. Partly, they appear explicitly in the expressions of the optimal spa-
tial profile of the investment or of the parabolic equation describing the evolution
of the spatial distribution of pollution and partly they contribute to these expres-
sions through the expression of the function α. In this way the model is sensitive
to heterogeneities of different nature: environmental heterogeneities (the ability to
regenerate of the ecological context measured in each place by δ), productive het-
erogeneities (the productivity which depends exogenously on both the location and
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the time) and preferences heterogeneities (both through the spatial heterogeneity of
the disutility of pollution w and through the spatial heterogeneity of the elasticity
of intertemporal substitution).

3.4. Transitional and long-run analysis of P ∗. In this section we analyze both
the transitional dynamics of P ∗(t) and its limit behavior as t→∞.

3.4.1. Transitional dynamics through series expansion. Recall that a non identically
zero function φ ∈ D(L) is called eigenfunction of L if there exists a real number
(called eigenvalue) λ such that Lφ = λφ.

Proposition 3.8. Let Assumption 3.1 hold. There exists a decreasing sequence

{λn}n∈N ⊂ (−∞, 0] such that λn → −∞ and an orthonormal basis {en}n∈N ⊂ H

such that

en ∈ D(L) and Len = λnen ∀n ∈ N.

Then the pollution profile along the optimal trajectory can then be expressed as a

convergent series in H:

(20) P ∗(t) =
∑
n∈N

p∗n(t)en, where p∗n(t) := 〈P ∗(t), en〉

and the expressions of the coefficients p∗n(t) can be explicitly given in the following

form

(21) p∗n(t) := 〈p0, en〉eλnt +

∫ t

0

eλn(t−s)ξ∗n(s)ds, ∀t ≥ 0, ∀n ∈ N,

where

(22) ξ∗n(t) := 〈Ψ(t)I∗(t), en〉, ∀t ≥ 0, ∀n ∈ N.

Proof. See Appendix A. �

The previous result allows to express the solution of the equation (19) along the
optimal path in terms of a series of space functions not dependent on time multiplied
by time-dependent coefficients. This expression, which can be used in general to
simulate the model, takes a particularly familiar form in some specific cases. For
example, if the diffusivity σ and the natural decay of pollution δ are uniform in
the spaces, a standard Fourier series is obtained, and the functions en are sins and
cosines.
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Observe also that (20) can also be used to express the total pollution
∫
S1 p

∗(t, x)dx
as a function of time, namely,∫

S1

p∗(t, x)dx =
∑
n∈N

〈en,1〉 p∗n(t), t ≥ 0.

where p∗n(t) is given in (21). Indeed, again using this result, an even more precise
description of the total pollution at time t can be given whenever the following when
δ is constant in space as shown by the following proposition.

Proposition 3.9. Let Assumption 3.1 hold and assume that the function δ is con-

stant, i.e. δ(·) ≡ δ0≥ 0. Then∫
S1

p∗(t, x)dx =

(∫
S1

p0(x)dx

)
e−δ0t +

∫ t

0

e−δ0(t−s)
(∫

S1

ψ(s, x)i∗(s, x)dx

)
ds.

Proof. See Appendix A. �

3.4.2. Limit behaviour in the time-homogeneous case. We consider now the special
case when the productivity coefficients and the ecological efficiency of the production
process are time-independent: a(t, x) = a(x), ψ(t, x) = ψ(x); similarly for the
inverse of the elasticity of intertemporal substitution, i.e. γ(t, x) = γ(x). In this
case, the expressions of the optimal control is time independent

I∗(t)(x) ≡ Ī∗(x) = (ψ(x)α(x))−
1

γ(x) (a(x)− 1)
1−γ(x)
γ(x) ,(23)

and we have a direct characterization of the long-run profile of the pollution stock
along the optimal path as described in the following proposition.

Proposition 3.10. Let Assumption 3.1 hold. Assume that the coefficients a, γ, ψ

are time-independent and that δ 6≡ 0. Then we have

lim
t→∞

P ∗(t) = p∗∞ in H,

where p∗∞ is the unique solution to the ODE

(24)
d

dx

(
σ(x)

dp∗∞
dx

(x)

)
− δ(x)p∗∞(x) + α(x)

− 1
γ(x)

(
a(x)− 1

ψ(x)

) 1
γ(x)
−1

= 0, x ∈ (0, 2π),

p∗∞(0) = p∗∞(2π),
dp∗∞
dx

(0) =
dp∗∞
dx

(2π).

Proof. See Appendix A. �
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4. Conclusion

In this paper, we have provided with a generic spatiotemporal non-linear-
quadratic framework for transboundary pollution control. The objective functional
to be maximized is a Benthamite social welfare function depending on the intertem-
poral stream of consumption at any location, and internalizing the spatial external-
ities resulting from pollution diffusion. The essential contribution of this work is to
identify optimal pollution control policies with a very large account of geographic
heterogeneity: (i) heterogeneity in productivity and in ecological efficiency of the
production process, which also includes the broad spatio-temporal characteristics of
the exogenous technological process; (ii) heterogeneity in preferences, notably in the
intertemporal elasticity of substitution and in the disutility from the pollution, and
finally: (iii) the heterogeneity in the environmental/ecological context, in particular
in terms of speed of diffusion of pollutants and local regeneration capacity.

Despite the huge complexity of the problem, we have been able to produce a so-
lution method which has two unexpected virtues (given the complexity of the task).
First, it allows for closed-form solutions, and second, the solutions produced are
based on a neatly singled out spatial function with a clear economic interpretation.
We do believe that such a framework can be used in a large set of applications given
the generality of most of the specifications. Clearly, one can still visualize a number
of possible future extensions (for example the incorporation of demographic dy-
namics with space-dependent mortality depending on local pollution) but we firstly
believe that the next step should be the exploitation of the variety of applications
allowed by this framework.
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Appendix A. Proofs

Proof of Proposition 3.2. Due to Assumption 3.1, L is a closed, densely defined, un-

bounded linear operator on the space H (see, e.g. Lunardi, 1995, p. 71-75, Sections

3.1 and 3.1.1). A core for it is the space C∞(S1;R) (see, e.g., Engel and Nagel, 1995,

pages 69-70). Let ϕ ∈ C∞(S1;R). Integration by parts yields

〈Lϕ,ϕ〉 =

∫
S1

(Lϕ)(x)ϕ(x)dx

= −
∫
S1

σ(x)|ϕ′(x)|2dx−
∫
S1

δ(x))|ϕ(x)|2dx ≤ 0(25)

Since C∞(S1;R) is a core for L, (26) extends to all functions ϕ ∈ D(L), showing that the

operator L is dissipative. Similarly, a double integration by parts shows that

(26) 〈Lϕ,ψ〉 = 〈ϕ,Lψ〉, ∀ϕ,ψ ∈ C∞(S1;R).

Again, since C∞(S1;R) is a core for L, (26) extends to all couples of functions in D(L),

showing that L is self-adjoint, i.e. L = L?, where L? denotes the adjoint of L. Therefore,

by Engel and Nagel (1995) (in particular, Chapter II), L generates a strongly continuous

contraction semigroup (etL)t≥0 ⊂ L(H); in particular, since ρ > 0, by standard theory

of strongly continuous semigroup in Banach spaces (see, e.g. pages 82-83, Chapter II

and Theorem 1.10, Chapter II of Engel and Nagel 1995), it follows that ρ belongs to the

resolvent set of L and that (6) holds. �

Proof of Proposition 3.3. First of all we observe that, by Assumption 3.1(ii), the first term

in the functional is always positive (Case (A)) or always negative (Case (B)), possibly

infinite. Hence to prove the claim it is enough to show that, given any p0 ∈ H, the term∫∞
0 e−ρt〈w,P (t)〉dt is well defined and finite for every I ∈ A. We have

∫ ∞
0

e−ρt
〈
w,P (t)

〉
dt =

∫ ∞
0

e−ρt
〈
w, etLp0 +

∫ t

0
e(t−s)LΨ(s)I(s)ds

〉
dt(27)
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Now, since w is bounded and etL is a contraction, the integral
∫∞

0 e−ρt〈w, etLp0〉dt is finite.

Moreover, for all T > 0 we get, by Fubini-Tonelli’s Theorem∫ T

0

(∫ t

0
e−ρt

〈
w, e(t−s)LΨ(s)I(s)

〉
ds

)
dt

=

∫ T

0

(∫ t

0
e−ρs

〈
w, e−(ρ−L)(t−s)Ψ(s)I(s)

〉
ds

)
dt

=

∫ T

0
e−ρs

〈
w,

∫ T

s
e−(ρ−L)(t−s)Ψ(s)I(s)dt

〉
ds

Using again the fact that e(t−s)L is a contraction and Assumption 3.1, we have, for each

s ≥ 0, T ≥ 0∥∥∥∥∫ T

s
e−(ρ−L)(t−s)Ψ(s)I(s)dt

∥∥∥∥ ≤ ∫ ∞
s

e−ρ(t−s)‖Ψ(s)I(s)‖dt ≤ 1

ρ
‖Ψ(s)I(s)‖.

Hence, by definition of A, the claim follows sending T to +∞. �

Proof of Proposition 3.4. The fact that α solves (12) and the fact that, by Assumption

3.1, we have σ(·) > 0 yield

α′′(x) =
1

σ(x)

[
(ρ+ δ(x))α(x)− σ′(x)α′(x)− w(x)

]
, for a.e. x ∈ S1.

Since α ∈ C1(S1;R), it follows, by Assumption 3.1, that α ∈ C2(S1;R).

Now, let x∗ ∈ S1 be a minimum point of α over S1. Then α′′(x∗) ≥ 0. Plugging this

into (12) we get

(ρ+ δ(x∗))α(x∗) = σ(x∗)α
′′(x∗) + w(x∗) ≥ w(x∗),

and the estimate from below follows. The estimate from above can be obtaind symmetri-

cally. �

Proof of Proposition 3.5. Case σ → 0+. First, notice that under the above assumptions

(12) reads as

(28) ρασo(x)− σoα′′σo(x) + δ(x)ασo(x) = ŵ(x), x ∈ S1,

By Proposition 3.4 we have

α∗(x) := lim inf
σo→0+

{
ασo(ζ) : σo ≤ σo, ζ ∈ S1, |ζ − x| ≤ 1/σo

}
≥ min

S1

w

ρ+ δ
,

α∗(x) := lim sup
σo→0+

{
ασo(ζ) : σo ≤ σo, ζ ∈ S1, |ζ − x| ≤ 1/σo

}
≤ max

S1

w

ρ+ δ
.
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Clearly α∗ ≥ α∗. By stability of viscosity solutions (see e.g. Crandall et al., 1992), the

latter functions are, respectively, (viscosity) super- and sub-solution to the limit equation

ρα0(x) + δ(x)α0(x) = w(x),

whose unique solution is

α0(x) =
w(x)

ρ+ δ(x)
.

By standard comparison of viscosity solutions one has α∗ ≥ α0 ≥ α∗. It follows that

∃ lim
σo→0+

ασo(x) = α∗(x) = α∗(x) = α0(x) ∀x ∈ S1.

Case σ → +∞. First, we rewrite (28) as

(29) α′′σo(x) =
1

σo
[ρασo(x) + δ(x)ασo(x)− w(x)] , x ∈ S1,

From this and from Proposition 3.4, we see that ασo is equi-bounded and equi-uniformly

continuous with respect to σo ≥ 1. Hence, by Ascoli-Arzelà Theorem we have that, from

each sequence σn → +∞, we can extract a subsequence σnk such that

lim
k→+∞

ασnk = α∞ uniformly on x ∈ S1,

for some α∞ ∈ C(S1;R). Again by stability viscosity solutions, α∞ must solve, in the

viscosity sense, the limit equation

α′′∞(x) = 0, x ∈ S1.

Hence, it must be α∞ ≡ c0 for some c0 ≥ 0. To find the value of c0 we may integrate (28)

over S1 getting ∫
S1

(ρ+ δ(x))ασo(x)dx =

∫
S1

w(x)dx.

Letting σo → +∞ above, we get

c0 =

∫
S1 w(x)dx∫

S1(ρ+ δ(x))dx
.

As this value does not depend on the sequence σn chosen, the claim follows. �

Proof of Theorem 3.6. (i) Using (8) it is possible to rewrite the second part of (9). We

first set

e−(ρ−L)t := e−ρtetL, t ≥ 0,
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and we write∫ ∞
0

e−ρt
〈
w,P (t)

〉
dt =

∫ ∞
0

e−ρt
〈
w, etLp0 +

∫ t

0
e(t−s)LΨ(s)I(s)ds

〉
dt

=

〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
+

∫ ∞
0

e−ρt
〈
w,

∫ t

0
e(t−s)LΨ(s)I(s))ds

〉
dt

(30)

Note that the first term of the right hand side is the only one which depends on the initial

datum and, by (6), it can be rewritten as

(31)

〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
=
〈
w, (ρ− L)−1p0

〉
=
〈
(ρ− L)−1w, p0

〉
= 〈α, p0〉 ,

where α is defined in (10).

We look now at the last term of the last line of (30). It can be rewritten by exchanging

the integrals as follows:∫ ∞
0

(∫ t

0
e−ρt

〈
w, e(t−s)LΨ(s)I(s)

〉
ds

)
dt

=

∫ ∞
0

(∫ t

0
e−ρs

〈
w, e−(ρ−L)(t−s)Ψ(s)I(s)

〉
ds

)
dt

=

∫ ∞
0

e−ρs
〈
w,

∫ ∞
s

e−(ρ−L)(t−s)Ψ(s)I(s)dt

〉
ds

=

∫ ∞
0

e−ρs
〈
w, (ρ− L)−1Ψ(s)I(s)

〉
ds

=

∫ ∞
0

e−ρs
〈
(ρ− L)−1w,Ψ(s)I(s)

〉
ds

Hence, we can finally rewrite (9) as (15).

(ii) After writing explicitely the inner products in (9), the integral can be optimized

pointwisely. We end up, for (t, x) ∈ R+ × S1 fixed, with the optimization

sup
ι≥0

{(
(a(t, x)− 1)ι

)1−γ(t,x)

1− γ(t, x)
− α(x)ψ(t, x)ι

}
;

so, we easily get the claimed expression (16) of the candidate unique optimal control I∗.

On the other hand, we need to verify that I∗ ∈ A. Indeed, by Assumption 3.1, we have

Ψ(t)(x)I∗(t)(x) = α(x)
− 1
γ(t,x)ψ(t, x)

1− 1
γ(t,x) (a(t, x)− 1)

1
γ(t,x)

−1

= α(x)
− 1
γ(t,x)

(
a(t, x)− 1

ψ(t, x)

) 1
γ(t,x)

−1

.
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Since α is bounded from above and from below by positive constants, then so is α(x)
− 1
γ(t,x)

by Assumption 3.1(ii). Consequently, by Assumption 3.1(iii), we get, for some C0 > 0

0 ≤ Ψ(t)(x)I∗(t)(x) ≤ C0e
gt, ∀x ∈ S1.

Since ρ > g by Assumption 3.1(iv), we get I∗ ∈ A.

(iii)-(iv) These claims immediately follow by straightforward computations. �

Proof of Proposition 3.8. Consider the operator (1 − L)−1 ∈ L(H). The range of this

operator is the space D(L) = W 2,2(S1;R), which by Kondrachov’s Theorem is embedded

in H = L2(S1;R) with compact embedding. It follows that (1 − L)−1 is compact; being

also self-adjoint, by standard spectral theory in Hilbert spaces, there exists an orthonormal

basis of eigenvectors for it, hence also for L. Hence, considering also that L is dissipative

and unbounded, there exists a decreasing sequence {λn}n∈N ⊂ (−∞, 0] such that λn →
−∞ and an orthonormal basis {en}n∈N ⊂ H such that

(32) en ∈ D(L) and Len = λnen ∀n ∈ N.

Consider the Fourier series expansion

P ∗(t) =
∑
n∈N

p∗n(t)en, where p∗n(t) := 〈P ∗(t), en〉.

We can write explicitly the Fourier coefficients p∗n(t) by the following argument. By Propo-

sition 3.2, Chapter 1, Part II of Bensoussan et al. (2007), the function P ∗ defined in (17)

is also a weak solution to (7) with I = I∗, i.e., taking into account that L is self-adjoint,

i.e. L = L?, it holds

〈P ∗(t), ϕ〉 = 〈p0, ϕ〉+

∫ t

0

(
〈P ∗(s),Lϕ〉+ 〈Ψ(s)I∗(s), ϕ〉

)
ds ∀t ≥ 0, ∀ϕ ∈ D(L).

In particular, taking into account (32), we have

p∗n(t) = 〈P ∗(t), en〉 = 〈p0, en〉+

∫ t

0

(
λn〈P ∗(s), en〉+ 〈Ψ(s)I∗(s), en〉

)
ds

= 〈p0, en〉+

∫ t

0

(
λnp

∗
n(s) + ξ∗n(s)

)
ds ∀t ≥ 0, ∀n ∈ N.

Then ∫
S1

p∗(t, x)dx = 〈P ∗(t),1〉 =

〈∑
n∈N

p∗n(t)en,1

〉
=
∑
n∈N
〈en,1〉 p∗n(t), t ≥ 0,

as claimed. �
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Proof of Proposition 3.9. First we observe that, in this case, e0(·) ≡ 1√
2π

, λ0 = −δ0.

Hence ∫
S1

p∗(t, x)dx = 〈P ∗(t),1〉 =
√

2π〈P ∗(t), e0〉.

From the mild form of P given in (8) we now get, for t ≥ 0,

〈P ∗(t), e0〉 = 〈etLp0, e0〉+

∫ t

0
〈e(t−s)LΨ(s)I∗(s), e0〉ds

= 〈p0, e
tLe0〉+

∫ t

0
〈Ψ(s)I∗(s), e(t−s)Le0〉ds

= 〈p0, e
−δ0te0〉+

∫ t

0
〈Ψ(s)I∗(s), e−δ0(t−s)e0〉ds,

where we used that e−δ0t is the eigenvalue of etL associated to e0. The claim immediately

follows. �

Proof of Proposition 3.10. In this case I∗(·) ≡ Ī∗ ∈ H is time independent too. Since

δ 6≡ 0, we have λ0 < 0. Let us write

L = L0 − λ0, where L0 := L+ λ0,

and note that L0 is dissipative by definition, hence esL0 is a contraction. Then, setting

Ψ̄ := ψ(·) ∈ H, we can rewrite

P ∗(t) = eλ0tetL0p0 +

∫ t

0
eλ0(t−s)e(t−s)L0Ψ̄Ī∗ds = eλ0tetL0p0 +

∫ t

0
eλ0tetL0Ψ̄Ī∗ds,

and take the limit above when t → ∞. Since esL0 is a contraction, the first term of the

right hand side converges to 0, whereas the second one converges to

P ∗∞ :=

∫ ∞
0

e−δ0sesL0Ψ̄Ī∗ds ∈ H.

Then, the limit state P ∗∞ ∈ H can be expressed using again Proposition 3.14, page 82 and

Theorem 1.10, Chapter II of Engel and Nagel (1995) as

P ∗∞ = (δ0 − L0)−1Ψ̄Ī∗,

i.e. P ∗∞ is the solution to

(δ0 − L0)P ∗∞ = Ψ̄Ī∗,

equivalently

LP ∗∞ + Ψ̄Ī∗ = 0,

i.e., in the PDE formalism, p∗∞(·) := P ∗∞ solves (24). �
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