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ABSTRACT Positron emission tomography (PET) is a molecular medical imaging modality which is
commonly used for neurodegenerative diseases diagnosis. Computer-aided diagnosis, based on medical
image analysis, could help quantitative evaluation of brain diseases such asAlzheimer’s disease (AD). A novel
method of ranking the effectiveness of brain volume of interest (VOI) to separate healthy control from AD
brains PET images is presented in this paper. Brain images are first mapped into anatomical VOIs using an
atlas. Histogram-based features are then extracted and used to select and rank VOIs according to the area
under curve (AUC) parameter, which produces a hierarchy of the ability of VOIs to separate between groups
of subjects. The top-ranked VOIs are then input into a support vector machine classifier. The developed
method is evaluated on a local database image and compared to the known selection feature methods. Results
show that using AUC outperforms classification results in the case of a two group separation.

INDEX TERMS Machine learning, computer-aided diagnosis, first order statistics, feature selection, positron
emission tomography, classification, Alzheimer’s disease.

I. INTRODUCTION
Alzheimer Disease (AD) is a degenerative and incurable brain
disease which is considered the main cause of dementia in
elderly people worldwide. It is expected that 1 in 85 people
will be affected by 2050 and the number of affected people
will double in the next decades [1]. The diagnosis of this
disease is done by clinical, neuroimaging and neuropsycho-
logical assessments. Neuroimaging evaluation is based on
nonspecific features such as cerebral atrophy, which appears
very late in the progression of the disease. Therefore, devel-
oping new approaches for early and specific recognition of
AD is of crucial importance.

Several imaging biomarkers to identify AD are effec-
tive [2], including structural Magnetic Resonance Imag-
ing (MRI) [3]–[7], Single Photon Emission Computed
Tomography (SPECT) [8], electroencephalographic EEG
rhythms [9], [10] and Positron Emission Tomography
(PET) [11], [12]. In addition to these imaging bio-
markers, biological biomarkers such as Cerebral Spinal

Fluid (CSF) [6] have also been developed for AD diagno-
sis. It has been shown that PET functional imaging asso-
ciated with FluoroDeoxyGlucose (18F-FDG) as a tracer
is able to increase the confidence of neurodegenerative
diagnosis [13]–[16].

Early detection of AD is important because it increases the
chances of early treatment and may enable pre-emptive and
even preventative therapies in the future.

The clinical diagnosis of AD uses a variety of tests
including patient’s family history, physical examination,
mini-mental state examination, and/or neuroimaging [17].
Recently, functional neuroimaging technologies, such as
the Positron Emission Tomography (PET), has become
a powerful tools in the diagnosis of AD since it is
now possible to reveal pathophysiological changes before
irreversible anatomical changes are present. 18F-Fluoro-
deoxyglucose (FDG) is a widely used radioactive tracer in
PET imaging. FDG-PET provides useful information about
the cerebral glucose metabolic rate.
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Studies have demonstrated reduced glucose metabolism in
a small number of brain regions in AD patients comparing
to normal subjects [18], [19]. As such difference becomes
noticeable, researchers are increasingly interested in distin-
guishing AD patients from normal subjects by utilizing their
brain images. As a non-negligible complementary way in
the diagnosis of AD, PET imaging has high specificity and
sensitivity, even a long period before the full-blown dementia
has developed.

Visual evaluation of brain PET images is qualitative and
deals with two problems: it is time consuming and opera-
tor dependent [20]. Visual method depends greatly on the
observer’s experience and lacks a clear cut-off between nor-
mal and pathological finding. This has been highlighted in
the imaging literature [16]. FDG-PET is today recommended
and largely used to contribute to the diagnosis of AD in
case of atypical presentations, especially in young patients,
to distinguish AD from focal neurodegenerative diseases
and from non-neurodegenerative diseases (encephalitis, psy-
chiatric disorders). This evaluation is usually conducted on
visual interpretation and depends on the experience of the
physician. An automated classification method may con-
tribute to improve the robustness and the reproducibility
of the diagnosis across different centres, of course if this
evaluation remains compatible with a clinical work-up in
terms of time spending and necessary resources. Moreover,
in the perspective of future disease modifying therapies in
AD, early diagnosis at initial stages of the disease will be
required to stop or slow down the disease before the diffusion
of the brain lesions, with at this step a greater uncertainty
of the visual PET interpretation because of possible limited
abnormalities, which may increase the need of computer-
aided methods. Computer-Aided Diagnosis (CAD) could
bring a valuable tool to quantitatively evaluate brain disease
such as AD.

Image processing techniques applied to PET images have
been widely used for CAD purposes [21], including feature
selection and extraction [12], [22]–[31], segmentation: Fuzzy
C-Means [32], Gaussian Mixture Model [33], [34],
Dynamic Neuro-Fuzzy technique [35], and K-Means clus-
tering [36] and classification: Random Forest (RF) [23],
Support Vector Machine (SVM) [22], [12], [11], [37], [38],
K-Nearest Neighbour (KNN) [37], [39] and Neural Net-
works [25], [40]–[42].

The general scheme of analyzing PET images for clas-
sification purposes consists in acquiring and preprocessing
images first, then applying a feature selection or extraction
technique in order to reduce the amount of redundant infor-
mation and finally input these chosen feature to a classifier.
Many approaches have been used to tackle the problem of
feature selection and extraction including Fischer Discrimi-
nates Ratio (FDR) [22], Non-Negative Matrix Factorization
(NMF) [22], [30], Partial Least squares (PLS) [23], Gaussian
Mixture Models (GMM) [12], Wavelets Packet Trans-
form [25], Principal Component Analysis (PCA) [26]–[29]
and Independent Component Analysis [31] (ICA).

The curse of dimensionality problem or the small sample
size is a well-known problem encountered in neuroimaging
where the features used for the classification process are
higher than the sample used for the training process. This is
the case of the Voxel-Based Analysis (VBA), where the brain
is considered as a set of raw voxels, on which some statistical
tests Student’s t-Test [43]–[45] or Mann-Whitney-Wilcoxon
U-Test [46], [47] are computed and then input to a classifier.
A lot of voxels are redundant and irrelevant for classification
tasks and therefore feature selection is needed.

Feature selectionmethods focus on the selection of a subset
of features that describes well the input data while reducing
effect noise or irrelevant variables and still provides good
classification results [48]. They can be broadly classified into
three groups: filters, wrapper and embedded methods.

Wrapper methods evaluate the utility of feature subsets
using the results of a specified classifier. These methods
allow to detect the possible interactions between variables.
A search procedure within the possible feature subsets space
is done. As the number of subsets grow exponentially with
the number of features, a heuristic or a sequential selection
algorithms are used for search purposes [49]. The two main
disadvantages of these methods are the increasing overfitting
risk when the number of observations is insufficient and the
significant computation time when the number of variables
is large [50], [51]. In the context of AD diagnosis, Chyzhyk
et al. [52] used a wrapper method with a genetic algorithm
for optimal subset search.

Embedded methods reduce the computational time com-
pared to wrapper methods by incorporating the feature selec-
tion in the training process of a classifier. These are very
sensitive to the learning algorithm used to set feature subset.
Support Vector Machine (SVM) approaches [53] or decision
tree [54] algorithms are some examples of embedded meth-
ods. This approach has been used forMRI brain classification
in the case of AD diagnosis [55].

Filter methods do not depend on any classifier but can be
considered as pre-processing steps based on specific crite-
rion to evaluate the relevance of features. One of the main
disadvantages of these approaches is that they ignore the
interaction between features and hence are unable to remove
redundant features. The most proposed techniques are uni-
variate, this means that each feature is considered separately,
for instance on mutual information [56], Fisher discrimi-
nant ratio [30], [57], Pearson correlation coefficient [58],
Laplacian score [59], gain ratio [60], [61], chi-square test
[62], Relief [63]. On the other hand, some multivariate
methods which can handle both irrelevant and redundant
features have been used to take into account dependence
between features. Minimal-Redundancy Maximal-Relevance
(mRMR) proposed by Peng et al. [64] is a well-known
method where the selection of the feature subset is based on
mutual information. Other criteria have also been proposed
including conditional mutual information [65] or the second
approximation of the joint mutual information [66], cluster-
ing technique [67], Fast correlation based filter [68], [69]
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Relevance-redundancy feature selection [70]. More details
can be found in a recent feature selection survey [71], in [72]
for Alzheimer’s disease and in [73] in the general case.

There has been a growing interest in using the FDG rate
for AD/HC classification [74]. Four main groups of meth-
ods have been studied: voxels as feature (VAF)-based [75],
discriminative voxel selection-based [76], [77], atlas-
based [78], [79], and projection-based methods [30].

A lot of radiomicmethods exist and have been used on PET
images especially for diagnosis, staging, prognosis and ther-
apy responses assessment in oncology. The proposedmethod,
based on statistical features extraction from histograms and
described in our paper, derives from the expertise transfer that
we obtained, when discussing with nuclear medicine doctors
with whom we were working. In neurodegenerative diseases
there is no particular tumour region in which a Standardized
Uptake Value (SUV) could be computed. The main important
features we need to compute, according to doctors, is the
anatomical Volumes of Interest (VOI) uptake statistical prop-
erties (average, variance, and heterogeneity through skewness
and asymmetry). These are the first order statistical moments
extracted from regions’ histograms. The information being
captured using histograms is the difference of FDG uptake
across VOI, as it important for Alzheimer’s Disease to detect
reduced glucose metabolism in some VOI in the brain.

In this paper a novel supervised filter-based feature selec-
tion is developed. It allows to select the best feature subset
and rank them according to the ‘‘Area Under Curve’’ (AUC),
a criterion based on Receiver Operating Characteristic (ROC)
in the feature space. With a view to applying this approach on
PET brain images, a brain mapping using an atlas is applied
to segment PET into Volumes-Of-Interest (VOIs). Statistical
moments of each VOI’s grey level histogram are computed
and using the developed technique it was possible to rank
the ability of a VOI or a subset of VOIs, characterized each
by a subset feature vector, to distinguish between AD and
Healthy Control (HC) brain images. The performance of the
proposed method is compared with other well-known feature
selection methods in terms of classification success rates
using the feature subset selected by eachmethod as an input to
a Support Vector Machines (SVM) classifier. The evaluation
is done on our own FDG PET image database and results
show that the proposed approach is amongst the algorithms
with the best results.

The rest of the paper is organized as follows. Section II
gives a brief description of the developed approach. The main
contribution on feature selection and region ranking is pre-
sented in section III. Section IV reports the obtained results,
performance evaluation and comparison. Finally, a conclu-
sion and future work are given in section V.

II. PROPOSED METHOD DESCRIPTION
A. OVERVIEW OF THE PROPOSED METHOD
The flowchart of the proposed method is shown in Fig. 1.
As for any CAD system, it consists in several important
stages:

FIGURE 1. Flowchart of the proposed CAD system.

1. 18F-FDG-PET data acquisition and preprocessing.
2. Computed features
3. Mono-parametric analysis feature selection.
4. Multi-parametric Volume-Of-Interest (VOI) selection

and ranking.
5. Classification.
The different stages appearing in this flowchart are detailed

in the next sections.

TABLE 1. Demographic details of the dataset.

B. IMAGE DATABASE
FDG PET scans were collected from the ‘‘La Timone’’
University Hospital, in the Nuclear Medicine Department
(Marseille, France). The database was built up based on imag-
ing studies of subjects that followed the standardized protocol
of a hospital-based service. PET scans were performed using
an integrated PET/CT camera (Discovery ST, GE Healthcare,
Waukesha, USA), with 6.2 mm axial resolution, allowing
47 contiguous transverse sections of the brain of 3.27 mm
thickness. 150MBq of 18FDGwere injected intravenously in
an awake and resting state, with eyes closed, in a quiet envi-
ronment. Image acquisition started 30 min after injection and
ended 15 min later. Images were reconstructed using ordered
subsets expectation maximization algorithm, with 5 itera-
tions and 32 subsets, and corrected for attenuation using
CT transmission scan. The local database image enrolled
171 adults 50-90 years of age, including 81 patients with AD
and 61 HC and 29 MCI (Mild Cognitive Impairment). Their
demographic characteristics are summarized in Table 1. HC
were free from neurological/ psychiatric disease and cogni-
tive complaints, and had a normal brain MRI. Patients exhib-
ited NINCDS-ADRDA [80] clinical criteria for probable AD.
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C. IMAGE PREPROCESSING
Images were spatially normalized because of brain volume
variation, shape and position from one patient to another.
Spatial normalization consisted in applying deformations on
volumes so that the whole-brain statistical analysis was per-
formed at voxel-level using SPM8 software [43] (Wellcome
Department of Cognitive Neurology, University College,
London, UK). The data were spatially normalized onto the
Montreal Neurological Institute atlas (MNI).This method
assumes an affine generic model with 12 parameters [22] and
a cost function which presents an extreme value when the
image and a template that represents our ‘brain space’ corre-
spond to each other. The spatial normalization is achieved by
optimizing the quadratic difference between the template and
each image. After this spatial normalization, the dimensions
of the resulting voxels were 2 × 2 × 2 mm and the resulting
images of 79× 95× 68 ≈ 5× 105 voxels size. These images
were then smoothed with a Gaussian filter (with different
values (0, 4 and 8) of Full Width at Half Maximum (FWHM)
to blur individual variations in gyral anatomy and to increase
the Signal to Noise Ratio (SNR) [82]. The best FWHM
appeared to be 8.

After spatial normalization, intensity normalization was
required in order to perform direct images comparison
between different subjects. Intensity normalization was nec-
essary since global brain activity varies from one subject to
another. Different normalization methods were tested [83]
to determine the most appropriate one. The retained method
consisted in dividing the intensity level of each voxel by the
intensity level mean of the gray-matter global brain VOI.

III. FEATURE SELECTION AND VOLUME
OF INTEREST RANKING
In this section, we present the main idea of both feature
selection and VOI ranking. Brain images are segmented into
L VOIs according to AAL of WFU-Pickatlas tool, version
2.4. [84]. Each VOI, Vv, |vε {1. . .L} is characterized by a set
of features Pp|pε {1. . .K}. The main question that we want
to answer is: how to quantify VOI ability to best distinguish
between AD and HC?

Our approach in this work consists in selecting VOIs
which best separate between AD and HC classes. Different
parameter combinations for each VOI are used to select and
rank VOIs according to the ‘‘Area Under Curve’’ (AUC)
parameter, defined in the following. The top-ranked VOIs are
then introduced into a SVM classifier.

A. NOTATION
We consider a dataset A ε RK×L×M . A is a 3-D tensor,
where K denotes the number of parameters computed for
each VOI among L VOIs and M is the number of acquired
PET images. Let us consider their corresponding metricized
versionAi = [A1,A2, . . . ,AM ] andAv = [A1,A2, . . . ,AL].
As depicts in Fig. 2, each matrix Ai is of dimension L×K and
represents all regional parameters values for cortical VOIs for

FIGURE 2. Frontal (Ai ) and lateral (Av ) slices of the tensor A that are
handled within PET images. (a) Ai matrix of the tensor A. (b) Av matrix of
the tensor A

a selected simple i|iε {1. . .M}. Each column of Ai is defined
as volume parameter values computed for all VOIs on the
selected simple i. Av is of dimensionM×K and represents all
simples with parameters values computed on a selected VOI,
v|vε {1. . .L}.

B. FEATURES DEFINITION
The brain is mapped into 116 cortical VOIs according to AAL
of WFU-Pickatlas tool (L = 116). Five parameters (K=5)
Pp|p ε {1. . . 5} are computed for Each VOI, Vv| vε {1. . . 116}.
The first order statistics and the entropy were extracted from
the histogram h(x) of each VOI :

h(x) =
number of voxels in Vv with gray level x

total number of pixels in the VOI
x ∈ {lmin, . . . lmax} (1)

where x is a gray level value of a voxel belonging to volume
Vv and lmin and lmax are the minimum and the maximum gray
level values in Vv respectively.

P1 =
∑lmax

x=lmin
xh(x) Mean (2)

P2 =
∑lmax

x=lmin
(x − P1)2h(x) Variance (3)

Pz =
∑lmax

x=lmin

(x − P1)zh(x)

(P1)z/2
z ε{3, 4}

Skewness and Kurtosis (4)

Ps =
∑lmax

x=lmin
h(x)log2 [h(x)] Entropy (5)

C. AREA UNDER CURVE (AUC) PARAMETER
For each VOI, a set of parameters {Pp|p ε {1. . .K}} =
{P1, P2, P3, P4, P5} is computed. In the following,
we will use {Pp} instead of {Pp|p ε {1. . .K}} for eas-
ier readability. HC and AD subjects are plotted in a
N feature space, which represents a subset of {Pp},
denoted {Pp}N, N≤K among Ck

N =
N!

(N−K )!K ! subsets.
An N-Dimensional sphere (N-D sphere) is created over the
group of healthy subjects (HC) (N equals 1 for an interval,
2 for a disk and N is greater than 2 for a sphere). The
N-D sphere’s center is the mass center of healthy subjects.
At various radii of the N-D sphere, we compute the following
parameters:
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- nb_HC_in, number of HC subjects inside the
N-D sphere,

- nb_AD_in, number of subjects with AD inside the
N-D sphere.

- nb_HC_in/nb_HC(1), True Positive Rate (TPR).
- nb_AD_in/nb_AD(2), False Positive Rate (FPR).

(1) number of HC subjects in the database (2) number of AD
subjects in the database

The ROC curve is created by plotting the true positives
rate (TPR) (i.e. HC subjects well classified) vs. the false
positives rate (FPR) (i.e. the AD subjects misclassified) for
different radii of the N-D sphere. The AUC is defined as the
Area Under ROC Curve (AUC) and is within the range [0, 1].
This AUC quantifies the ability of a given VOI, in a N-D fea-
ture space (N≤K) from a subset of K parameters, to separate
between groups. This AUC value is all the more near 1 that
the subset feature space on which the corresponding VOIs are
plotted is able to separate well between AD and HC subjects.
Fig. 3 shows the case of ‘Cingulum_Post_Left’ VOI based
on three parameters: the mean, the standard deviation and the
kurtosis (P1, P2 and P4). The corresponding ROC curve is
shown in Fig. 4.

FIGURE 3. The separation between AD and HC groups relative to the
region ’Cingulum_Post_Left with three parameters: the mean,
the standard deviation and the kurtosis.

D. ‘‘COMBINATION_MATRIX’’ ANALYSIS
For each VOI, we examine the combination of these parame-
ters (noted Pp) with a length varying from 1 to K . Therefore,
we start by the combinations of length 1 ({P1} . . . {PK}), then
those of length 2 ({Pj, Pq}, 1≤ j,q≤ K , j 6= q), and so on until
reaching the combination length of Kparameters. Thereby,
we create a ‘‘Combination_Matrix’’ of 2K -1 columns.
For each column, which represents a subset {Pp}N, of N

elements of {Pp}, we compute the AUC (noted αv−N or
αv−{Pp}N) for each VOI, v|vε {1. . .L}, according to the
N-D sphere. The ‘‘Combination_Matrix’’ has then L lines and
2K -1 columns.
1) ‘‘Combination_Matrix’’ 1: mono-parametric analy-

sis Based on the ‘‘Combination_Matrix’’, VOIs are
ranked according to their higher values of AUC.
Each VOI is characterized by its own combina-
tion parameters N that gives the highest AUC.

FIGURE 4. ROC curve obtained for region ’Cingulum_Post_Left using three
parameters: the mean, the standard-deviation and the kurtosis.

The set of the top ranked VOIs (associated to the
higher values of AUC) are selected to be used in
AD/HC classification. This is a mono-parametric anal-
ysis, in which the selection of VOIs depends only
on the combination of the parameters {Pp}N for
each VOI.

FIGURE 5. The top VOIs (21 VOIs) selected are presented on a 3D brain
image

Table 2 gives, for each VOI, the corresponding subset
of parameters for which the highest AUCwas obtained.
The set of best ranked VOIs obtained using AUC
approach (21 are given in Table 3 and shown in Fig. 5)
are concordant with a recent review of the 18F-FDG
PET literature about the positive diagnosis of AD, with
VOIs involving the temporo-parietal cortex, includ-
ing the precuneus and the adjacent posterior cingulate
cortex [85].

2) ‘‘Combination_Matrix’’ 2: multi-parametric analysis
Multi-parametric analysis for ‘‘Combination_Matrix’’
depends on both the combination of the parameters,
(subset of {Pp}), for each VOI, and the combination
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TABLE 2. Each VOI Vv |V ε{1 . . .116} is caracterized by its own combination parameters {PP }N.

of the VOIs (subsets of {Vv, | vε {1. . .L}}). For eas-
ier readability, we use the expression {Vv} instead
of {Vv | v ε {1. . .L}}. Depending on the ‘‘Combi-
nation_Matrix’’ 1, each VOI is characterized by its
own combination of parameters, as it is presented in
the Table 2. The procedure begins with the choice of
the first two combination VOIs depending on all the
possible combinations of VOIs of length 2 ({Vj, Vq},

1≤ j, q≤L, j 6= q). Thereafter, a Sequential Forward
Selection (SFS) [86] is used where we add one VOI at
each step to a VOI list.
So, we start by the combinations of the two VOIs
already selected in the previous step, then those of
length 3 ({Vj, Vq, Vt}, 1≤ j,q,t ≤L, j 6= q 6= t), and
so on until reaching the combination length of L VOIs.
At each step of the iterative procedure, HC and AD

VOLUME 6, 2018 2100212
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TABLE 3. The list of the top ranked VOIs selected with the best
parameters.

subjects are plotted in a new feature space by combi-
nation of parameters for that selection of VOIs. The
AUC value based on this combination is named Cumu-
lated AUC (CAUC). For easier readability, we use
{N(v)} instead of {N(v)

| vε {1. . .L}}. The VOIs that
provide the best CAUC are then added to the final
VOIs combination. Our algorithm stops when the same
or a lower CAUC is obtained. Then, we select the
feature combination with the lowest number of VOIs
that achieves the highest CAUC. Fig. 6 shows that the
cumulated AUC reaches 0.9071 value when combin-
ing V3 and V31, the AUC of which are respectively
0.8012 and 0.8484. The CAUC reached a limit value
when more than 15 VOIs were added. This is depicted
in Fig. 7.

IV. CLASSIFICATION RESULTS AND DISCUSSION
The result of the proposed algorithm is presented and
assessed in this section. However, direct comparison with
existing work is hard to achieve due to several factors such
as the different datasets, sampling methods, and different
features used. We focus on the development and perfor-
mance of an algorithm as a whole, while exploring several
potential features. In assessing the proposed framework, we
provide performance comparison to other feature selection

FIGURE 6. ROC curve obtained for V3, V31 and V3, V31.

FIGURE 7. Cumulated AUC value based on the different combination of
the VOIs, N(v ).

methods using the same local database. The normalized PET
database is selected as input data for the CAD tool. PET
image of each subject is of 79 × 95 × 68 voxels size,
which yields 5 × 105 voxels. In order to reduce the curse
of dimensionality, the 116 VOIs are used first and then the
most discriminative VOI among them are then selected. The
resulting reduced feature vector obtained from the different
PET images is finally taken for classification. In order to
validate the effectiveness of the proposed method, we per-
formed experiments using a comparison with the state-of-art
of Feature Selection methods (FS) including Student’s t-Test
analysis [39], Fisher score [86], [87], Support vectorMachine
feature elimination (SVM-RFE) [88], feature selection with
Random Forest [86], [87], [89], minimum Redundancy Max-
imum Relevance (mRMR) [64], and ReliefF [63], [90], [91].
The Voxel Based Analysis (VBA), considered as a baseline
classification approach is also used for comparison purposes.
It consists in inputting to the classifier the whole brain voxels
that represent metabolic activity in the gray matter for each
subject.

For comparison purposes with feature selection methods
but for VBA and Student’s t-Test, a 116x5 matrix, whose
lines are VOIs and column are histogram extracted features
defined in section III was used. This matrix was input to each
FS method in order to obtain the optimal set of features to be
input to the SVM classifier.

2100212 VOLUME 6, 2018



I. Garali et al.: Histogram-Based Features Selection and VOI Ranking

FIGURE 8. Average Accuracy obtained with SVM classifier varying number of features for different VOI selection analyses and
applying LOO cross-validation with estimation value C = 10.

FIGURE 9. Average Accuracy obtained with SVM classifier varying number of features for different VOI
selection analyses and applying LOO cross-validation with estimation value Cε {10−7, 10−6, 10−5 . . .102, 103}.

A. CLASSIFICATION RESULTS
Classification was performed using a Support vector
machines (SVM) classifier. This classifier map pattern
vectors to a high-dimensional feature space where a ‘best’
separating hyperplane (the maximal margin hyperplane) is
built. SVM maximize the separation margin by the distance
between a hyperplane and the closest data samples. A linear
kernel is used our study [86], [87]. Several experiments were
carried out to evaluate the ‘‘Combination_Matrix’’ feature
selection process and the SVM classifier.

The reduced number of subjects (142 patients) suggests
the adaptation of a leave-one-out (LOO) strategy as the most
suitable for classification validation. It is a technique that

iteratively holds out a subject for test, while training the clas-
sifier with the remaining subjects, so that each subject is left
out once. Therefore 142 training and testing experiments are
carried out. Parameter C is used during the training phase and
tells how many outliers are taken into account in calculating
Support Vectors. For large values of C , the optimization will
choose a smaller-margin hyperplane. Conversely, a very small
value ofC will cause the optimizer to look for a larger-margin
separating hyperplane, even if that hyperplane misclassifies
more subjects. A good way to estimate relevant C value to
be used is to perform it with cross-validation. As a result,
the estimation value is fixed to 10 (C = 10) depending upon
database. In order to evaluate the developed CAD tool, which
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TABLE 4. Voxel selection and VOI selection analyses to discriminate between groups (AD, HC AND MCI).

FIGURE 10. 15 VOIs representation of the ‘‘Combination Matrix’’ 2 on a coronal plane (a), on a transverse plane (b) and on a sagittal plane (c).

depends on the choice of C , several values of C are used.
The soft-margin constant C of the optimal hyperplane
uses a value range from 10−7 to 103, Cε {10−7, 10−6,
10−5. . . 102, 103}.
Subsequently, performance is also tested using a permu-

tation test [92], repeating the classification procedure after
randomizing and permuting labels. The p-value is then given
by the percentage of runs for which the score obtained is
greater than the classification score obtained in the first case.
The error of our results were estimated at 0.09% (p-value) for
a permutation number equal to 1000.

The results achieved using the proposed methods and the
SVM are depicted in Fig. 8 and Fig. 9. It illustrates classifica-
tion success rate with the different features selection methods
outlined in previous sections. These figures show detailed
cross-validation average accuracy results as a function of
the number of selected VOIs input to the SVM classifier.

For the whole Feature selection methods, good classification
results (above 80% accurate classification rate) are obtained
when inputting a low number of VOIs. When the number of
VOIs input to the classifier is more than 20, classification
results reach a value that remains constant. There is no way
to increase classification results by injecting more VOIs.
The best accuracy rate obtained by ‘‘Combination_Matrix’’
1 equals 95.07% (with 19 VOIs), which is higher than the one
obtained using VBA which equals 94.36% (see Table 4). The
‘‘Combination_Matrix’’ 2 achieved better results than all the
other methods (96.47%) with a lower number of VOIs which
are depicted in Fig. 10 (15 VOIs).

B. DISCUSSION
A novel approach of feature selection multi-parametric anal-
ysis is presented in this paper. The main innovative aspects
of this approach rely on the ranking of each anatomical
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VOI according to its ability to distinguish between groups
of subjects. This method could have been applied to any
image data set where a feature selection and ranking is
needed. It is also able to give a ranking of a set of VOIs
according to their ability to separate groups of subjects.
Our study explored two methods: voxel selection and VOI
selection analysis applied to 18F-FDG PET data, as well as
how to use the parameters in the former approach: mono-
parametric or multi-parametric one. The results achieved
using the proposed methods are depicted in Table 4. In the
case of VBA and t-Test, we talk about voxel approach mono-
parametric analysis (voxel is characterized by its intensity).
In the case of other classical feature selection methods and
‘‘Combination_Matrix’’ 1, we used a VOI selection mono-
parametric analysis. Each VOI was characterized with K
parameters. When, we selected the most discriminant VOIs
to discriminate between HC and AD patients, each VOI was
characterized by one parameter Pp|pε {1. . .K} or a set of
parameters computed on it, {Pp} |pε {1. . .K}.

In the context of our study, each feature is either a
VOI with a combination of parameters computed on it
(Combination Matrix 1) or a combination of VOIs, (Com-
bination_Matrix 2). After selecting the relevant VOIs,
the classification performance was tested by varying the fea-
tures vectors dimension and summarized in Tab IV. Our study
reduces considerably feature space and computational time.
The number of VOIs was reduced to 15 thanks to ‘‘Combi-
nation_Matrix’’ 2 and the computation time was reduced to a
few seconds rather than VBAwhich lasted a day computation
time to analyze the whole database.

Even if the main results presented in this paper concern
HC versus AD classification, we studied two other possibil-
ities. To evaluate the discrimination of MCI (Mild Cognitive
Impairment) and AD, we had only 29 patients. Discrimina-
tion of MCI from HC is more difficult in comparison to clas-
sification of AD from HC (or AD from MCI). We achieved
a low performance in discrimination of these groups due to
the small number of samples (67.77% with VBA). The best
accuracy achieved for discriminating between MCI and AD
was 88.18% with ‘‘Combination_Matrix’’ 1, which needs to
be evaluated on a larger database.We notice that our approach
increases the classification rate for each pair of groups
compared to the VBA classification rate, unlike the various
classical feature selectionmethods. ReliefF performedwell in
the classification between AD and HC, rather than in the case
of MCI vs AD and MCI vs HC. The mRMR achieved high
accuracy in the case of AD vs HC and MCI vs AD, whereas
in the case of MCI vs HC, mRMR features selection achieved
lower accuracy values. The obtained results using ‘‘Combi-
nation_Matrix’’ 2 for both ‘‘MCI’’ vs ‘‘HC’’ or ‘‘MCI’’ vs
‘‘AD’’ did not achieve good results. This is due to the small
number of MCI patients and to the fact that VOIs, in these
cases, are more correlated, which did not allow to choose an
optimal set of VOIs. Moreover within MCI group we did not
distinguish between progressiveMCI (pMCI) and stableMCI
(sMCI) due to the low number of subjects. Progressive MCI

are subjects that are evolving to an AD state whereas sMCI
are subjects that are not going to evolve. The less good results
obtained in trying to compare AD to MCI and HC to MCI
could be also explained by the fact that AD and pMCI, and
also HC and sMCI, are subjects that are hard to distinguish
due to the fact that these sub-groups are very close to each
other.

VOIs identified and selected in the present work are clas-
sically involved in FDG-PET studies of AD, with a bilat-
eral metabolic impairment of bilateral posterior associative
cortices, especially of temporo-parietal regions including the
precuneus, and also the posterior cingulate cortex [93].

These results show that the proposed classification results
can improve the Computer-Aided Diagnosis of AD on PET
images. Therefore, the proposed features selection ‘‘Combi-
nation_Matrix’’ is very effective providing a good discrimi-
nation between groups and in some cases (due to the small
number of samples) comparable results with the various clas-
sical feature selection methods.

V. CONCLUSION
In this paper, a novel method for VOIs ranking is developed
to better classify brain PET images. This ranking is obtained
using ROC curves and quantifies the ability of a VOI to
classify HC from AD subjects. A first combination matrix
was proposed in order to select relevant features extracted
from VOIs then a second combination matrix was able to
define best VOIs association for classification purposes.

The Area Under Curve used in this paper could be easily
computed for feature selection for any other medical image
modality. The evaluation of this parameter was done on a
local image database but needs to be evaluated on a larger
database.

To go further in the computer aided-diagnosis tasks, other
features like texture, gradient computed on VOIs have to be
joined to first order statistical parameters in order to enrich
information and obtain higher classification results.
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