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Abstract 17 

Mitigating anthropogenic methane emissions is one of the available tools for reaching 18 

the near term objectives of the Paris Agreement. Characterizing the isotopic signature of the 19 

methane plumes emitted by these sources is needed to improve the quantification of 20 

methane sources at the regional scale. Urbanized and industrialized regions such as the 21 

Paris megacity are key places to better characterize anthropogenic methane sources. In this 22 

study, we present the results of the first mobile surveys in the Paris region, assessing 23 

methane point sources from 10 landfills (which in the regional inventory are the main 24 

emission sector of methane in the region), 5 gas storage sites (supplying  Paris) and 1 waste 25 

water treatment (WWT) facility (Europe’s largest, second worldwide). Local atmospheric 26 

methane concentration (or mixing ratio) enhancements in the source plumes were quantified 27 

and their δ13C in CH4 (further noted δ13CH4) signature characterized. Among the 10 landfills 28 

sampled, at 6 of them we detected atmospheric methane local enhancements ranging from 29 

0.8 to 8.5 parts per million (ppm) with δ13CH4 signatures between -63.7 ± 0.3 permils (‰) to -30 

58.2 ± 0.3 ‰. Among the 5 gas storage sites surveyed, we could observe that 3 of them 31 

were leaking methane with local methane concentration enhancements ranging from 0.8 to 32 

8.1 ppm and δ13CH4 signatures spanning from -43.4 ± 0.5 ‰ to -33.8 ± 0.4 ‰.  Dutch gas 33 

with a δ13CH4 signature of -33.8 ± 0.4 ‰ (typical of thermogenic gas) was also likely 34 

identified. The WWT site emitted local methane enhancements up to 4.0 ppm. For this site, 35 

two δ13CH4 signatures were determined as -51.9 ± 0.2 ‰ and -55.3 ± 0.1 ‰, typical of a 36 

biogenic origin. About forty methane plumes were also detected in the Paris city, leading to 37 

local concentration enhancements whose origin was in two cases interpreted as natural gas 38 

leaks thanks to their isotopic composition. However, such enhancements were much less 39 

common than in cities of North America. More isotopic surveys are needed to discriminate 40 

whether such urban methane enhancements are outcoming from gas line leaks and sewer 41 

network emanations. Furthermore, our results lead us to the conclusion that the regional 42 



emissions inventory could underestimate methane emissions from the WWT sector. Further 43 

campaigns are needed to assess the variability and seasonality of the sources and of their 44 

isotopic signature, and to estimate their emissions using methods independent of the 45 

inventory. 46 
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Highlights: 48 

• CH4 plumes were located on anthropogenic sites in the Paris megacity49 

• A mobile CRDS analyzer was used to detect local methane enhancements in the plume50 

• CRDS and GC-IRMS measurements were performed to provide source isotopic signatures51 

• These results provide independent constraints to quantify regional methane sources.52 

53 

54 

1- Introduction 55 

Methane (CH4) is, after carbon dioxide (CO2), the second anthropogenic greenhouse 56 

gas (GHG) contributing to human-induced global warming. According to Saunois et al. 57 

(2017), more than 60% of global CH4 emissions are attributed to human activities. Mitigating 58 

anthropogenic methane emissions is therefore of importance for reaching the near term 59 

objectives of the Paris Agreement and fighting climate change. Since the pre-industrial era, 60 

the global average atmospheric concentration (or mixing ratio) of methane has more than 61 

doubled to reach almost 1850 parts per billion (ppb) in 2017 (Dlugokencky, 2018). Methane 62 

has a global warming potential much larger than that of carbon dioxide (~28 times more on a 63 

100-year horizon ; Saunois et al, 2016), despite its shorter (≈10 years) atmospheric lifetime 64 

(Gasser et al., 2017). Therefore, effective measures to decrease CH4 emissions to the 65 

atmosphere are expected to have a rapid impact on mitigating global warming, making CH4 a 66 

target for immediate emission reduction efforts (Montzka et al., 2011 ; Nisbet et al., 2019).  67 

After a fast increase of atmospheric methane in the 20th century followed by the 68 

stabilisation of the CH4 global mean concentration between 1999 and 2006, a rapid increase 69 

in the atmospheric methane concentration has occured again since 2007 (Nisbet et al., 2014; 70 

Nisbet et al. 2016). However, the causes for the changes in the methane growth rate are 71 

poorly understood. A major effort is needed in quantifying individual methane sources 72 

(Houweling et al., 2017 ; Dlugokencky et al., 2011), taking into account the high variability of 73 

methane emissions at the regional and global scales. 74 

Anthropogenic methane emissions come from leaks from the fossil fuel sector such as 75 

oil and gas extraction sites, coal mines, gas storage facilities and distribution network, 76 

refineries, (Schwietzke et al., 2017), landfills, waste water processing plants and ruminants 77 

(Saunois et al., 2017). Emissions data are mostly developed using a “bottom-up” approach, 78 

which combines local activity statistics (e.g.volume of gas used, etc.) multiplied by a specific 79 

emission factor for each emission sector. The source quantification and partitioning for 80 

methane emissions is mainly based on such bottom-up inventories that may underestimate 81 

emissions by 50 to 70% at the national level (Miller et al., 2013 ; Karion et al., 2013). Also, 82 

these estimates are often reported without uncertainties, as the lack of independent data 83 

makes it not possible to assess those correctly. Furthermore, emission factors are most often 84 

defined from measurements carried out on a limited number of sources that are taken as 85 

representative of an emission sector, or based upon benchmarked measurements or 86 

theoretical calculations. The IPCC guidelines provide default (Tier 1) emission factors 87 



estimates that are used in most emission inventories, if Tier 2 or Tier 3 (i.e. region-specific or88 

site-specific emission factors) is not available (IPCC, 2006). However, these Tier 1 estimates 89 

do not reflect the variability of emission factors for the different sources at the regional or 90 

national scales. Therefore, assessing emissions inventories by independent methods is 91 

needed. 92 

Atmospheric “top-down” approaches, based on a combination of surface 93 

measurements with atmospheric transport modeling, represent an appropriate tool to 94 

estimate CH4 emissions (e.g. Houweling et al., 2017). The analysis of carbon stable isotopes 95 

in CH4 provides a further independent constraint on the budget of atmospheric methane, as 96 

the 13C content of methane is source dependent (e.g. Lassey et al., 2011), allowing different 97 

source types to be distinguished : biogenic/microbial methane sources are strongly 13C 98 

depleted (δ13CH4 = -70 to -50 permils, noted ‰) while pyrogenic CH4 sources (from 99 

incomplete combustion) and thermogenic sources (oil and gas) are less depleted in 13C 100 

(δ13CH4 = -30 to -15 ‰ and -50 to -30 ‰, respectively) (e.g. Lopez et al., 2017 ; Zazzeri et 101 

al., 2015 ; Zazzeri et al., 2017). This information can be used in atmospheric modelling to 102 

independently evaluate and improve emissions estimates at the global and regional 103 

scales (e.g. Mikaloff Fletcher, 2004; Bousquet et al., 2006; Monteil et al., 2011 ; Nisbet et al., 104 

2016 ; Schwietzke et al., 2016). However, the uncertainties on the δ13CH4  source signatures 105 

used as inputs in the global modeling framework are large, as each source type can vary 106 

substantially at the regional scale in function of several factors (methane geographical 107 

origine, formation process, season, secondary alteration - e.g. Whiticar, 1999 ; Fisher et al., 108 

2011 ; Zazzeri et al., 2015 ; Lopez et al., 2017). Therefore, the determination of the specific 109 

δ13CH4 signatures of regional sources is needed (and their time variation, ideally) for a 110 

source apportionment of methane emissions at the regional scale. 111 

112 

113 

114 

Figure 1. Sources of methane in Ile-de-France, in ktCH4/yr (AIRPARIF, 2013 inventory). 115 

116 

As most of methane emissions come from human activities, urbanized and 117 

industrialized regions are key regions to carry out atmospheric surveys. Cities are the major 118 

source of GHG emissions globally and constitute important targets for GHG emissions 119 

mitigation [Duren and Miller, 2012]. Reducing urban emissions of CO2, the most important 120 

GHG, has been the focus of several cities, but methane emissions have been largely 121 

neglected until recently (e.g. von Fischer et al., 2017; Weller et al., 2018). We do not know 122 



precisely which sources and how much these sources contribute to cities methane budget. 123 

This makes the use of global modelling for the estimation of regional sources in urbanized 124 

areas quite complicated (Townsend-Small et al., 2011b; Townsend-Small et al, 2012), as for 125 

example in Los Angeles where large scale transport models underestimate the observed CH4 126 

concentration (Hsu et al., 2010). Urbanized and industrialized regions are equipped with 127 

facilities that represent widespread sources of methane, including landfill sites, gas storage 128 

and distribution networks, WWT plants, heating systems and vehicles. Stable isotopic 129 

signatures provide an important constraint in the evaluation of local methane sources. 130 

Previous δ13CH4 sources studies in urbanized areas have been carried out through intensive 131 

field campaigns, for example in the London region (Lowry et al., 2001 ; Zazzeri et al., 2017), 132 

in Boston (Phillips et al., 2013 ; Boothroyd et al., 2018), in Washington DC (Jackson et al., 133 

2014) and  in Los Angeles (Townsend-Small et al., 2012).  134 

135 

136 

Figure 2. Methane emissions in IDF according to the AIRPARIF 2013 emissions inventory. 137 

Losanges indicate the positions of landfills, squares the ones of the gas storage sites and the 138 

circle the one of the Achères waste water treatment facility, that were all surveyed in the 139 

framework of this study. Another gas storage site located out of IDF further in the North was 140 

also surveyed (see Table 2).The symbol size is calibrated to the emissions given by 141 

AIRPARIF inventory. 142 

143 

To our best knowledge, this study is the first one on characterizing the individual 144 

methane sources and their δ13CH4 signature in the Paris megacity region, and on assessing 145 

possible leaks from the Paris gas network underground lines as it was done in other urban 146 

areas (e.g. Phillips et al., 2013 ; Jackson et al., 2014). With 12 million inhabitants, Paris is the 147 

third biggest megacity in Europe and a large source of GHG (e.g. Xueref-Remy et al., 2018). 148 

It is located in the Ile-de-France region (IDF) which represents 2% of the national territory. 149 

According to the regional air quality agency (AIRPARIF, http://www.airparif.asso.fr/), 150 

methane emissions in IDF (Fig.1) are 36.5 ktCH4/yr and contribute for 2% of GHG emissions 151 

from IDF. Fig. 2 shows the methane annual emissions per square kilometer from the 152 



AIRPARIF 2013 inventory. According to this inventory, 45% of these emissions result from 153 

solid waste landfills, 25% from oil/gas distribution in vehicles refuelling stations, 15% from 154 

combustion processes in buildings and 5% from ruminants. Then follows the gas storage 155 

sector estimated to emit 3% of the regional methane emissions. Note that there is no coal 156 

mine in the Paris region. Several other minor sectors follow, including water treatment 157 

facilities estimated to emit 70 kg CH4/yr i.e. 0.2% of CH4 emissions in IDF (a surprising low 158 

estimate). Unlike diffuse sources (e.g. enteric fermentation, buildings, traffic) which are 159 

widely distributed, landfills, WWT sites and gas extraction and compression facilities are 160 

intense localized sources. By using atmospheric measurements, methane plumes from those 161 

sources can be detected and isotopically characterized (e.g. Zazzeri et al., 2015 ; Lopez et 162 

al., 2017). Note that fuel service stations are also point sources, but they are so numerous in 163 

IDF that this makes it difficult to survey them exhaustively. Furthermore, according to 164 

previous studies (Phillips et al., 2013 ; Jackson et al., 2014 ; Eijo-Rio et al., 2015 ; McKain et 165 

al., 2015 ; Boothroyd et al., 2018), urbanized areas may also be affected by leaks on gas 166 

storages sites and gas distribution urban networks, as well as sewer networks within the city 167 

itself whose emissions are not reported in the inventories.  168 

169 

In this study, we report the δ13CH4 emissions signature from non-agricultural intense 170 

localized sources (landfill, gas storage and WWT sites, cf Fig.2) in the Paris megacity region 171 

calculated by combining CRDS (Cavity Ring Down Spectroscopy) and GC-IRMS (Gas 172 

chromatography and Isotope Ratio Mass Spectrometry) measurements. We also assessed 173 

whether gas distribution lines and sewer networks were also sources of methane in the Paris 174 

city. The measurements were collected between December 2012 and December 2015 175 

through several intensive campaigns using mobile in-situ CRDS CH4 and δ13CH4 analyzers 176 

and an air bag sampling set-up onboard a vehicle for accurate measurements of δ13CH4 in 177 

the laboratory with GC-IRMS, using a similar design as the one described in Zazzeri et al. 178 

(2015). The material and methods are detailed in Section 2. Results are presented in Section 179 

3. We discuss and compare our results with those of previous studies and the AIRPARIF180 

2013 inventory in section 4. We conclude on the benefits and limitations of such mobile 181 

campaigns and CRDS and GC-IRMS technics for better inferring regional CH4 budgets. 182 

183 

2- Material and methods 184 

2.1 Methodology 185 

The isotopic 13C composition of 16 individual intense localized methane sources (5 186 

gas storage sites, 10 landfills and 1 large WWT site) and prospective line sources from the 187 

gas network underground lines and sewer networks of the Paris megacity region was 188 

analyzed through a series of 6 mobile car campaigns (17-20 December 2012 ; 12-15 May 189 

2014 ; 10-11 August 2015 ; 8-9 September 2015 ; 19-23 November 2015 ; and 7-10 
190 

December 2015) through a Keeling plot approach (Keeling, 1958). Each site was studied 191 

individually. CH4 concentration measurements were carried out accross the atmospheric CH4 192 

plume emitted by each site according to wind direction and speed measurements performed 193 

simultaneously, allowing us to quantify the local enhancement of methane concentration 194 

above background downwind of each source. Since these enhancements are quite large, the 195 

methane concentration is given in parts per million (ppm), which is the unit commonly used in 196 

similar studies and delivered by the CRDS analyzer (e.g. Zazzeri et al, 2015). If the CH4 197 



enhancement was strong enough (≥ 0.5 parts per million (ppm), we performed isotopic 198 

measurements along the concentration gradient. Note that this study did not aim at 199 

characterizing precisely the amplitude of the source plume, which depends largely on 200 

meteorological conditions and conditions of sampling. The objective of the present study was 201 

rather to detect the source plume emitted by each site and to characterize its δ13CH4 202 

signature. 203 

The isotopic measurements must have a sufficient precision to be used for source 204 

apportionment. The difference between the different δ13CH4 sources signature is about 10-15 205 

‰. The spatio-temporal variability for each source type is a few ‰ (2-7 ‰ ; e.g. Arata et al, 206 

2016). Given these numbers, the ideal precision we aimed at was smaller than ± 0.8 ‰ on 207 

the source defined by a Keeling Plot approach (Keeling, 1958) : this requires a high precision 208 

on the δ13CH4 measurements, achievable using the GC-IRMS facility of RHUL, given a CH4 209 

concentration enhancement along the emission plume higher than 0.5 ppm above 210 

background (Zazzeri et al., 2015). The GC precision on the concentration measurements is ± 211 

0.5 ppb and the IRMS precision on the isotopic data is ± 0.05 ‰ for each measurement ; 212 

using these data, a precision as low as ± 0.1 ‰ on the δ13CH4 source signature could be 213 

obtained for certain sites by the Keeling plot approach (see sections 2.4.2 and 3.1). The 214 

CRDS analyzer (model G2132-i by PICARRO) could not reach such a precision but could be 215 

used for the source δ13CH4 signature determination if the increase in the CH4 concentration 216 

due to the studied source is higher than 1.5 ppm (PICARRO, personal communication). 217 

According to PICARRO, the precision of the datasets used in this study is 5 ppb + 0.05% of 218 

reading on the 5 min average concentration measurements ; ± 0.8 ‰ on 5 min average 219 

isotopic measurements ; and a resulting precision of ± 2.0 ‰ to ± 3.7 ‰ on the source 220 

signature.  221 

On the majority of landfill sites and gas storage sites, and on the WWT site, and 222 

whenever the local methane concentration enhancements were above 0.5 ppm, air samples 223 

were collected into bags (integration time of about 30 seconds) then analyzed by GC-IRMS 224 

at RHUL. Such samples were collected during 4 days in December 2015 campaign, thanks 225 

to the INGOS TNA program (https://www.ingos-infrastructure.eu/access/). CRDS data were 226 

collected during all the campaigns presented in this study in the framework of the 227 

CARBOCOUNT-CITY project. Regarding the assessment of possible leaks from Paris 228 

underground gas lines and sewer networks and from the WWT site, mobile CH4 229 

measurements were conducted in the Paris city streets to detect possible CH4 plumes and to 230 

attempt to characterize their δ13CH4 isotopic signature, but only using CRDS measurements. 231 

Furthermore, over the recent years, some studies reported that CRDS δ13CH4 232 

measurements are affected by the presence in the sampled air of ethane together with 233 

methane (Rella et al., 2015 ; Assan et al., 2017). Ethane is co-emitted with methane from 234 

fossil fuel sources. Unfortunately, we did not have ethane measurements to apply the 235 

correction for ethane on methane CRDS measurements proposed by Assan et al. (2017). 236 

Therefore, the isotopic composition of the air samples collected on 6 of our selected sites, 237 

analyzed by GC-IRMS, was compared to the isotopic CRDS data for cross-validation of both 238 

methods and to assess independently the uncertainty of the CRDS data. 239 

2.2 Site identification and selection 240 



In this study, we focus on the main regional landfills, on the four gas storage sites plus 241 

a fifth one located outside IDF but that contributes to feed the Paris natural gas network, 242 

Paris city underground gas lines and sewer networks, and a peri-urban WWT site that is the 243 

biggest one in Europe. According to the AIRPARIF 2013 emissions inventory, localized 244 

intense sources are the main emitter of methane in IDF (Fig.1). These sources are mostly 245 

landfills for solid wastes, and represent the most important methane emissions sector in IDF 246 

(Fig.1). In landfill sites, part of the wastes that cannot be recycled nor valorized energetically 247 

or biologically (e.g. compost) is first treated to reduce its potential toxicity and then buried in 248 

soil. Landfills are estimated by the AIRPARIF 2013 inventory to emit 16.54 ktCH4/yr from 10 249 

sites. 44 % of those are emitted by landfills located in the Seine-et-Marne department (77) 250 

alone (AIRPARIF emissions inventory, 2013), the eastern part of IDF. 251 

Another type of point sources are gas storage sites. There are 4 of them in IDF and a 252 

5th one in the Hauts-de-France (HDF) region just north of IDF, which all supply the Paris 253 

megacity gas network (https://www.storengy.com/countries/france/en/our-sites.html). These 254 

sites are reported to leak and emit 1.17 ktCH4/yr by the inventory which corresponds to more 255 

than 98% of the fossil fuels extraction and compression sectors (Fig.1). 256 

A third type of point methane sources of interest is WWT facilities. The IDF region 257 

comprises the biggest WWT plant in Europe, which is located in Achères (Table 4). In the 258 

AIRPARIF 2013 inventory, the WWT facility sector comprises one emission point that 259 

corresponds to the Achères facility with estimated emissions of 0.066 ktCH4/yr i.e. 0.2 % of 260 

the regional methane emissions. The access to these sites are usually restricted and 261 

requires specific authorization. However, the methane plume coming from the site can be 262 

detectable while driving downwind of it. 263 

The diffuse source types given in Fig.1 contain road and airborne traffic, but gas leaks 264 

from gas distribution pipes, sewer networks and residential buildings are not considered in 265 

the AIRPARIF 2013 emissions inventory. These are very poorly known potential sources, 266 

and have been shown to represent large non-reported sources in other cities like in Boston 267 

(Phillips et al., 2013) and in New-York City (Jackson et al., 2014). In this study, a systematic 268 

street survey in Paris was carried out in order to check for possible methane leaks from the 269 

gas distribution lines and sewer networks. 270 

2.2.1 Landfill sites 271 

In landfills, the decomposition of the organic waste by fermentation occurs in a 272 

ground-dug locker after it has been compressed. It produces a mix of gases named 273 

« biogas », mostly made of methane (50 to 70%) in the case of French facilities (e.g. 274 

https://www.notre-planete.info/ecologie/dechets/methanisation-biogaz.php). French emission 275 

regulation policies state that landfill managers should install inside the locker efficient biogas 276 

capture systems, once the locker is fully filled and recovered by a re-vegetalisation process. 277 

The captured biogas is then used to produce energy (e.g. burned to produce electricity, or 278 

some cases for heat co-generation). However, these systems use only part of the trapped 279 

biogas. The rest is being flared using processes that are not stricly regulated by the law. 280 

Furthermore, despite the vegetal cover set on the filled lockers, biogas might leak into the 281 

atmosphere, contributing to diffuse methane emissions from the landfill site 282 

(https://www.oieau.org/eaudoc/system /files/documents/45/226168/226168_doc.pdf). 283 

The main landfill sites of IDF included in the AIRPARIF 2013 emissions inventory 284 

match the 10 sites for storage of non-dangerous wastes existing in IDF identified in the Atlas 285 

delivered by the Regional Observatory of Wastes (ORDIF, 2013), except one, which 286 



according to Airparif, is located outside of IDF. This site very likely corresponds to the 10th 287 

site of the ORDIF (2013) Atlas, called Isles-les-Meldeuses.  288 

Table 1 gives the list of the 10 sites that we selected for our mobile survey, their 289 

location, and emission estimates from the Airparif 2013 emissions inventory. 9 sites out of 10 290 

are the largest landfills currently active in IDF (Brueil-en-Vexin and Guitrancourt are counted 291 

as one in the table as both sites are very closed one from each other and the second one 292 

now replaces the first one). The 10th selected site is Epinay-Champlatreux, a landfill for non-293 

dangerous wastes that was closed on 31 December 2008 and that is counted as an active 294 

methane source in the Airparif 2013 inventory 295 

(http://www.dechetcom.com/comptes/jcamille/env_idf3.pdf). 296 

Site code Name (region, 
department code) 

ktCH 4/yr 
(AIRPARIF) 

Latitude (°N) Longitude (°E) 

L1 Claye-Souilly (IDF, 77) 5.58 48.954 
48.955 

2.724 
2.732 

L2 Le Plessis-Gassot 
(IDF, 95) 

5.00 49.026 
49.047 

2.410 
2.410 

L3 Vert-le-Grand 
(IDF, 91) 

1.33 48.577 
48.587 

2.356 
2.381 

L4 Soignolles-en-Brie 
(IDF, 78) 

0.93 48.657 
48.641 

2.695 
2.739 

L5 Epinay-Champlatreux 
(IDF, 95) closed on 

31/12/2008. 

0.83 49.080 
49.051 

2.411 
2.421 

L6 Monthyon 
(IDF, 77) 

0.77 49.025 
49.022 

2.807 
2.798 

L7 Fouju-Moisenay - Blandy 
(IDF, 77) 

0.58 48.576 
48.576 

2.749 
2.751 

L8 Brueil-en-Vexin (IDF, 78) 
from 1974 to 24/2/2014, 

now replaced by 
Guitrancourt 

0.50 

0.22 

49.034 
49.017 
48.989 
49.011 

1.823 
1.805 
1.796 
1.796 

L9 Isles-les-Meldeuses 
(IDF, 77) 

0.41 48.908 
49.002 

1.729 
3.031 

L10 Moisselles* (IDF, 95) 
Real location : Attainville 

0.32 49.053 
49.050 

2.342 
2.352 

Table 1. List and coordinates of the main landfill sites in IDF for the storage of non-297 

dangerous wastes, obtained by combining the AIRPARIF 2013 emissions inventory and 298 

ORDIF (2013) information, and their annual CH4 emissions estimates from AIRPARIF 2013 299 

inventory. The actual geographical coordinates are given on the second line of each site. 300 

2.2.2 Gas storage sites 301 

There are 4 big gas storage sites in Ile-de-France (according to the EPA 302 

classification, these would fit into the “city gates” and “underground gas storages” terms of 303 

the transmission source sector – see https://www.epa.gov/natural-gas-star-304 

program/overview-oil-and-natural-gas-industry). These sites are filled in summertime and 305 



used in wintertime to supply gas to the IDF and Normandie (West of IDF) regions. A 5th gas 306 

storage site located in the Hauts-de-France (HDF) region (North of IDF) partly supplies gas 307 

to Ile-de-France as well. These sites are operated by STORENGY, a sub-contractor of Gaz 308 

De France (http://www.storengy.com/fr/qui-sommes-nous/nos-implantations-309 

industrielles.html). They are made of a number of sinks filled with compressed gas. Table 2 310 

gives for each site the location, capacity of gas storage, number of sinks operated, emission 311 

estimates from the Airparif 2013 emissions inventory, ordered by the site capacity, from the 312 

largest to the smallest.  313 

314 

Site 
code 

Name (region, 
department code) 

Capacity (Mm 3) 
& sinks number 1

ktCH 4/yr 
(AIRPARIF) 

Latitude 
(°N) 

Longitude
(°E) 

S1 Gournay-sur-
Aronde (HDF, 60) 

3500 
59 

- - 
49.528 

- 
2.701 

S2 Germigny-sous-
Coulombs (IDF, 77) 

2200 
22 

0.32 49.059 
49.056 

3.176 
3.173 

S3 Saint-Illiers-la-ville 
(IDF, 78 ) 

1200 
31 

0.23 48.979 
48.985 

1.537 
1.551 

S4 Beynes (IDF, 78) 1185 
36 

0.32 48.854 
48.844 

1.865 
1.874 

S5 Saint-Clair-sur-Epte 
(IDF, 95) 

1000 
14 

0.30 49.204 
49.204 

1.684 
1.707 

Table 2. List and coordinates of the gas storage sites ordered by their capacity as given by 315 

STORENGY. The first lat/long line of each site indicates the position given by the AIRPARIF 316 

2013 emissions inventory. The actual geographical coordinates are given on the second line 317 

of the corresponding cell. The Gournay-sur-Aronde site is located in the Hauts-de-France 318 

region (HDF) and not in the IDF region, therefore it is not listed in the AIRPARIF database. 319 

2.2.3 Gas distribution lines (and sewer networks) 320 

The gas distribution in Ile-de-France is at the charge of GRDF (Gaz Réseau 321 

Distribution France, https://www.grdf.fr/). Detailed map of gas pipelines is not available. The 322 

most detailed available map we could find is available from the following link: 323 

http://www.cre.fr/reseaux/infrastructures-gazieres/description-generale#section5. The main 324 

pipelines of Ile-de-France appear to be sited along highways. Secondary pipelines are likely 325 

distributed along streets in urbanized areas, but a higher resolution map was not available. 326 

According to previous studies, gas leaks can occur anywhere in a city (Phillips et al., 2013 ; 327 

Jackson et al., 2014). We thus sampled streets in one to several districts in the Paris inner 328 

city area for each campaign day. We also sampled on the road that encompasses Paris city 329 

and also the city of Montrouge close to Paris in the south/southeast (Table 3). Note that there 330 

is a possibility that the sewer networks would also emit methane, but then the methane 331 

isotopic signature would be much more depleted than the one outcoming from gas leaks. 332 

This property can be used to discriminate gas line and sewer network sources. 333 

Site code Location 
G1 BP (ring road) 
G2 Paris districts 
G3 Montrouge (SSE of Paris) 

Table 3. List of the gas line sites (and sewer network sites) 334 

2.2.4 Water treatment site 335 



WWT involves the degradation of organic matter of the effluents in anaerobic 336 

conditions that releases biogenic methane emissions. The different steps are explained in 337 

details for instance in Ars (2017). The SIAAP (Syndicat Interdépartemental pour 338 

l'Assainissement de l'Agglomération Parisienne) is the main operator of WWT facilities in 339 

IDF. There are 5 WWT plants (Seine Crésillons, Seine Aval, Seine Amont, Seine centre and 340 

Marne Aval) in IDF, the biggest WWT facility being Seine  Centre, located at Achères 341 

(http://www.veoliaeau.com/medias/ dossiers/acheres.htm). It is is also the biggest in Europe 342 

(and the second worldwide). The Achères WWT facility is located on two sub-sites which 343 

coordinates are given in Table 4. Methane emissions from this facility have not been 344 

isotopically characterized before this study and therefore it was a target of our mobile 345 

campaigns. In this study, we were able to characterize the δ13CH4 signature of the second 346 

sub-site (48.986°N, 2.124°E). 347 

348 

Site code Name ktCH 4/yr (AIRPARIF) Latitude (°N) Longitude (°E) 
W1 Achères 0.066 48.973 

48.973 
& 48.986 

2.167 
2.166 
& 2.124 

Table 4. Coordinate of the selected WWT site and its annual methane emissions estimate 349 

from the AIRPARIF (2013) inventory. The first lat/long line indicates the position of the site 350 

given by the AIRPARIF inventory. The actual geographical coordinates of the site are indeed 351 

double and are given on the second and third lines of the lat/long cells. 352 

2.3 Instrumentation 353 

During the mobile campaigns, we used the Picarro InvestigatorTM Unit (proprietary 354 

product of Picarro) which is made of hardware components and a cloud based software for 355 

providing an integrated solution to 1/ treat and control the datasets ; 2/ detect and locate 356 

methane enhancements above background ; and 3/ distinguish between biogenic and 357 

thermogenic methane sources of these enhancements (Arata et al, 2016). The hardware 358 

components consist of a car equiped with a Picarro G2132-i CRDS (Cavity Ring Down 359 

Spectroscopy) analyzer (https://naturalgas.picarro.com/overview). This analyzer was 360 

customized by PICARRO specifically for the Investigator Unit to support mobile 361 

measurements. The analyzer was powered directly from the car through a 12-220 V power 362 

transformer. The air inlet was attached on a 1-m height mast mounted on the roof of the 363 

vehicle. It was made of a ¼ inch outer diameter (O.D.) and 2-m length Nylon tube equiped 364 

with a 2 µm Swagelock particle filter and connected to the entrance of the analyzer inside the 365 

car. The car was also equiped with a Climatronics sonic anemometer for wind measurement 366 

and a Hemisphere GPS receiver fixed on the mast, which allowed a precise determination of 367 

the car location. The analyzer was calibrated before the campaigns with a tank supplied by 368 

Matheson whose methane concentration was 19.6 +/- 0.015 ppm and δ13C content was -32.6 369 

+/- 0.05 ‰. During the campaigns, this tank was used to detect any instrumental drift, but the 370 

Picarro analyzer showed a stable behavior. This instrument was designed to monitor in two 371 

modes separately. In the first mode, only CH4 concentrations were monitored while the car 372 

was moving. The analyzer flow rate was increased to 3.5 L/min and its frequency to 4 Hz to 373 

get a fast instrumental response, which gives a transport time in the tubing of 2 s. The 374 

datasets were corrected for this delay. The car drove at 50 km/h or less, which gives a 375 

maximum uncertainty of 28 m on the source location regarding the vehicle speed. Once a 376 

methane enhancement above background was detected, we drove again into it and much 377 

slower to make sure it was occurring at the same location. The occurrence of the methane 378 



enhancement was also confirmed by the isotopic measurements. To perform isotopic 379 

measurements, the car was stopped and the CRDS analyzer was turned into its second 380 

mode : the analyzer was coupled to a « Megacore » set-up based on a Dekabon tubing of 10 381 

m, that was collecting air while we were driving in the plume. In this second mode, once we 382 

were sure that we detected a persistent enhancement above background concentrations, the 383 

car was stopped, and the air of the « Megacore » was analyzed for its isotopic content at a 384 

flowrate of 25 mL/min. The flowing time of the air in the analyzer was used to reconstruct the 385 

location of each data point.  386 

The data were collected through a bluetooth connection into a central onboard 387 

computer, which was also used to monitor the CH4 concentrations during the survey. The 388 

CRDS data were instantaneously sent by 3G or 4G connection to a cloud server. On this 389 

latter, a complex software called Pcubed (proprietary product of Picarro) was applied on the 390 

datasets to detect isolated peaks that could be attributed to an instrumental artefact (e.g. cell 391 

pressure or temperature instabilities) from longer methane enhancements above background 392 

that could be attributed to a methane source. Usually, the vibrations of the car do not 393 

generate peaks but could damage the mirrors and laser of the cavity ; however, no such 394 

damage was observed during our campaigns. 395 

After a methane enhancement was detected by CRDS, the car was driven back into it 396 

to collect air samples into bags at different locations of the enhancement and outside of it for 397 

background assessment. The concentration and δ13C content of atmospheric methane in the 398 

sample bags were analyzed at the RHUL laboratory straight after the sampling campaign, 399 

using the material and methods described in Zazzeri et al. (2015). The car was stopped 400 

during each bag sampling. The bags, made of Tedlar (5 L) were filled with outside air during 401 

30 s each using a battery operated pump (KNF Neuberger), pumping air through a ¼ inch 402 

O.D. Nylon tube attached to the mast in the car. Before the filling, the full set-up was flushed 403 

with ambient air for 4 minutes in order to reach equilibrium between gas and solid phases. 404 

Five to twelve bags were filled for each identified plume. In total, heighty samples were 405 

collected. The isotopic measurements and Keeling plot analysis allowed calculation of a 406 

distinct isotopic signature for the main methane sources in the Paris region. The observed 407 

source isotopic signatures can be used also for the characterization of methane emissions in 408 

more densely populated areas and for regional modelling (see section 1). 409 

The location of both CRDS analyser and air sampling inlets on the mast prevented 410 

the measurements to be contaminated by the car exhaust. When not driving during bag 411 

sampling, we paid attention to choose favorable conditions in order to prevent that the car 412 

exhaust plume was advected or thermally uplifted to the air line inlets location. 413 

414 

2.4 Data analysis 415 

2.4.1 δ13CH4 416 

By definition, the isotopic composition of methane is expressed in terms of a ratio in 417 

per mil (‰), using the δ notation (Pataki et al., 2003) : 418 

δ=(��/����−1)×1000 419 



where RA denotes the isotopic ratio 13C/12C in CO2 derived by combustion of the methane 420 

sample. Rstd is the corresponding ratio in the V-PDB (Vienna Pee Dee Belemnite) standard. 421 

Isotopic signatures can vary over time and season : this is the case for landfill sites, due to 422 

changes in landfill management that result in the modification of the fraction of CH4 oxidised 423 

in the topsoil, and thus, of the δ13CH4 signature. This is also the case for natural gas which 424 

isotopic signature depends on the geological origin of the gas (e.g. Lopez et al, 2017).  425 

2.4.2 Keeling plot approach 426 

We used the Keeling plot method to infer the the δ13CH4 signature for each emission 427 

source (Keeling, 1958). This approach consists in plotting the atmospheric δ13C in CH4 428 

values against the inverse of simultaneous atmospheric CH4 concentration data. The 429 

intercept value of the linear relationship between the two variables constitute the isotopic 430 

signature of the source which generated the methane signal over background (Pataki et al., 431 

2003). The relative uncertainty of the source signatures were computed by the BCES 432 

(Bivariate Correlated Errors and intrinsic Scatter) estimator (Akritas and Bershady, 1996), 433 

which accounts for correlated errors between two variables and computes the error on the 434 

slope and intercept of the best interpolation line (for additional information on the method, 435 

see Zazzeri et al., 2015). 436 

437 

3- Results 438 

3.1 δδδδ13CH4 signatures 439 

The CH4 maximum local concentration enhancement above background detected in 440 

the emission plume of each site and its isotopic signature are summarised in Table 5. This 441 

enhancement is defined as the maximum minus the minimum concentrations that we 442 

measured by driving downwind of the site. In the following, all uncertainties are given as 443 

twice the standard deviation (2-σ) of the mean source signature calculated by the Keeling 444 

Plot method. 445 

Site 
code 

Name (region, 
department 
code)  

Dates 
of 

survey  

Windspeed 
in km/h 

(direction) 

∆∆∆∆CH4 
(ppm) 

δδδδ13C (°/°°) 
CRDS 

(2-σσσσ) 

δδδδ13C (°/°°) 
GC-IRMS    (2-σσσσ) 

Landfill sites 
L1 Claye-Souilly 

(IDF, 77) 
 11 Aug 2015 
 9 Dec 2015 

<5 (N) 
5 (SW) 

0 
1.4 

- 
- 

 - 
 -59.8±0.1 

L2 Le Plessis-
Gassot 
(IDF, 95) 

19 nov 2015 
10 Dec 2015 

10 (NW) 
10 (S) 

3.5 
3.8 

-53.0±2.0 
-59.4±2.0 

 - 
 -58.2±0.3 

L3 Vert-le-Grand 
(IDF, 91) 

18 Nov 2015 

8 Dec 2015 

15 (SW) 

10 (S) 

3.5 

3.5 

-56.0±2.0 
& -61.5±2.0 
-61.9±2.0 

 - 

 -61.3±0.2 

L4 Soignolles-en-
Brie (IDF, 78) 

9 Sept 2015 
8 Dec 2015 

15 (E) 
10 (S) 

2.8 
0.6 

- 
- 

 - 
 -63.2±0.1 

L5 Epinay-
Champlâtreux  
(IDF, 95) closed 
31-12-08. 

19 Nov 2015 5 (NW) 0 -  - 

L6 Monthyon 
(IDF, 77) 

19 Nov 2015 5 (NW) 0 -  - 



L7 Fouju-Moisenay 
- Blandy  
(IDF, 77)  

13 May 2014 
9 Sep 2015 
18 Nov 2015 
8 Dec 2015 

10 (SW) 
15 (E) 
10 (NW) 
10 (S) 

3.5 
3.7 
3.2 & 5.2 
3.5 & 8.5 

-59.0±2.0 
-57.9±2.0 
-65.0±2.0 
-65.3±2.0 
& -59.4±2.0 

 - 
 - 
 - 

 -59.6±2.6 
L8 Brueil-en-Vexin 

(IDF, 78) from 
1974 to 24-02-
2014 

8 Sep 2015 
19 Nov 2015 

10 (NE) 
10 (NW) 

0 
0 

- 
- 

 - 
 - 

L9 Isles-les-
Meldeuses 
(IDF, 77) 

8 Sep 2015 
9 Dec 2015 

10 (NE) 
5 (SW) 

3.5 
7.2 

-60.6±2.0 
-65.9±2.0 

 - 
 -63.7±0.3 

L10 Moisselles* 
(IDF, 95) 
Real place : 
Attainville 

19 nov 2015 5 (NW) 0 -  - 

Gas storage sites 
S1 Gournay-sur-

Aronde 
(HDF, 60) 

11 Aug 2015 
10 Dec 2015 

< 5 (N) 
10 (S) 

8.1 
5.7 

-31.8±2.0 
-31.7±2.0 

 - 
 -33.8±0.4 

S2 Germigny-sous-
Coulombs (IDF, 
77) 

8 Sep 2015 
9 Dec 2015 

10 (NE) 
5 (SW) 

3.5 
0.6 

-40.4±2.0 
- 

- 
 -41.6±2.4 

S3 Saint-Illiers-la-
ville (IDF, 78 ) 

8 Sep 2015 
19 Nov 2015 

10 (NE) 
10  (NW) 

0 
0 

- 
- 

- 
- 

S4 Beynes 
(IDF, 78) 

8 Sep 2015 
7 Dec 2015 

10 (NE) 
< 5 (SE) 

4.8 
3.5 

- 
-45.8±2.0 

- 
 -43.4±0.5 

S5 Saint-Clair-sur- 
Epte (IDF, 95) 

8 Sept 2015 
19 Nov 2015 

10 (NE) 
10 (NW) 

0 
0 

- 
- 

- 
- 

Gas distribution lines 
G1 BP (ring road) 12 May 2014 10 (SW) 0.5-0.8 - - 
G2 Paris city 

districts 
17-20 Dec 2013 
12-15 May 2014 
11 Aug 2015 
20-23 Nov 2015 

10 (SW) 
10 (SW) 
< 5 (N) 
10 (W) 

0 -1.4 
0 - 2.0 
0 - 0.6 
0 - 0.5 

- 
-39.1±2.0 
& -41.8±2.0 
- 
- 

- 
- 
- 

G3 Montrouge 11 Aug 2015 5 (NE) 0.7 - - 
Waste water treatment site 

 W1 Achères* 
(IDF, 78) 

17 Dec. 2012 
11 Aug. 2015 
10 Dec. 2015 

2 (E) 
< 5 (N) 
10 (S) 

4.0 
3.5 
0.4& 
0.5 

-53.2±3.7 
-51.0±2.0 
 - 

- 
- 

 -51.9±0.2 
 &-55.3±0.1 

Table 5. Synthesis of our results. The precision on CRDS CH4 concentration reported by 446 

PICARRO is ± 5 ppb + 0.05% of the measurement and ± 2.0 ‰ (2-σ) on the Keeling plot 447 

(KP) source signature but for one case noted * for which source uncertainty is -3.7 ‰. The 448 

precision calculated from the GC-IRMS KP source signature depends on each site, as 449 

indicated in the corresponding column. The local CH4 concentration enhancement noted 450 

∆CH4 is calculated as the difference between the maximum and the minimum CH4 451 

concentration measured downwind of each site. For cases where both CRDS and GC 452 

signatures could be measured, the CH4 enhancement is calculated from GC data. 453 

3.2 Landfill sites 454 

Ten landfill sites were surveyed among which Claye-Souilly and Le Plessis-Gassot 455 

being by far two main landfills in IDF with emissions five to ten times larger than other 456 



landfills. Among those, only 6 of them were shown to emit plumes of methane that ranged 457 

from 0.8 ppm to 8.5 ppm above background concentrations recorded off site. No methane 458 

plume could be detected on 4 landfills : Epinay-Champlâtreux (site L5) and Brueil-en-Vexin 459 

(site L8), that were closed in 2008 and 2014 respectively, and Monthyon (site L6) and 460 

Moisselles (site L10, which is indeed located in Attainville). For Brueil-en-Vexin, Monthyon 461 

and Moisselles, the exposure of the instrumentation regarding these sites was not satisfying 462 

(instrumentation upwind of the site, or no road closer to the site than 1.5 km away, limiting 463 

the possibility to cross the site plume if any).  For Epinay-Champlâtreux, the wind exposure 464 

was satisfying as our instrumentation was close to the site and downwind of it. We can 465 

conclude that 1/ the Brueil-en-Vexin, Monthyon and Moisselles sites should be surveyed 466 

again with more favorable plume exposure conditions; and 2/ the Epinay-Champlâtreux site 467 

does not seem to emit methane, which can be explained by its closure several years ago in 468 

2008. 469 

The δ13C signatures of the methane plumes for the 6 landfills from which we were 470 

able to detect a methane plume could be characterized both by CRDS and GC-IRMS. The 471 

signatures otained by GC-IRMS range from -63.7 ± 0.3 ‰ to -58.2 ± 0.3 ‰. The ones 472 

measured by CRDS span a range from -65.9 ± 2.0 ‰ to -53.0 ± 2.0 ‰. Both techniques give 473 

average signatures that are consistent within the error bars. These are typical from biogenic 474 

methane emissions and in agreement with the litterature (e.g. Lassey et al., 2011; Zazzeri et 475 

al., 2015). The mean signature calculated from CRDS data relies on 12 surveys on 4 sites, 476 

against 6 surveys on 6 sites for the one obtained from GC-IRMS data. 4 surveys were 477 

common to both methods on 4 different sites. On these 4 common sites the mean signature 478 

(± 2-σ variability) obtained from GC-IRMS measurements equals to -60.7 ± 4.7 ‰, which is 479 

very close to the mean signature calculated from CRDS data of -61.7 ‰ (± 6.1 ‰). The 2-σ 480 

variability of the measurements obtained by GC-IRMS is lower than by CRDS. This could 481 

come from differences in the two instrumental set-ups (flow rate of 25 mL/mn by CRDS vs 5 482 

L/mn for the sampling bag set-up ; lengths of tubing of 10 m for CRDS, 2 m for bag sampler), 483 

a higher precision on the GC-IRMS measurements and a sampling time uncertainty 484 

estimated to be 5 seconds between the clocks of the two sampling systems.  485 

4 of the 6 emitting sites were surveyed twice to five times with the Picarro analyzer, 486 

on different years and months and revealed a variability of the signature in the range of 5.2 to 487 

7.0 ‰ per site (2-σ). Indeed, several parameters control the isotopic signature of a landfill 488 

such as temperature, waste composition and how strong is the methane oxidation level due 489 

to methanotrophic bacteria in the top-soil cover (Zazzeri et al., 2015; Liptay et al., 1998). 490 

Changes in these parameters could explain the observed seasonal to annual variability of the 491 

δ13C signature of each landfill site. Note that the variability on one single landfill site can be 492 

higher than the spatial variability inferred by CRDS between these 4 sites (6.2 ‰, 2-σ).  493 

Claye-Souilly being the largest landfill emitter in the Airparif inventory (Table 1) was 494 

sampled twice. On the first survey (11 August 2015), no CH4 plume could be detected, 495 

although the car passed at the edge of the site downwind of it. Windspeed was low (< 5 496 

km.h-1), helping for the stay of the plume on the site, but the temperature at the moment of 497 

that survey in summer afternoon was relatively high (>25°C), favouring the vertical dispersion 498 

of the plume by turbulence processes over the site. Back there in Dec. 2015, we could detect 499 

by CRDS a local methane concentration enhancement of 1.4 ppm above background (Fig. 4 500 

site L1) and measured a signature of -59.8 ± 0.1 ‰ by GC-IRMS (Fig.3a), typical of biogenic 501 



sources. The cold winter and low windspeed conditions (< 5 km.h-1) favorized the 502 

accumulation of the plume at low altitudes over the site. The amplitude of the methane 503 

enhancement that we were able to detect on this site is relatively low compared to other sites 504 

and at such low windspeed.  505 

506 

Figure 3. δ13CH4 signatures obtained by the Keeling plot method from GC-IRMS 507 

measurements on landfill sites on which methane plumes could be detected. Error bars are 508 

not shown as these are smaller than point marks. 509 

The second largest site named Le Plessis-Gassot was sampled twice and showed 510 

local methane concentration enhancements above background of the order of 3.5 ppm. Fig.4 511 

(site L2) shows the CRDS measurements done on this site on 19 Nov. 2015, with a δ13CH4 512 

signature of -53.0 ± 2.0 ‰. Both CRDS and GC-IRMS data were collected in Dec. 2015 and 513 

gave consistent isotopic signatures. The p-value calculated on the CH4 concentration 514 

measurements made simultaneously by GC and CRDS is 0.23 (n=14), showing no 515 

statistically significant difference between both datasets. Fig. 3b shows the Keeling plot of 516 

the GC-IRMS signature. The plume sampled in Nov. 2015 was studied by CRDS only and 517 

the isotopic signature was -53.0 ± 2‰, which is notably above the Dec. 2015 values. This 518 

can be explained by the fact that the plume was not sampled at the same exact location and 519 

the wind was not exactly blowing from the same direction, highlighting the possibility of 520 



different isotopic signatures on large landfills that could come from the type of waste and/or 521 

level of fermentation. 522 

523 

Figure 4. CRDS measurements on the 6 landfill sites on which methane plumes were 524 

detected. The date of the survey is labelled on the figure together with the site code. The 525 

color indicates the atmospheric CH4 concentration according to the color scale, which is 526 

automatically adapted to each survey by the Picarro investigator unit software. The δ13CH4 527 

signature was inferred by Picarro from a Keeling plot analysis (uncertainty is ± 2.0 ‰). The 528 

blue arrow indicates the wind direction together with wind speed. For site L3, the A and B 529 

letters indicate the possible locations of the two methane sources that were detected on that 530 

site that day. 531 

Vert-le-grand (3rd emitting landfill in Table 1, site L3) was sampled twice. In each case 532 

a methane plume with a local CH4 concentration enhancement of 3.5 ppm above background 533 



was detected and with a signature of -61.5 ± 2.0 ‰ (18 Nov. 2015) and -61.9 ± 2.0 ‰ (8 534 

Dec. 2015) by CRDS and -61.3 ± 0.2 ‰ by GC-IRMS (8 Dec. 2015) (Fig.3c). Although the 535 

CRDS and GC-IRMS methods give signatures that are very close one from each other, the 536 

p-value calculated on the CH4 concentration measurements made simultaneously by GC and 537 

CRDS is 0.019 (n=16), which means there is likely a statistically significant difference 538 

between both datasets. In Nov 2015, a second plume could be detected by CRDS close to 539 

the first one with a signature of -56.0 ± 2.0 ‰ (Fig.4, site L3). Wind was blowing from the SW 540 

on 18 Nov.2015, while it was blowing from the S on 8 Dec. 2015. In regards to this, the 541 

signature of -61.5 ± 2.0 ‰  (CRDS value) could be attributed to a source located in the A part 542 

of the site (Fig.4) while the -56.0 ± 2.0 ‰  signature (CRDS data) could be coming from a 543 

methane source located in the B part of the site (Fig.4). The two distinct signatures 544 

measured by CRDS on the same site highlight here as well the possibility of the co-existence 545 

of various biogenic signatures on a same site. 546 

The Soignolles-en-Brie landfill, estimated to be the fourth landfill emitter (Table 1), 547 

was observed to emit a CH4 plume with a local methane concentration enhancement of 2.8 548 

ppm above background in Sept. 2015 (Fig.4, site L4). A technical issue did not allow us to 549 

characterize the isotopic signature of this enhancement by CRDS. We went back to the site 550 

in Dec. 2015 and measured a local methane concentration enhancement of 0.8 ppm above 551 

background and a source signature of -63.2 ± 0.1 ‰ by GC-IRMS, typical of biogenic 552 

methane emissions (Fig.3d). Note that additional surveys were carried out on this site in 553 

December 2016 with a CRDS analyzer by S. Assan et al. (https://tel.archives-ouvertes.fr/tel-554 

01760131/document), for which a signature of -60.0 ± 1.3 ‰ was reported with local 555 

enhancements ranging from 2 to 12 ppm above background atmospheric methane 556 

concentration. 557 

Fouju-Moisenay-Blandy showed the largest variability (but was the one the most 558 

sampled), with CRDS δ13CH4 signature values ranging from -65.3 ± 2.0 ‰ to -57.9 ± 2.0 ‰ 559 

and measured over 4 surveys between 13 May 2014 and 8 Dec. 2015. The CRDS 560 

measurements for 18 Nov. 2015 are shown on Fig. 4 (site L7), where a signature of -65.0 ± 561 

2.0 ‰ was measured. On 8 Dec. 2015, two distinct plumes were detected by CRDS at this 562 

site with signatures of -59.4 ± 2.0 ‰ and -65.3 ± 2.0 ‰. The GC-IRMS signature equals -563 

59.6 ± 2.6 ‰ (Fig.3e) and matches well the first CRDS plume signature, which corresponds 564 

to a local methane concentration enhancement of 8.5 ppm above background, the largest 565 

one detected on this site, but also on all of the landfills that we surveyed in this study. The p-566 

value computed on the corresponding CH4 concentration measurements made 567 

simultaneously by GC and CRDS is 0.024 (n=16), revealing likely some statistically 568 

significant difference between the two datasets. 569 

 Isles-les-Meldeuses was sampled twice (Sept. and Dec. 2015) and was shown to 570 

produce a local methane concentration enhancement reaching 7.2 ppm above background. 571 

The GC-IRMS mean signature measured in Dec.2015 (-63.7 ± 0.3 ‰) is higher than that 572 

from CRDS (-65.9 ± 2.0 ‰) shown on Fig.4 (site L9), but both means superimpose within the 573 

measurements error bars. Indeed, the p-value of 0.145 obtained on these simultaneous 574 

CRDS and GC measurements does not reveal any statistically significant difference between 575 

the two datasets. Fig.3f shows the Keeling plot drawn from the GC-IRMS measurements. 576 

The CRDS signature measured in Sept. 2015 is notably higher (-60.6 ± 2.0 ‰). The 577 

difference could be explained by the wind direction which was not the same, so that we did 578 



not sample exactly the same plume, highlithing here again the possible variability of the 579 

signature of one same site. 580 

581 

3.3 Gas storage sites 582 

The five gas storages sites were surveyed twice, firstly in Summer 2015 and secondly 583 

in Winter 2015. On two of them (Saint-Illiers-la-Ville, S3, and Saint-Clair-sur-Epte, S5) we did 584 

not detect any local enhancement of the methane concentration. At Saint-Clair-sur-Epte 585 

during both surveys the car passed at least 450 m away downwind of the site and could not 586 

get closer to it. This could explain why we did not detect any methane plume there, but there 587 

is a possibility too that the site does not emit any methane plume at all. At Saint-Illiers-la-588 

Ville, the car passed at different places within the site and was well exposed downind of it. 589 

Therefore, it seems very likely that this site does not leak methane to the atmosphere. 590 

591 

592 

593 

594 

595 

596 

597 

598 

Figure 5. Left : Methane concentration measured by CRDS on 11 Aug. 2015 at Gournay-sur-599 

Aronde (site S5) showing a local methane enhancement of 8.1 ppm above background 600 

concentration with a δ13CH4 signature of -31.8 ± 2.0 ‰. Right : Same but at Germigny-sous-601 

Coulombs on 8 September 2015 at Germigny-sous-Colombs (site S2) showing a local 602 

methane enhancement of 3.5 ppm above background with a δ13CH4 signature of -40.4 ± 2.0 603 

‰ (CRDS, 8 September 2015). The blue arrow and label indicate wind direction and speed. 604 

The color scale is automatically adapted to each survey by the Picarro investigator unit 605 

software. 606 

The three other sites (Gournay-sur-Aronde, S1, Germigny-sous-Coulomb, S2, and 607 

Beynes, S4) emitted methane plumes with local CH4 concentration enhancements ranging 608 

from 0.6 ppm to 8.1 ppm over background concentrations. The δ13CH4 signature of the 609 

methane plumes detected on the three leaking gas storages sites are highly variable. The 610 

signature obtained from the CRDS data ranges from -45.8 ± 2.0 ‰ to -31.7 ± 2.0 ‰. Using 611 

GC-IRMS data, it ranges from -43.4 ± 0.5 ‰ to  -33.8 ± 0.4 ‰ depending on the site and on 612 

the period but all stay within the expected range for natural gas of -50 ‰ to -30 ‰ as given 613 

by the literature (e.g. Dlugokencky et al., 2011 ; Zazzeri et al., 2015 ; Sherwood et al., 2016). 614 

Among the gas storage sites, the highest concentration was measured by CRDS on 615 

the Gournay-sur-Aronde on 10 August 2015, leading to an enhancement of 8.1 ppm above 616 



background with a signature of -31.8 ± 2.0 ‰ (Fig. 5, site S1). According to the Airparif 2013 617 

emissions inventory, Gournay-sur-Aronde is the most emitting gas storage site of IDF (Table 618 

2). This site was sampled once again on 10 Dec. 2015 with local methane concentration 619 

enhancements higher than 1.5 ppm above background, allowing us to measure the δ13CH4 620 

signature of the methane plume by CRDS during both surveys. The CRDS signature is 621 

consistent for both measurements (-31.7 ± 2.0 ‰ and -31.8 ± 2.0 ‰). Bag samples were 622 

also taken and analyzed by GC-IRMS on 10 December 2015, which gave a δ13CH4 signature 623 

of -33.8 ± 0.4 ‰, at the lowest edge of the CRDS error bar (Fig. 6a). The p-value computed 624 

on the CH4 concentration simultaneous measurements made by GC and CRDS is 0.046 625 

(n=10), revealing likely some statistically significant difference between the two datasets. 626 

627 

Figure 6. δ13CH4 signatures obtained by the Keeling plot method from GC-IRMS 628 

measurements on gas storage sites on which methane plumes could be detected. Error bars 629 

are not shown as these are smaller than point marks. 630 

The Germigny-sous-Coulombs site (S2) is the second most emitting gas storage site 631 

in the Airparif inventory (Table 2). We measured plumes with local CH4 enhancements 632 

ranging from 0.6 to 3.5 ppm above background. CRDS measurements gave a δ13CH4 633 

signature of -40.4 ± 2.0 ‰ in September 2015 (Fig. 5, site S2), and GC-IRMS measurements 634 

provided in December 2015 a source signature of -41.6 ± 2.4 ‰ (Fig. 6b). The main leaks 635 

were mostly detected along the road (likely from underground pipelines) northeast of the site 636 

(Fig. 5, site S2). These values are lower of several ‰ than the signature of the methane 637 

plume detected on the Gournay-sur-Aronde site (see section 4.2). 638 

639 

The last gas storage site on which a CH4 plume could be detected was Beynes (S4), 640 

with local methane concentration enhancements ranging between 1.5 and 4.8 ppm above 641 



background (Fig. 7). The δ13CH4 signature of the plume was measured on 7 December 2015 642 

both by CRDS (45.8 ± 2.0 ‰) and by GC-IRMS (-43.4 ± 0.6 ‰) (Fig. 6c). Opposite to the two 643 

other leaking gas storage sites, the GC-IRMS signature is here higher than the CRDS one 644 

and out of the upper edge of the CRDS measurement error bar. The p-value calculated on 645 

these CH4 concentration measurements made simultaneously by GC and CRDS is 0.003 646 

(n=24), revealing likely a statistically significant difference between both datasets. 647 

Unfortunately, a technical problem did not allow us to characterize the plume signature by 648 

CRDS on 8 September 2015 survey. The existence of a possible bias due to ethane co-649 

emitted with methane in the CRDS δ13CH4 signature calculation is evaluated in Section 4. 650 

According to the wind direction, the two surveys show that the methane plume are likely 651 

emitted from the surface facilities of the site (zone A on Fig. 7) rather than from the wheels 652 

(zones B and B’ on Fig. 7) that are connected to the 2 deep aquifer storages of natural gas of 653 

this site (https://www.storengy.com/countries/france/images/ contenuFR/nos_sites/ 654 

stockage_en_ nappe_aquifere.jpg).655 

656 

657 

658 

659 

660 

661 

662 

663 

Figure 7. Methane concentration measured by CRDS at Beynes (S4) on 8 Sept. 2015 (left) 664 

and 7 Dec. 2015 (right) revealing local CH4 enhancements. On the second survey the 665 

signature of the enhancement was characterized as -45.8 ± 2.0 ‰ by CRDS and -43.4 ± 0.5 666 

‰ by GC-IRMS. Unfortunately the signature was not characterized on 8 Sept. 2015. The 667 

blue arrow and label indicate wind direction and speed. The A letter indicates the location of 668 

the surface facilities of the site (compressors, pumps, pipelines…). The B and B’ letters 669 

indicate the location of wheels connected to two deep aquifer storages of natural gas. The 670 

color scale is automatically adapted to each survey by the Picarro investigator unit software. 671 

672 

3.4 Gas distribution network of Paris 673 

About 1000 kilometers were driven to survey the streets of Paris and surrounding 674 

suburbs (Fig. 8, Table 3). No methane plume was detected on the Paris ring road but one at 675 

Porte d’Orléans (south of Paris) with a local CH4 enhancement of ~0.7 ppm above 676 

background. Furthermore, more than forty local CH4 enhancements were detected in streets 677 

of Paris. In two places in the Northern districts of Paris (Fig. 8b) the local methane 678 

concentration enhancements were strong enough (3.5 and 3.9 ppm above background to 679 

characterize their isotopic signatures by CRDS (-39.1 ± 2.0 ‰ and -41.8 ± 2.0 ‰).  680 



681 

Figure 8. Picarro CRDS atmospheric methane concentration measurements in the districts of 682 

the Paris city (site G2) performed between December 2013 and November 2015 (colored 683 

points indicate the atmospheric CH4 concentration according to the color scale in ppm, that is 684 

adapted automatically to each survey by the Picarro investigator unit software) – (a) mostly 685 

(b’) 



Paris 1st, 2nd, 3rd, 4th,6th, 7th, 8th, 9th and 10th districts ; (b) North of the center of Paris (mostly 686 

18th, 19th and 20th districts) with CRDS isotopic signatures of the detected leaks – (c) Paris 687 

11th to 17th districts survey – (d) and (e) along the Seine river – (f) Paris 13th, 14th and 15th 688 

districts. Blue dots represent periods of measurement interruption due to isotopic analysis.  689 

These values are close to the value measured on the gas storage of Germigny-sous-690 

Coulombs and are typical of thermogenic methane. Here we can exclude a biogenic origin of 691 

methane and therefore emanations from the sewer networks. We can clearly attribute these 692 

signatures to natural gas, proving the existence of leaks on the gas pipelines of the Paris 693 

network. In about 40 other places, very local methane concentration enhancements were 694 

also found but they were too small for CRDS isotopic analysis (< 3.5 ppm) and they would 695 

have required bag sampling to distinguish leaks from the natural gas network or emanations 696 

from sewage facilities. 697 

698 

3.5 Waste water treatment site 699 

700 

701 

702 

703 

704 

705 

Figure 9. Left : Google Eath view of methane plumes detected by CRDS on the Achères 706 

WWT facility on 17 Dec. 2012 (site W1) revealing several local methane concentration 707 

enhancements above background (background concentration is 1.9 ppb and maximum 708 

concentration is 5.9 ppm). The white ellipse indicates the location of the right figure. Right : 709 

methane concentration measured on the same site (white ellipse on the left figure) by CRDS 710 

on 11 Aug. 2015 showing a methane enhancement of 3.5 ppm above background and 711 

δ13CH4 signature of -51.0 ± 2.0 ‰.The blue arrow indicates wind direction together with 712 

windspeed. The color scale is automatically adapted by the Picarro investigator unit software. 713 

The Achères WWT facility (site W1) was first surveyed by the Picarro mobile unit on 714 

17 December 2012 (Fig. 9). Both weak wind conditions (wind speed ~ 2 km.h-1) and cold 715 

temperatures (~5°C) favorized the accumulation of the methane plume on the site. The 716 

background concentration is in the range of 1.9 ppm and the maximum concentrations reach 717 

5.9 ppm. A local CH4 methane concentration enhancement of 4.0 ppm above background 718 

was detected on this site, as in Ars (2017) with a δ13CH4 signature of -53.2 ± 3.7 ‰ on that 719 

day. The same plume was detected again on 10 August 2015 and 10 December 2015 with 720 

enhancements of 3.5 ppm (windspeed < 5 km.h-1) and 0.4 ppm (windspeed ~10 km.h-1), 721 

respectively, and a signature of -51.0 ± 2.0 ‰ (CRDS) and -51.9 ± 0.2 (2-σ) ‰ (GC-IRMS) 722 

(Fig. 10), respectively.  723 

A second plume (Fig. 10) with a different isotopic signature was detected on 10 724 

December 2015 with a local methane concentration enhancement of 0.4 ppm above 725 



background (windspeed ~10 km.h-1) and a signature of -55.3 ± 0.1 (2-σ) ‰ (GC-IRMS). All 726 

these isotopic hese values are typical of biogenic sources. We note here that the lower the 727 

windspeed is, the higher the methane enhancement is, as the car was able to pass at the 728 

edges of the site and could easily catch the methane plumes. 729 

730 

Figure 10. δ13CH4 signatures obtained by the Keeling plot method from GC-IRMS 731 

measurements on the Achères WWT site (W1) on 10 December 2015. Two plumes could be 732 

identified, both with a δ13CH4 signature typical of biogenic sources. Error bars are not shown 733 

as these are smaller than point marks. 734 

735 

4- Discussion and conclusions 736 

4.1 Overview 737 

Fig.11 synthesises the local CH4 concentration enhancements that we measured and 738 

their δ13CH4 signatures on the landfills, gas storages, gas lines and WWT facility in the Paris 739 

megacity region that we characterized for the first time, by CRDS and/or by GC-IRMS. 740 

Overall, methane plumes could be detected on 6 over 10 landfills surveyed, 3 over 5 gas 741 

storage sites studied and on the surveyed WWT facility. About forty local CH4 enhancements 742 

were also found in streets of Paris city as well as in Montrouge in the South-West surburbs of 743 

Paris, and on the Boulevard Périphérique : using CRDS we could assign a δ13CH4 signature 744 

typical of natural gas to 2 of them, but we did not have the fundings to characterize the 745 

precise signature of all of them by GC-IRMS. Very likely, these 2 enhancements come from 746 

leaks on the pipelines of the Paris natural gas distribution network.  747 

4.2 Comparison of CRDS and GC-IRMS results 748 

The studies of Rella et al. (2015) and Assan et al. (2017) demonstrated the 749 

importance of a careful determination of cross sensitivities and a good calibration strategy for 750 

precise isotope measurements with a CRDS analyzer. A few recent studies reported that the 751 

methane concentration measured by PICARRO CRDS analyzers could be biased by the 752 

presence of ethane with methane (e.g. Rella et al., 2015; Assan et al., 2017; Lopez et al., 753 

2017). This bias would generate an error on the determination of the δ13CH4 signature of 754 

sources. It is difficult to make a comparison of the concentrations measured directly by 755 

CRDS and the concentrations of the samples collected at the same time measured in 756 



laboratory, because the bag sampling took about 30 seconds of sampling, atmospheric 757 

concentration enhancements within the plume were often highly variable and we could not 758 

measure that time with a precision higher than several seconds. We thus compared the 759 

δ13CH4 signatures obtained from the CRDS and GC-IRMS measurements, which represent 760 

the main focus of this study, but not the values of the CH4 enhancements obtained by both 761 

technics, as the precise quantification of these enhancements is not the aim of our study as 762 

mentioned earlier. Fig.12 synthesises the δ13CH4 signatures measured by CRDS and GC-763 

IRMS, which we can use to assess any error in the CRDS measurements, taking the GC-764 

IRMS signature as a reference. We compare here only the 6 cases when both CRDS and 765 

GC-IRMS samples were taken simultaneously, indicated by black-framed markers on Fig.12.  766 

Atmospheric ethane sources are mostly fossil fuels, biomass burning and biogas (e.g. 767 

Assan et al., 2017). There is no ethane source known from landfills. An additional survey in 768 

2016 in Soignolles-en-Brie revealed no ethane source on that landfill (F. Vogel, personal 769 

communication), supporting this hypothesis. For this type of sites, the CRDS minus GC-770 

IRMS δ13CH4 signature difference ranges from -0.2 to 2.3 ‰ with a mean value of 1.0 ± 2.2 771 

‰ (2-σ). The mean difference and its standard deviation are higher than the GC-IRMS data 772 

mean uncertainty (0.85 ‰) but stay close to the CRDS mean uncertainty (2.0 ‰). While for 773 

two landfill sites (Le Plessis-Gassot and Isles-les-Meldeuses) no statistically significant 774 

difference was found, for two others (Fouju-Moisenay and Vert-le-Grand), the p-values 775 

calculated from the methane concentration simultaneous measurements made by CRDS and 776 

bag sampling / GC analysis indicate likely a statistically significant difference between both 777 

datasets, although both match within the CRDS error bars. This difference could be 778 

explained by the much higher precision and accuracy of the GC dataset.  779 

Conversely to landfills, methane leaks in gas storage sites are found together with 780 

ethane leaks, as natural gas is one of the main natural biogenic sources of ethane (Assan et 781 

al., 2017). On these sites, the CRDS – GC-IRMS difference ranges from -2.1 to 2.5 ‰ with a 782 

mean difference of -0.7 ± 4.2 (2-σ). The standard deviation of the mean is higher than the 783 

CRDS and GC-IRMS data uncertainties (2.0 ‰ and 1.13 ‰, respectively) and this could be 784 

explained by ethane – methane cross-sensitivity in the CRDS analyzer (but no ethane data 785 

were available to verify this hypothesis). On both gas storage sites where CRDS 786 

measurements and bag samples / GC analysis were performed, the p-values indicate likely a 787 

statistically significant difference between both datasets, which could be due to the presence 788 

of ethane, but also to the higher precision/accuracy of the GC dataset. For the WWT site, 789 

there was no simultaneous CRDS and GC – IRMS results. However, WWT facilities are not 790 

known to be ethane sources. 791 

For the gas storage sites, we thus recommend not to use the δ13CH4 signature 792 

obtained by CRDS measurements but rather the GC – IRMS ones, as some bias larger than 793 

the instrumental uncertainty could explain the CRDS – GC-IRMS differences observed here, 794 

which might depend on the amount of ethane content into each methane plume. The landfills 795 

and the WWT plant signatures do not overlap with the gas storage sites ones. Overall, the 796 

mean signature of both source types can be disentangled by GC- IRMS and even by CRDS. 797 

But in two cases (L2 and L3 sites in Nov. 2015), the individual signatures obtained by CRDS 798 

for landfills overlap the WWT facility signature measured by GC-IRMS and CRDS. We 799 

therefore recommend to better use GC –IRMS also for landfills and WWT facilities, which 800 

provides more precise measurements than the CRDS ones. It would be also interesting to go 801 



back regularly to L2 and L3 sites to conduct a deeper study on the temporal variability 802 

observed on these sites, as discussed further below. 803 

804 

Figure 11. Synthesis of our results showing the maximum of methane concentration 805 

enhancements measured in the local plumes (in ppm above background) and their δ13CH4 806 

signature (in ‰) on the sites surveyed in this study. Sites code are the following ; Landfills : 807 

L1 = Claye-Souilly, L2 = Le Plessis-Gassot, L3 = Vert-le-Grand, L4=Soignolles-en-Brie, L5 = 808 

Epinay-Champlâtreux, L6 = Monthyon, L7 = Fouju-Moisenay-Blandy, L8 = Brueil-enVexin, L9 809 

= Isles-les-Meldeuses, L10 = Moisselles – Attainville ; Gas storage sites : S1 = Gournay-sur-810 

Aronde, S2 = Germigny-sous-Coulombs, S3 = Saint-Clair-sur-Epte, S4 = Beynes, S5 = 811 

Saint-Illiers-la-Ville ; WWT facility : W1 = Achères ; and Paris streets : G2. 812 



813 

Figure 12. Synthesis of the δ13CH4 signatures of the plumes emitted by several landfills, gas 814 

storages, gas lines and WWT sites of the Paris megacity region and measured by CRDS and 815 

GC-IRMS technics. The CRDS and GC-IRMS results obtained on the same date are 816 

indicated by black-framed markers. One specific point indicated with a dashed-line frame 817 

corresponds to a second plume detected on L7 site by CRDS on the same day that the 818 

joined CRDS – GC-IRMS measurements. The error bars are given according to Table 5. 819 

Error bars for sites L1 and L4 are smaller than the mark size. 820 

4.3 Source attribution 821 

Regarding landfills, the GC-IRMS mean signature that we measured (-61.0 ± 2.2 ‰) 822 

show some variability which is partly due to landfill emissions seasonal variability (Börjesson 823 

et al., 2001) that relies on several parameters : temperature, the waste composition and the 824 

strength of the methane oxidation level due to methanotrophic bacteria in the top-soil cover : 825 

methanotrophic bacteria in the upper soil layers, under aerobic conditions, mineralize 826 

methane to CO2, leaving the residual methane that diffuses through the soil cover relatively 827 
13C enriched, as methanothrophs use preferentially the lighter isotope (Zazzeri et al., 2015 ; 828 

Liptay et al., 1998). Zazzeri et al. (2015) reported a signature of -58 ± 3 ‰ (2-σ) for waste 829 

disposal and landfills in SE England. Bergamaschi et al. (1998b) reported for German and 830 

Dutch landfill signatures ranging between −59.0 ± 2.2 ‰ and −45.9 ± 8.0 ‰ (where the most 831 

enriched signature was attributed to the activity of methanotrophic bacteria). Phillips et al. 832 

(2013) reported signatures of -57.8 ± 1.6 ‰ for landfills in the Boston area. Our results are 833 

close to the values reported by Zazzeri et al. (2015), Phillips et al. (2013) and also by 834 

Bergamaschi et al. (1998b) in no presence of methanotrophic bacteria. Following this first 835 

study, more surveys are needed to assess the seasonal variability of the sources, and 836 

possible landfill management changes. Note that landfill practice has changed greatly, and 837 



topsoil oxidation that drives heavier the isotopic signature of residual emitted methane is no 838 

longer a significant source in NW Europe (D. Lowry, personal communication). 839 

The largest variability in the δ13CH4 signature is observed on the gas storage sites. 840 

Our dataset do not allow us to assess the temporal variability of the δ13CH4 signature on 841 

each gas storage site. By computing a mean signature including the GC-IRMS values for the 842 

sites S1, S2 and S4, we obtain a mean signature and its associated 2-σ variability of -39.6 ± 843 

10.2‰ (2-σ). The CRDS mean signature and its associated 2-σ variability are -38.4 ± 11.2‰ 844 

(2-σ). While our mean value is close to the one of -39.1 ± 1.1 ‰ reported for the natural gas 845 

signature in Paris by Widory and Javoy (2003), it is characterized by a large variability 846 

between the sites and possibly the temporal variability at each site. This variability can be 847 

explained by the geological origin of the natural gas. According to SEDS (2018), natural gas 848 

is delivered to France by Norway (40 %), Russia (26 %) followed by the Netherlands (11 %), 849 

Algeria (9 %) and a few other countries. Gas from Norway and the North Sea has a reported 850 

signature spanning a large range from -43.9 ‰ (Sherwood et al., 2016) to -24 ‰ (Zazzeri et 851 

al., 2015) and typically around -35 ‰ (Dlugokencky et al., 2011). Natural gas from Russia is 852 

more 13C depleted with a signature that can reach -50 ‰ (Dlugokencky et al., 2011), and 853 

reported as -46.4 ‰ by Sherwood et al. (2016). Natural gas from the Netherlands has a more 854 
13C enriched signature ranging from -32.8 ‰ (Sherwood et al., 2016) to -29.5 ± 0.1 ‰ 855 

(Zazzeri et al., 2015). Eventually, natural gas from Nigeria is reported with a δ13CH4 signature 856 

of -43.1 ‰ (Sherwood et al., 2016).  857 

The gas storages sites that we surveyed are distributed among 3 zones defined by 858 

the gas exploitation company Storengy (https://www.cre.fr/Gaz-naturel/Reseaux-de-gaz-859 

naturel/Presentation-des-reseaux-de-gaz-naturel). The natural gas sampled in the Gournay-860 

sur-Aronde site has the heaviest δ13CH4 signature (-33.7 ± 0.44‰) of the 3 emitting gas 861 

storages sites surveyed in this study. Its δ13CH4 signature is indeed typical of thermogenic 862 

gas coming from the Netherlands and the North Sea. According to STORENGY 863 

(https://www.storengy.com/countries/france/fr/nos-sites/gournay-sur-aronde.html), this site is 864 

the only one in France is supplied by the Netherlands. Therefore, according to our results, 865 

this information pushes for attributing from this study a signature of -33.7 ± 0.4 ‰ to Dutch 866 

gas ; but this possible attribution should be confronted with further investigation on the Dutch 867 

gas signature. Gournay-sur-Aronde is part of the north zone called « Sediane B » by 868 

Storengy and is effectively on the path of the main gas line of the North of France that 869 

receives gas from the Netherlands. Natural gas in Germigny-sous-Coulombs and in Beynes 870 

is more 13C depleted (-41.6 ± 2.4 ‰ and -43.4 ± 0.5 ‰, respectively). Germigny-sous-871 

Coulombs is part of the so-called STORENGY « Serène Nord » north-east zone, which is 872 

connected to gas lines from Russia ; therefore this source of methane could be attributed to 873 

Russian gas. Beynes is part of the north-west « Sediane » north-west zone of STORENGY 874 

which is connected both to the gaselines from Russia and to the methane terminal of 875 

Montoir-sur-Bretagne, where natural gas from Nigeria and other African countries is shipped 876 

to France; the signature of this site can likely be attributed to Russian gas or less likely to 877 

Nigerian gas. However, although we provide the most probable picture of the natural gas 878 

distribution network, STORENGY does not clearly indicate the gas origin for the Beynes and 879 

Germigny-sous-Coulombs sites. As these sites are interconnected to all the gaslines network 880 

of the north of France, their isotopic signature could either be attributed to gas from Norway, 881 

North Sea, Russia or African sources, which signature is not unique and could match with 882 

our measurements. Furthermore, the isotopic signature of sources can change with season 883 



(e.g. Zazzeri et al., 2015), as well as the source itself. Therefore, further surveys are needed 884 

to assess the seasonal variability of the gas storage sites signature. 885 

For the street survey measurements, we only collected CRDS measurements which 886 

are not much reliable. The mean signature that we measured from 2 local methane 887 

enhancements among the forty ones that we detected is -40.5 ± 2.0 ‰. This signature is 888 

clearly not biogenic and eliminates an attribution to methane emanations from sewage 889 

facilities. It is typical from natural gas (thermogenic source) and in agreement with the value 890 

of -39.1± 1.1 ‰ reported by Widory and Javoie (2003) for the gas supply in Paris as well as 891 

with the 13CH4 signature that we found for the gas storage site of Germigny-sous-Coulombs. 892 

Among the 1000 km that were surveyed in the Paris city, we found very local methane 893 

enhancements on about ~forty locations only, unlike in other cities of the United States of 894 

America where numerous and occasionally large methane leaks on the natural gas 895 

distribution network were found, such as in Boston (Phillips et al., 2013 ; Boothroyd et al., 896 

2018), in Washington DC (Jackson et al., 2014) and in Los Angeles (Townsend-Small et al., 897 

2012). Additional surveys are needed using the bag sampling technic/ GC-IRMS to attribute 898 

sources (gas pipelines leaks, sewage emanations) to the ~forty of local methane 899 

enhancements that were detected in the Paris streets. 900 

The two plumes detected at the WWT site of Achères give an average signature of -901 

53.6 ± 3.4 ‰ by GC-IRMS. By comparison, Phillips et al. (2013) measured a mean signature 902 

of -53.1 ‰ for Boston main WWT plant that is consistent with our results. Toyoda et al. 903 

(2011) reported δ13CH4 enriched signatures of -50.7 ‰ for WWT facilities in Japan. 904 

Townsend-Small et al. (2012) reported even heavier signatures of -46.3 ‰ and -47.0 ‰ for 905 

WWT facilities in Los Angeles and Orange counties. The causes of enrichment in 13C of 906 

these plants compared to Achères and to the Boston’s WWT facility is not clear. As 907 

mentionned by Townsend-Hall et al. (2012), this could be linked to denitrification processes 908 

and requires dedicated studies. However, our study reports for the first time the δ13CH4 909 

signature of the Achères emission plumes. More surveys should be performed to assess any 910 

variability in the δ13CH4 signature of this source. 911 

4.4 Comparison to the regional inventory 912 

In this section, we compare the location of the sites and more qualitatively the 913 

strength of the methane emissions observed in our study with those of the AIRPARIF 2013 914 

methane emissions inventory. 915 

The AIRPARIF 2013 IDF methane emissions inventory includes all the sites that we 916 

surveyed appart the gas storage site of Gournay-sur-Aronde, which is located outside the 917 

IDF region. The location of the sites (cf Tables 1 to 4) could be slightly revised in order to 918 

reach a better accuracy when estimating emissions using fine-scale regional top-down 919 

modeling approaches. Indeed, differences of more than 10 km between the position given in 920 

the inventory and the actual position were detected, while the inventory is delivered at the 1 921 

km scale. The latitude of the Isles-les-Meldeuses landfill is not given in the AIRPARIF 922 

inventory, although its longitude matches with the one of landfill L9. As we could not find any 923 

large landfill at the position given by AIRPARIF, we suggest that possibly the inventory does 924 

not report correctly the Isles-les-Meldeuses latitude which is located about 130 km eastern 925 

than suggested for landfill L9 in the inventory. Finally in the inventory, the name of Moisselles 926 

should be replaced by Attainville. 927 



Regarding landfills, methane plumes with local CH4 enhancements of several ppm 928 

above background were detected on 6 of the 10 main landill sites given by the inventory. The 929 

Claye-Souilly site showed a local methane concentration enhancement that was smaller that 930 

the one measured at the other landfill sites, while it is supposed to be the biggest methane 931 

emitter within the landfill sector. On that site, we might have not been close enough to the 932 

source and might have missed the strongest plume, due to the roads configuration, and/or 933 

meteorological conditions not favorable. This site would benefit from additional surveys in 934 

order to verify our results. At comparable windspeed and plume downwind exposure 935 

conditions, the Fouju-Moisenay and Isles-les-Meldeuses sites show local methane 936 

concentration enhancements as high as the landfills of Le Plessis-Gassot and Vert-le-Grand, 937 

while, according to the AIRPARIF 2013 inventory, these two first sites emit 2 to 10 times less 938 

methane that the two latter sites. But of course, we can not correlate directly the amplitude of 939 

atmospheric concentration enhancements with the intensity of source emissions. This would 940 

require dedicated atmospheric tools: it would be very interesting to investigate each emitting 941 

site further by calculating their emissions rate, for example by coupling a tracer release 942 

technique and local-scale transport modelling (Ars et al., 2017). Among the 10 sites that we 943 

studied, no local methane enhancement could be detected. For 3 of these 4 sites (Brueil-en-944 

Vexin, Monthyon and Moisselles), as the sampling conditions were not satisfying, additional 945 

surveys with favorable conditions are needed on these sites (see section 3.2). The 4th site 946 

(Epinay-Champlâtreux) was closed in 2008 and this can explain why we did not detect any 947 

methane plume downwind of this old landfill. Finally, the Guitrancourt site that now replaces 948 

the Brueil-en-Véxin site should be surveyed in a future study. 949 

Regarding the gas storage sites of IDF, our study demonstrated the occurrence of 950 

methane  leaks giving rise to local methane concentration enhancements of several ppm 951 

above background in Germigny-sous-Coulombs and Beynes, which are both estimated to 952 

emit 0.32 ktCH4/yr by the inventory. We did not detect any leak at the Saint-Illiers-la-Ville and 953 

Saint-Clair-sur-Epte sites. For Saint-Illiers-la-Ville the sampling conditions were favorable to 954 

detect any methane plume. For Saint-Clair-sur-Epte, the car was maybe passing to far away 955 

from the site (see section 3.3) which could explain that we did not detect any methane 956 

enhancement on this site ; but this could be the case that this site does not emit methane at 957 

all. For these two sites, the emission rates given by AIRPARIF 2013 are 0.23 and 0.30 958 

ktCH4/yr, respectively. One explanation could be that these sites are equipped with high 959 

performance compression technology that cuts out the emissions of greenhouse gases to the 960 

atmosphere, conversely to Germigny-sous-Coulombs and Beynes 961 

(https://www.storengy.com/countries/france/en/our-sites.html) - note that the Germigny-sous-962 

Coulombs site should benefit of such improved technology in the near future. But at the 963 

Saint-Clair-sur-Epte site, as the car did not pass closer than 450 m downwind of the site, 964 

more surveys closer to the site downwind of it are needed there to validate this 965 

hypothesis.Therefore, we conclude that 1/ the AIRPARIF emissions inventory should be 966 

revised for the Saint-Illiers-la-Ville for zero emissions, 2/ additional surveys are needed on 967 

Saint-Clair-sur-Epte closer to the site ; and 3/ the Germiny-sous-Coulombs and Beynes sites 968 

should be surveyed to monitor emission mitigation resulting from future technological 969 

improvements. 970 

Regarding the Paris streets, about forty methane concentration enhancements above 971 

background were detected and two of them could be attributed to natural gas network leaks 972 

from δ13CH4 measurements. These urban methane enhancements are much less numerous 973 



and intense than in some cities in North-America (Phillips et al., 2013 ; Boothroyd et al., 974 

2018 ; Jackson et al., 2014 ; Townsend-Small et al., 2012). It is possible that the technology 975 

used to ensure the tightness of the gas lines seals in Paris is much more performant than the 976 

one in the USA. However, additional surveys are needed to attribute all of the methane 977 

enhancements detected in the Paris streets to either natural gas pipeline leaks or sewage 978 

emanations. Such leaks should then be quantified by independent top-down methods and 979 

taken into accout in the AIRPARIF inventory. 980 

Regarding the Achères WWT site, we detected large local methane enhancements of 981 

several ppm above background. According to the inventory, this site emits only 0.066 982 

ktCH4/yr. This is much lower compared to gas storage or landfills sites that are also observed 983 

to emit methane enhancements of similar extent to the WWT site for similar wind exposure 984 

and sampling distance conditions. There could be an underestimation of methane emissions 985 

from this facility and from the WWT sector in the AIRPARIF 2013 emissions inventory, but 986 

this should be assessed by independent emission quantification methods such as the ones 987 

proposed in Ars et al. (2017). We thus conclude that dedicated campaigns should be 988 

performed on the sites surveyed in our study in order to compute estimates of their methane 989 

emissions and to answer whether the AIRPARIF inventory can be validated or should be 990 

revised. 991 
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