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ABSTRACT 12	

The Type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like 13	

mechanism to inject effectors into target cells. The injection apparatus is composed of a 14	

baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by 15	

the spike complex, is propelled outside of the cell by the contraction of the sheath. The 16	

injection system is anchored to the cell envelope and oriented towards the cell exterior by a 17	

trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or 18	

on the spike complex, and can target prokaryotic and/or eukaryotic cells. Here, we summarize 19	

the structure, assembly and mechanism of action of the T6SS. We also review the function of 20	

effectors and their mode of recruitment and delivery.  21	

  22	
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INTRODUCTION 23	

The Type VI secretion system (T6SS) is a multiprotein machine that belongs to the versatile 24	

family of contractile injection systems (CISs) (1-4). CISs deliver effectors into target cells 25	

using a spring-like mechanism (4-6). Briefly, CISs assemble a needle-like structure, loaded 26	

with effectors, wrapped into a sheath built in an extended, metastable, conformation (Fig. 1). 27	

Contraction of the sheath propels the needle toward the competitor cell. Genomes of Gram-28	

negative bacteria usually encode one or several T6SSs, with an overrepresentation in 29	

Proteobacteria and Bacteroidetes (for a review on the role of T6SS in gut-associated 30	

Bacteroidales, see chapter by Coyne and Comstock (7)) (8-10). The broad arsenal of effectors 31	

delivered by T6SS includes antibacterial-specific proteins such as peptidoglycan hydrolases, 32	

eukaryotic-specific effectors that act on cell cytoskeleton, and toxins that can target all cell 33	

types such as DNases, phospholipases, or NAD+ hydrolases (11-14). As such, the T6SS plays 34	

a critical role in reshaping bacterial communities, and directly, or indirectly, in pathogenesis 35	

(15-19). Destroying bacterial competitors also provides exogenous DNA that can be acquired 36	

in naturally competent bacteria and that serves as reservoir for antibiotic resistance gene 37	

spreading (20). This chapter lists the major effector families, and summarizes the current 38	

knowledge on the assembly and mode of action of the T6SS. 39	

 40	

TYPE VI SECRETION SYSTEM EFFECTORS 41	

Several T6SSs have been shown to target eukaryotic cells (21-23). By promoting or 42	

preventing cytoskeleton re-arrangements through the action of specific effectors that target 43	

actin or tubulin, the T6SSs of Vibrio cholerae, Aeromonas hydrophila, and Pseudomonas 44	

aeruginosa disable phagocytic cells or stimulate internalization into non-phagocytic cells (21, 45	

22, 24-26). Other T6SSs have been demonstrated to manipulate host cells, although the 46	

molecular determinants are not yet entirely understood (27-30). However, T6SS gene clusters 47	
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are widespread in Gram-negative bacterial genomes, and not restricted to pathogens (10). 48	

Most of them encode proteins with potent antibacterial activities such as enzymes that cleave 49	

essential macromolecules such as DNA, phospholipids or the peptidoglycan mesh, or 50	

essential metabolites such as NAD+/NADP+ (31-36). Additional T6SS antibacterial effectors 51	

include ADP-ribosyltransferases that specifically target the Z-ring and hence inhibit cell 52	

division (37). Antibacterial effectors are active in the periplasm or cytoplasm of the target 53	

cell, and are co-produced with immunity proteins that remain in the producing cell and act as 54	

antitoxins to prevent autointoxication during dueling between sister cells (11-13). More 55	

recently, T6SS effectors that collect manganese or zinc in the environment to provide metals 56	

to the cell have been described (38-40). By deploying antibacterial effectors or scavenging 57	

metals, T6SSs play an important role in bacterial communities, and hence T6SS gene clusters 58	

are usually highly represented in species present in multispecies microbiota such as the 59	

human gut (7, 16-18, 41). In general the regulatory mechanisms and signals underlying 60	

expression of T6SS genes, production of T6SS subunits or post-translational activation of the 61	

secretion apparatus are tightly linked to environmental cues in the niche in which the T6SS is 62	

required destroy competitors (42-45). 63	

 64	

TYPE VI SECRETION MECHANISM OF ACTION 65	

T6SSs use a contractile mechanism to inject effectors (Fig. 2). This mechanism is shared with 66	

all CISs: a sheath, assembled in an extended conformation, wraps a needle. Contraction of the 67	

sheath into a stable state propels the needle (1, 3-5). The needle is composed of an inner tube 68	

capped by the spike complex that pierces the membrane of the target cell (Fig. 1). The tail 69	

tube/sheath complex (TTC) is built on an assembly platform named baseplate (BP) (Fig. 1). 70	

TTC and BP are collectively called tail, a structure that is conserved among all CISs. In 71	

addition to this common theme to all CISs, T6SSs have evolved (i) a membrane complex 72	
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(MC), which docks the tail to the cell envelope and serves as channel for the passage of the 73	

needle upon sheath contraction, and (ii) a specialized BP component to properly orient the 74	

needle toward the cell exterior, by recognizing and binding the MC (2-5, 46-48) (Fig. 1).  75	

T6SS biogenesis starts with the assembly of the MC in the cell envelope, and that of 76	

the BP in the cytoplasm (49-51) (Fig. 2). Once the BP is docked to the MC, the inner tube and 77	

sheath are coordinately assembled (49-52) (Fig. 2). 78	

 79	

ARCHITECTURE OF THE TYPE VI SECRETION SYSTEM 80	

The Membrane Complex 81	

The vast majority of T6SS gene clusters of Proteobacterial species encode three membrane 82	

proteins: TssJ, TssL, and TssM (8-10, 53) (Fig. 1). TssJ is an outer membrane-associated 83	

lipoprotein that protrudes in the periplasm (54). TssL and TssM are anchored in the inner 84	

membrane (55-57). The structures of several TssJ homologues have been reported: they all 85	

share a classical transthyretin fold with an additional loop, of variable length and 86	

composition, located between β-strands 1 and 2 (58-60). TssL bears a single C-terminal 87	

membrane-spanning segment (56) and a cytoplasmic domain that comprises two bundles of 88	

α-helices (61-63). TssM possesses three transmembrane helices followed by a large 89	

periplasmic region (55, 57). The periplasmic region of TssM comprises three domains, 90	

including the C-terminal domain that engages in interaction with the TssJ extra-loop (49, 58), 91	

TssL and TssM interact through their transmembrane segments (55, 64, 65). The cytoplasmic 92	

domains of TssL and TssM mediate contacts with the baseplate (50, 57, 64, 66, 67). 93	

The electron microscopy structure of the fully assembled 1.7-MDa TssJLM MC from 94	

enteroaggregative Escherichia coli has been reported (49, 68, 69). The complex has a rocket-95	

like structure: a large base, that contains the cytoplasmic and membrane domains of TssL and 96	

TssM, is followed by arches and pillars which correspond to the TssM periplasmic domains 97	



	 6	

and TssJ (68). The TssJLM complex, which has five-fold symmetry in vivo and after 98	

purification, comprises 15 copies of TssJ, and 10 copies of TssL and of TssM (49, 58). The 99	

MC delimits an internal lumen with a diameter insufficient for the passage of the tail tube. In 100	

addition, this lumen is partly occluded by a periplasmic constriction gate, suggesting that 101	

large conformational changes occur upon BP docking or sheath contraction (49, 58).  102	

The MC can be accessorized by additional subunits, such as peptidoglycan-binding 103	

proteins (53, 70, 71). MC anchorage to the cell wall likely stabilizes the MC to resist the 104	

forces generated during sheath contraction (70). Finally, recent studies have shown that 105	

proper assembly of the MC requires the activity of peptidoglycan-degrading enzymes (72, 106	

73).  107	

 Interestingly, while the tail complex is evolutionarily related to contractile injection 108	

machines, the evolution history of the MC is less clear. TssL and TssM present significant 109	

homologies with two accessory subunits associated with Type IVb secretion systems, DotU 110	

and IcmF, respectively (8, 9). No homologue of TssJ is found associated with DotU/IcmF 111	

complexes, suggesting that TssJ is from a different ancestry. Indeed, while essential when 112	

present, TssJ is lacking in some T6SSs such as that of Agrobacterium and Acinetobacter. 113	

Further studies are required to understand whether other proteins can substitute for the 114	

absence of TssJ in these species. The fact that the MC has a distinct history compared to the 115	

tail is also exemplified by the observation that no TssJLM complex is present in 116	

Bacteroidales T6SSs (74, 75). However, putative uncharacterized membrane proteins are 117	

encoded within these T6SS gene clusters suggesting that a different transenvelope complex 118	

has been domesticated to anchor the tail (74, 75). 119	

 120	

The Tail 121	

The baseplate 122	
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The baseplate (BP) (Fig. 1) is a large complex of 2.7 MDa comprising > 60 polypeptides of at 123	

least six different proteins (50). The role of the baseplate is to initiate the polymerization of 124	

the tail tube/sheath complex. While it has not been formally shown yet, the T6SS baseplate is 125	

believed to trigger sheath contraction, as demonstrated in other CISs. A specific role of the 126	

T6SS baseplate is to anchor the TTC to the MC. The BP is composed of six wedge 127	

subcomplexes organized around the central hub, i.e., the N-terminal domain of the VgrG 128	

spike (76, 77) (Fig. 1). VgrG hence belongs to two tail sub-complexes: it constitutes the tip of 129	

the needle, and the hub for the baseplate. The wedge complex is composed of 4 proteins: 130	

TssE, –F, –G, and –K. These four proteins assemble a structure of 1:2:1:6 stoichiometry, the 131	

TssG peptide being the central core (77-79). Two TssF subunits wrap TssG to form a 132	

triangular shape called trifurcation unit, whereas two extensions of TssG make contacts with 133	

two TssK trimers (77). TssE, –F, –G are respectively homologues of phage T4 gp25, gp6 and 134	

gp7 and phage Mu Mup46, Mup47 and Mup48 (50, 77, 79, 80), that also constitute the inner 135	

part of phage baseplates (79-81). TssK has no homologue in Myoviridae, but shares 136	

architectural homologies with receptor-binding proteins (RBP) of Siphoviridae phages (67). 137	

The structure of the N-terminal domain of TssK is superimposable with that of Siphoviridae 138	

RBP shoulder domains that are anchored into the baseplate (67). Indeed, the TssK N-terminal 139	

domain establishes extensive contacts with the TssF2G complex (67). The TssK C-terminal 140	

domain has evolved to bind to the MC, and specifically to the TssL and TssM cytoplasmic 141	

domains (57, 64, 66, 67). Similar to the MC, the BP can be accessorized by additional 142	

subunits, such as TssA1 in P. aeruginosa (82), that may stabilize the complex or provide 143	

additional functions. 144	

 145	

The tail tube/sheath complex  146	
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The tail tube/sheath complex comprises the needle and the contractile sheath (Fig. 1). It forms 147	

a ~ 1 µm-long tubular structure in the cytoplasm, that is assembled in 30-50 sec (52, 83).  148	

The needle is composed of the inner tube topped by the spike complex. The inner tube 149	

is made of hexamers of the Hcp protein (84-86). These donut-shaped hexameric Hcp rings 150	

(87, 88) stack on each other in a head-to-tail orientation to form a hollow tube (86). 151	

Interestingly, despite very low sequence similarities between T6SS Hcps and tube proteins 152	

from other CISs, their structure is strictly conserved (5). Hcp tube polymerization starts at the 153	

baseplate, through direct recruitment of the first ring to the base of the VgrG hub/spike (89). 154	

The spike complex is composed of a trimer of the VgrG protein and, in most instances, of the 155	

PAAR-repeat protein (85, 90). VgrG contains several conserved domains (24, 85). The N-156	

terminal domain resembles the phage T4 gp27 protein, and acts as a symmetry adaptor 157	

between the six-fold symmetry of the inner tube and the three-fold symmetry of the VgrG 158	

central and C-terminal domains, which share homologies with the phage T4 gp5 N-terminal 159	

and β-prism domains (89, 91, 92). The VgrG β-prism domain is a triangular β-helix that 160	

forms, together with the conical PAAR protein, the penetration device of the T6SS needle 161	

(90, 93). The VgrG trimer and the PAAR protein can be extended by additional domains that 162	

may act as effectors, or as adaptors for effectors (24, 90).  163	

The sheath polymerizes from the baseplate. It is proposed that, similarly to its gp25-164	

like homologues in Myoviridae, the TssE BP subunit constitutes the sheath polymerization 165	

initiator (79, 91). By contrast to other CISs, the T6SS sheath is composed of two proteins, 166	

TssB and TssC (1, 52, 85, 94, 95), forming a stable dimer that is the repeat unit for sheath 167	

polymerization (96-98). Six TssBC dimers form a strand that wraps a Hcp hexameric ring. 168	

The TssBC dimer can be divided in three regions: Domains 1 and 2 that resemble CIS sheath 169	

proteins, and an additional Domain 3 inserted into Domain 2 (99, 100). Extensive contacts 170	
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between TssBC dimers from the same strand and from the neighboring -1 and +1 strands 171	

stabilize the extended conformation of the sheath polymer (100, 101). 172	

In the T6SS, assembly of the inner tube and that of the extended sheath are 173	

interdependent (86, 102). The TssA protein coordinates the polymerization of the tail 174	

tube/sheath complex (103) (Fig. 2). TssA localizes at the distal extremity of the growing tail 175	

tube/sheath (103), at the location in which hexameric tube rings and TssBC strands are 176	

incorporated (104). TssA presents a 6-arm starfish-like structure with a central core (103). 177	

Protein-protein interaction studies have suggested that the central core of TssA may undergo 178	

large conformational changes to insert new Hcp hexamers, whereas the arms may facilitate 179	

sheath polymerization (103, 105). Tail tube/sheath polymerization proceeds in the cytoplasm, 180	

and is stopped when the distal end hits the membrane on the opposite membrane of the 181	

bacterial cell (104, 106). A recent study has identified TagA, a protein that interacts with 182	

TssA to stop the assembly of the tail and to maintain the sheath under the extended 183	

conformation (106) (Fig. 2). However, the TssA cap protein and the TagA stopper are not 184	

conserved in T6SS gene clusters, suggesting that different mechanisms control tail 185	

tube/sheath assembly and termination in different T6SS+ species (105-107). 186	

Contraction of the T6SS sheath, which occurs in less than 2-5 msec, is believed to start 187	

at the BP. The cryo-electron microscopy structure of the Vibrio cholerae T6SS sheath has 188	

been solved in the two states: extended and contracted, allowing a reconstitution of the 189	

molecular events leading to contraction (99, 100). Contraction consists to a reorganization of 190	

the TssBC strands, and notably an outward rotation of the sheath subunits (100). By doing so, 191	

the sheath compacts on the BP, and contacts with the inner tube are abolished, thus, 192	

promoting its expulsion (5, 100, 101). The free energy released during contraction is 193	

estimated to > 44,000 kcal.mol-1 for a 1-µm-long sheath (100).  194	
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After contraction, the sheath is disassembled by a dedicated AAA+ ATPase, ClpV (94, 195	

102) (Fig. 2). ClpV binds to an N-terminal helix of TssC that belongs to sheath Domain 3 196	

(108, 109), which is only accessible in the contracted conformation (98, 100). Although this is 197	

not clearly established, it is proposed that contracted sheath subunits are recycled rather than 198	

conveyed to degradation (102).  199	

 200	

LOADING AND TRANSPORT OF EFFECTORS 201	

As summarized above, a broad repertoire of anti-bacterial and anti-host activities have been 202	

already described for T6SS effectors. In addition, the mode of loading and transfer of these 203	

effectors into target cells is also variable. The common theme is that these effectors are 204	

associated with needle components, as the needle is the only portion of the T6SS to be 205	

propelled into the target cell (12, 13) (Fig. 3). Effectors can be additional domains fused to 206	

needle components such as Hcp, VgrG, or PAAR, or independent proteins that directly or 207	

indirectly bind to Hcp, VgrG, or PAAR (12, 13). Recruitment of these independent cargo 208	

effectors to Hcp, VgrG or PAAR can be mediated by adaptors, which are themselves domains 209	

of the needle components, or independent proteins (110) (Fig. 3). 210	

 211	

Specialized Hcp, VgrG and PAAR 212	

When the effector module is on the same polypeptide as the needle component, the T6SS 213	

subunit is called "specialized" or "evolved". Although effectors fused to Hcp or PAAR have 214	

been described (36, 90, 111), the best-characterized examples are C-terminal extensions of 215	

specialized VgrGs such as V. cholerae VgrG1 that cross-links actin and VgrG3 that has 216	

peptidoglycan glycoside hydrolase activity, A. hydrophila VgrG1 that ADP-ribosylates actin, 217	

P. aeruginosa VgrG2b that interacts with tubule cap complex, and Burkholderia pseudomallei 218	

VgrG5 that induces host cell membrane fusion (21-26, 112-113). 219	
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 220	

Cargo Effectors 221	

Cargo effectors are independent proteins that need to recognize their Hcp, VgrG or PAAR 222	

carrier for transfer. This recognition could be direct, such as the case of effectors that bind 223	

Hcp, or may require an additional adaptor module that bind VgrG or PAAR (12, 13, 110) 224	

(Fig. 3). Usually the effector genes are genetically linked to genes encoding their vehicle, 225	

their adaptors (if any) and in case of antibacterial toxins, their immunity proteins. These 226	

genetic elements could be found within T6SS gene clusters, or as Hcp-VgrG islands scattered 227	

on the genome (9, 10). 228	

When associated with Hcp, the effector is embedded in the lumen of the hexameric 229	

ring, and is thus likely found inside the channel of the inner tube during T6SS assembly (16, 230	

114). As such, it is protected and stabilized (114, 115). However the available space in the 231	

Hcp ring lumen limits the size of the effector to be transported, which is estimated to be < 25 232	

kDa (114). 233	

Adaptors can be isolated proteins, or domains fused to the cargo or the vehicle (110). 234	

Adaptors from distinct families, such as DUF1795 (EagT6, EagR), DUF2169, DUF2345, 235	

DUF4123 (Tap-1 or Tec), transthyretin (TTR) or Recombination hot-spot (Rhs) have been 236	

described and studied (35, 90, 116-125). When several copies of VgrG or PAAR proteins are 237	

encoded within the genome, these adaptor modules specify the carriers on which the effector 238	

should be mounted (112, 118, 122, 123, 126). In addition to loading the effector on the 239	

vehicle, some of these adaptors have been shown to act as chaperones to stabilize the effector, 240	

or to wrap hydrophobic transmembrane segments to prevent effector aggregation (112, 124, 241	

125).  242	

 243	

CONCLUDING REMARKS 244	
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Although the Type VI secretion system is one of the most recently identified secretion 245	

apparati, we now have a detailed view on how the system is assembled, how it is structurally 246	

arranged, and how effectors are loaded and transported. The broad repertoire of effectors has 247	

only recently started to emerge, and it is likely that many effectors with interesting activities 248	

will be identified and characterized in the next years. The discovery of the T6SS 13 years ago 249	

and its role as an antibacterial weapon have altered our view of bacterial communities. It is 250	

now broadly admitted that bacteria do not only cohabitate peacefully but rather that complex 251	

interactions are established to maintain stable ecosystems, such as the human gut microbiota. 252	

Further fundamental and translational works are required to better understand how T6SS 253	

activation or inhibition may impact microbial communities and may perturb complex 254	

ecosystems.  255	
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LEGEND TO FIGURES 672	

 673	

FIGURE 1 Schematic representation of the Type VI secretion system. The different subunits 674	

are labeled, as well as the different subcomplexes. IM, inner membrane; OM, outer 675	

membrane.  676	

 677	

FIGURE 2 Assembly and mechanism of firing of the Type VI secretion system. T6SS 678	

biogenesis starts with the positioning and assembly of the membrane complex, and the 679	

assembly of the baseplate (1). The recruitment and docking of the baseplate on the membrane 680	

complex (2) initiates the TssA-mediated polymerization of the tail tube/sheath tubular 681	

structure (3, 4, 5), which is stopped when hitting the opposite membrane by the TagA stopper 682	

(5). Sheath contraction propels the tube/spike needle into the target (6). The ClpV ATPase is 683	

recruited to the contracted sheath to recycle sheath subunits (6). Needle components, and 684	

effectors associated to them, are delivered inside the target (7). 685	

 686	

FIGURE 3 Schematic representation of the mechanisms of effector loading. Effectors are 687	

depicted as red circles. Specialized effectors are chimeric needle proteins with extensions 688	

encoding the effector. Cargo effectors are independent proteins that associate to needle 689	

components (Hcp, VgrG, PAAR). Binding of cargo effectors to needle components could be 690	

direct, or mediated by adaptor modules that are independent proteins (adaptors) or extensions 691	

of VgrG and PAAR (internal adaptors).  692	
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