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ABSTRACT 25	

To support their growth in a competitive environment and cause pathogenesis, bacteria 26	

have evolved a broad repertoire of macromolecular machineries to deliver specific effectors 27	

and toxins. Among these multiprotein complexes, the type VI secretion system (T6SS) is a 28	

contractile nanomachine that targets both prokaryotic and eukaryotic cells. The T6SS 29	

comprises two functional sub-complexes: a bacteriophage-related tail structure anchored to 30	

the cell envelope by a membrane complex. As in other contractile injection systems, the tail is 31	

composed of an inner tube wrapped by a sheath and built on the baseplate. In the T6SS, the 32	

baseplate is not only the tail assembly platform, but also docks the tail to the membrane 33	

complex and hence serves as an evolutionary adaptor. Here we define the  biogenesis pathway 34	

and report the cryo-EM structure the wedge protein complex of the T6SS from 35	

Enteroaggregative Escherichia coli (EAEC). Using an integrative approach, we unveil the 36	

molecular architecture of the whole T6SS baseplate and its interaction with the tail sheath, 37	

offering detailed insights into its biogenesis and function. We discuss architectural and 38	

mechanistic similarities but also revealed key differences with the T4 phage and Mu phage 39	

baseplates. 40	

 41	

INTRODUCTION 42	

The bacterial Type VI secretion system (T6SS) is one of the key players for microbial 43	

competition, and an important virulence factor during bacterial infections. This versatile 44	

nanomachine delivers a wide arsenal of effector proteins directly into prokaryotic and 45	

eukaryotic target cells 1–4. T6SS anti-bacterial activities promote privileged access to the 46	

niche, to nutrients or to DNA. In most cases, T6SS causes damage within competitor bacterial 47	

cells and therefore participates in the reshaping of bacterial communities such as the 48	



microbiota 5,6. In addition, some T6SS confer anti-host capabilities, e.g. phagocytosis 49	

inhibition, by remodelling the host cell cytoskeleton 7–10. 50	

The T6SS belongs to the broad family of contractile injection systems (CIS), that includes 51	

bacteriophages, high-molecular-weight tailocins such as R-pyocins, and specific apparati 52	

necessary for the establishment of symbiosis or for the induction of morphological changes 11–
53	

16. All these structures comprise a common core: the tail. CIS tails are composed of an inner 54	

tube wrapped by a sheath built under an extended, metastable conformation on an assembly 55	

platform, the baseplate. The T6SS tail tube/sheath is a hundred-nanometer-long cytoplasmic 56	

structure. It is made of TssB/C subunits that polymerize to form the contractile sheath 17,18, 57	

which surrounds the attacking arrow composed of an inner tube of stacked Hcp hexameric 58	

rings 19,20 tipped by the trimeric VgrG puncturing spike 21. Various signals, such as contact 59	

with the target cell, chemical signals released by competitor or kin cells, response to attacking 60	

cells or conjugative transfer, induce structural rearrangements of the sheath leading to its 61	

contraction and to the propulsion of the Hcp-VgrG arrow into the target cell 22–25. Assembly 62	

of the tail tube/sheath is initiated on the baseplate. In addition to controlling sheath extension, 63	

the baseplate also serves to trigger sheath contraction. During T6SS biogenesis, the baseplate 64	

docks to a trans-envelope complex 17,26–28 composed of TssJ, TssL and TssM 29,30. By 65	

connecting the tail to the membrane complex and initiating tail tube/sheath polymerization, 66	

the baseplate is a central piece of the T6SS machinery. In addition, by binding cargo effectors 67	

through VgrG, the T6SS baseplate also serves as an effector-sorting platform 2,3,31.  68	

CIS baseplates comprise a minimal core of five proteins that share homology with the 69	

prototypical T4 phage gp6, gp7, gp25, gp53, and gp27 proteins 11. Gp6, gp7, gp25 and gp53 70	

assemble into a unit called wedge 32. Biogenesis of the baseplate occurs by the polymerization 71	

of six wedges around the central gp27 hub 32,33. The T6SS baseplate is composed of five 72	

essential subunits: TssE, TssF, TssG, TssK and VgrG 27. TssE is a structural homologue of 73	

gp25 34 and has been recently identified as the sheath initiator 35; TssF shares a homology 74	

with the N-terminal region of gp6, whereas TssG has been proposed to fulfill the role of gp7 75	

or gp53 27,36. VgrG is a chimeric protein in which the gp27 hub is fused to the OB-fold/β-76	

helix needle of gp5 7,21. TssF and TssG interact tightly and stabilize each other 27. TssK 77	

interacts with the TssFG complex 27,37. Taylor et al. recently reported the purification of the 78	

TssKFG complex bound to TssE 36. Hence, it is proposed that TssFG, TssKFG and TssKFGE 79	

are assembly intermediates of the T6SS baseplate and have structural and functional 80	

homologies to the bacteriophage wedges. In agreement with this hypothesis, contacts between 81	

the TssFG complex and VgrG have been identified 27, suggesting that as in the T4 phage 82	

biogenesis pathway, TssKFGE wedges could polymerize around the VgrG hub to form a 83	

hexagonal baseplate. The baseplate is docked to the membrane complex mainly by 84	

interactions between TssK and both the cytoplasmic domains of TssL and TssM 26,27,38,39. The 85	

crystal structure of TssK recently revealed that it shares a similar structural architecture with 86	

Siphoviridae phage receptor binding proteins and uses the membrane complex as a receptor to 87	

anchor the tail 28. 88	

Besides the critical role of the T6SS baseplate complex, we still lack crucial 89	

information on its biogenesis and architecture. Recently, the 8.5-Å-resolution structure of an 90	

assembled T6SS baseplate revealed its overall shape 35, but did not provide detailed 91	

information on the molecular organization of the subunits. Here we used a hybrid approach 92	

combining cryo-electron microscopy (cryo-EM), biochemical analysis, native mass 93	

spectrometry, evolutionary covariance, and molecular modelling to unveil the assembly 94	

pathway of the T6SS baseplate and report the detailed structure of the TssKFGE baseplate 95	

wedge complex from the model organism Enteroaggregative Escherichia coli (EAEC). The 96	

structure highlights unanticipated structural and functional conservation with orthologous 97	

bacteriophage proteins. Finally, we fit the atomic model of the T6SS wedge complex into the 98	



recent reconstruction of the fully assembled baseplate 35 to provide an unprecedented 99	

structural and functional understanding of the T6SS baseplate. 100	

 101	

RESULTS 102	

 103	

Biogenesis of the T6SS baseplate.  104	

Previous fluorescence microscopy studies have monitored T6SS baseplate dynamics using a 105	

chromosomally-encoded and functional fusion protein between TssK and the super-folder 106	

GFP (TssKsfGFP) in EAEC 27. TssKsfGFP assembles fluorescent foci that form independently of 107	

the tail sheath and that are recruited to the membrane complex 27. To gain further insights into 108	

the genetic requirements for TssKsfGFP foci formation, we observed TssKsfGFP in T6SS non-polar 109	

gene deletion mutants corresponding to T6SS wedge potential components (see Strains 110	

construction in Methods). Fluorescence microscopy recordings demonstrate that TssKsfGFP foci 111	

formation depends on TssF and TssG but is independent of TssE (Fig. 1a & Supplementary 112	

Fig. 1). When monitored into additional baseplate mutants, we observed that these foci form 113	

independently of TssA but require VgrG (Fig. 1a). Therefore, these foci likely represent 114	

TssKsfGFPFG complexes bound to VgrG.  115	

To provide further information on the composition of the T6SS wedge, we investigated the 116	

formation of stable TssKsfGFP-containing subcomplexes in EAEC cells by native PAGE. 117	

Native PAGE profiles immunodetected with anti-GFP antibodies revealed the presence of a 118	

high-molecular weight complex (HMWC) with a size of ~ 800 kDa (Fig. 1b). This complex 119	

does not contain TssE, TssA, VgrG and TssM and likely corresponds to TssKsfGFPFG since (1) 120	

it disappears in the absence of tssF or tssG, (2) a HMWC of a comparable size is observable 121	

upon pull-down of TssKsfGFP co-produced with TssF and TssG in the heterologous host E. coli 122	

BL21(DE3), and (3) analysis of this HMWC on denaturing SDS-PAGE reveals the presence 123	

of TssKsfGFP, TssF and TssG  (Fig. 1b).  124	

Taken together, the fluorescence microscopy and native-PAGE results, and the previous 125	

reports of TssKFG and TssKFGE complex purifications in Serratia marcescens and E. coli 126	
36,37, suggest that the TssKFG complex represents a stable intermediate during T6SS baseplate 127	

biogenesis. We therefore propose that T6SS baseplate biogenesis starts with the formation of 128	

the TssKFG complex and then proceeds with the polymerization of TssKFG building units 129	

around the VgrG hub. The observation that TssE is not required for TssKFG-VgrG complex 130	

formation, further suggests that TssE binds to the TssKFG either prior to or after its 131	

polymerization. This assembly pathway is comparable to that of the minimal phage baseplate, 132	

in which gp25 attaches to the baseplate either after completion of the gp10-7-8-6-53 complex 133	
40 or at a later stage, triggering the polymerization of the contractile sheath 41. 134	

 135	

Interaction network within the T6SS baseplate 136	

To gain further insight into the connectivity network between the T6SS baseplate 137	

components, we performed a systematic biochemical pull-down assay (Supplementary Fig. 138	

2a-e). This approach confirmed or revealed a number of contacts including interactions 139	

between TssG and TssF, TssE, and TssK (Fig. 1c). We then tested whether intermediate sub-140	

complexes, suggested by the assembly pathway defined above, could be purified. In 141	

agreement with the proposed assembly pathway, we succeeded to pull-down biogenesis 142	

intermediate complexes consisting of TssFG, TssKFG and TssKFGE (Supplementary Fig. 143	

2a-b). Based on these data, we propose that the TssKFGE sub-complex represents the T6SS 144	

equivalent of the bacteriophage wedge unit (TssFGE), bound to the TssK membrane complex 145	

adaptor.  146	

 147	

Purification, stoichiometry and cryo-EM structure of a T6SS wedge complex 148	



To biochemically and structurally characterize T6SS baseplate building units, purification 149	

tags were positioned on the EAEC TssK, TssF, TssG and TssE proteins, at locations that do 150	

not interfere with their function. Upon overproduction in BL21(DE3), the TssKFG and 151	

TssKFGE complexes were isolated by affinity chromatography followed by gel filtration 152	

(Fig. 1d & Supplementary Fig. 3a). To gain further insight into the architecture of the T6SS 153	

baseplate wedge assembly, the isolated TssKFGE complex was visualized by cryo-electron 154	

microscopy (cryo-EM). The 4.6-Å resolution, three-dimensional reconstruction (Fig. 2a) 155	

shows that the TssKFGE complex displays an intricate architecture with no apparent 156	

symmetry. It can be, however, divided into distinct parts: (1) two wing-like structures 157	

wrapping a central backbone and (2) a root-like structure with two identical entities 158	

displaying apparent C3 symmetry linked to the first part by a thin stalk (Fig. 2b). 159	

In order to properly interpret the density map, we first sought to determine the stoichiometry 160	

and stability of the TssKFGE complex using native mass spectrometry (see Supplementary 161	

data for more details) (Supplementary Fig. 3b, 3c and 3d). We determined that the 162	

TssKFGE complex comprises 6 TssK, 2 TssF, 1 TssG and 1 TssE subunits (TssK6F2G1E1; 163	

theoretical mass: 498,905 Da). 164	

Based on this stoichiometry, we identified densities that could accommodate the two TssK 165	

trimers, for which the crystal structure has been recently determined 28. The two trimers of 166	

TssK readily fit in the density map corresponding to the root-like structure (Fig 2c).. The 167	

remaining densities corresponding to the stalk and wing-like domains would contain TssF, 168	

TssG and TssE. Careful inspection and segmentation of the map lead us to determine that the 169	

wing-like domains are formed by two similar densities (Fig. 2d-f) that would correspond to 170	

TssF. The remaining density, bridging TssK and TssF, would be attributed to TssG (Fig. 2d 171	

and Fig. 2g), while TssE would be located at the tip of the complex (Fig. 2h) 172	

(Supplementary data).  173	

 174	

Structural analysis of the T6SS wedge complex 175	

Biochemical and evolutionary covariance analyses establish TssG as a central structural 176	

component of the T6SS wedge complex – Data described above unveil TssG as the central 177	

component of the baseplate. Unfortunately, no structural information is available for TssG. 178	

We therefore used residue contact predictions based on evolutionary covariance 42 to 179	

determine the TssG domain organization. This analysis identified two putative independent 180	

domains in TssG, TssG-D1 (amino-acids 15-140) and TssG-D2 (amino-acids 180-300) 181	

(Supplementary Fig. 4a). Pull-down assays with these two domains demonstrated that TssG-182	

D1 interacts with TssE, whereas TssG-D2 interacts with TssK and TssF (Fig. 1c & 183	

Supplementary Fig. 4b-c).  184	

To further characterize the relative importance of these two domains in vivo, we performed a 185	

dominant-negative approach by “small domain interference” (SDI) 43,44 (Supplementary 186	

data) (Supplementary Fig. 5a-e and Supplementary Fig 6a-b) and confirmed that TssG-187	

D2 has a central role for T6SS wedge assembly. We then used the EVcomplex program 45 to 188	

predict inter-molecular contacts between TssG and TssK using evolutionary covariance 189	

analysis (see Methods section) (Supplementary Fig. 6a). Two TssG-D2 residues, Pro-240 190	

and Leu-255, corresponding to predicted TssK-TssG-D2 interfacial residue pairs with the 191	

highest scores, were substituted, to alanines (P240A and L255A and P240A-L255A) and 192	

assayed by SDI in interbacterial competition experiments (Supplementary Fig. 6b) 193	

 194	

Structure of the TssK trimers – The resolution of the density map corresponding to the two 195	

TssK trimers was between 3.8 and 33 Å (Fig. 2a). This level of detail allowed us to obtain a 196	

full atomic model of TssK (Fig. 3a) (Supplementary Fig. 7a-b) (see Methods for details).  197	

As described previously, TssK can be divided into four parts from its N- to C-terminus: an N-198	



terminal α-helix, a β-sandwich domain (also named shoulder domain), a 4 α-helix bundle 199	

domain (also named neck domain) and a C-terminal α/β domain (also named head domain) 200	

(Fig. 3a). When compared with the published TssK crystal structure, with the exception of the 201	

relative position of the C-terminal domain, the overall structure of the TssK protomer is 202	

conserved in the T6SS wedge. The cryo-EM and crystal structures could be superimposed 203	

with an RMSD of 1.14 Å (Supplementary Fig. 7a-b).  204	

In the wedge complex, the two TssK trimers are in contact with each other and interact with 205	

TssG. The TssK inter-protomer contacts define a large interacting surface of 2,700-2,800 Å2 206	

stabilized by hydrogen bonds and salt bridges 46. The newly built loops 1-18 and 130-143 207	

participate to this interface by forming contacts with the neighbouring protomer. Remarkably 208	

the three loops located between residues 105 to 145 define a triangle that encompasses the 209	

loop 1-18 and α1 helix bundle at the centre of the trimer (Supplementary Fig. 7c), forming a 210	

flat triangular surface at the top of each TssK trimer, which contacts the rest of the wedge 211	

complex. This triangular surface is delineated by a polar scaffold made of the strands 105-143 212	

and loops around a hydrophobic patch made of part of the loop 1-18 (residues 12-14). 213	

 214	

Structure of TssG and TssF –The resolution of the densities corresponding to TssG and TssF 215	

varied between 4.3 and 8 Å. Since there was no homologous structure of TssG and TssF 216	

available, we built the structure of these proteins de novo helped by a priori knowledge on 217	

their topology, secondary structure, and intra-molecular contacts predicted from evolutionary 218	

covariance. We devised an iterative pipeline to integrate all this data (prior data and pipeline 219	

are described in Methods sections "Evolutionary Covariance Analysis", "TssKFGE model 220	

fitting and de novo tracing", as well as Supplementary Fig. 12). Eventually, we were able to 221	

obtain an atomistic model of this part of the complex, in which most of the sequence of the 222	

proteins could be assigned to the cryo-EM density and secondary structure elements could be 223	

identified (Fig. 3c-d).  224	

TssG is made of two globular domains, head and body/feet, separated by a neck domain (Fig. 225	

3c). The N-terminal neck domain, corresponding to TssG-D1, is made of two short helices 226	

and loops, whereas the C-terminal body domain, corresponding to TssG-D2, folds as an α/β 227	

domain comprising a four-strand β-sheet and three helices (Fig. 3c). On each side of the β-228	

sheet, two loops extend to form the two-foot domains (foot1 and foot2). The last strand of the 229	

sheet extends into a C-terminal extension of 17 residues.  230	

TssF is a globular protein with an N-terminal elongated extension called antenna (Fig. 3d). 231	

The antenna is made of 2 helices while the C-terminal globular domain can be divided into 5 232	

sub-domains: domain 1 (TssF-D1) is a β-sandwich flanked by loops containing short helices; 233	

domain 2 (TssF-D2) is a β-sandwich; domain 3 (TssF-D3) is an α-helical domain and 234	

comprises 3 short helices; domain 4 (TssF-D4) is an α/β domain composed of one helix and a 235	

4-strand β-sheet. The last domain, named branching domain (TssF-BD), is a β-sandwich that 236	

is formed by strands that link the antenna with TssF-D1 (three strands of the fold), TssF-D1 237	

with TssF-D2 (one strand of the fold) and TssF-D2 with TssF-D3 (two strands of the fold). As 238	

previously noted from the two wing densities, the structures of the two TssF proteins (TssFa 239	

and TssFb) are superimposable with the exception of the two antennas, which are in two 240	

distinct orientations (Supplementary Fig. 7d). 241	

 242	

Structure of the TssFG complex – TssG and the two copies of TssF (TssFa and TssFb) are 243	

assembled to form the pyramidal cap of the T6SS wedge complex (Fig. 3e). TssG-D1 forms 244	

an heterotrimeric helical bundle with the two TssF antennas (Fig. 3e-f). Interestingly, the fold 245	

of the TssG body is similar to the TssF-D1 domain (Supplementary Fig. 7e), and these three 246	

domains define a triangular assembly at the base of the T6SS wedge complex (Fig. 3f). 247	

Together with the heterotrimeric helical bundle, this structure forms the heterotrimeric 248	



scaffold of the TssFG complex (Fig. 3g). The D2, D3, D4 and BD domains from TssFa and 249	

TssFb form the wing-like domains on both sides of the trimeric scaffold (Fig. 3G). TssG is 250	

the central backbone of the wedge complex: it interacts with both TssFa and TssFb all along 251	

its structure, whereas TssFa and TssFb have very few points of contact between each other.  252	

 253	

The TssK-TssFG interface – The interaction of the two TssK trimers with the TssFG complex 254	

is mainly mediated through the two TssG-D2 foot domains (Fig. 3h-i). The TssG foot1 255	

domain (residues 227-242) interacts with residues 10-15 of the three TssK protomers of the 256	

TssK1 trimer (Fig. 3i, upper panel; Supplementary Fig. 7f). The situation is more complex 257	

for the TssK2 trimer: residues 10-15 of the three TssK2 protomers and 138-143 of one 258	

monomer (green) make contacts with the TssG foot2 domain (residues 303-322), and the 259	

TssG C-terminal extension (residues 345-347) makes contact with residues 116-117 of one 260	

TssK monomer (green in Fig. 3i, lower panel; Supplementary Fig. 7g), whereas the TssG 261	

foot1 domain (residues 221-224) also contributes to the stabilization of the edifice by 262	

interacting with the loop 116-120 in TssK2.  263	

 264	

Molecular model of the T6SS baseplate  265	

Recently, an 8-Å-resolution cryo-EM structure of the V. cholerae T6SS baseplate associated 266	

to a non-contractile sheath was reported 35. Although no density could be attributed to specific 267	

baseplate components, densities corresponding to the Hcp tube and VgrG spike are clearly 268	

visible 35. We used the deposited map (EMD-3879) to build a molecular model of the entire 269	

T6SS baseplate from EAEC (See Methods for more details)  (Fig. 4a) (Supplementary Fig. 270	

8a-b). 271	

The fully assembled T6SS baseplate is 337 Å in diameter and 180 Å in height (Fig. 4a). 272	

These dimensions are compatible with the densities attributed to the baseplate complex in the 273	

cryotomogram of the Myxococcus xanthus T6SS 47. The rings formed by TssFG (wedge ring) 274	

and TssK (connector ring) are 100 Å and 110 Å in height respectively (Fig. 4a). Within the 275	

wedge ring, the individual wedge complexes are organized side by side. Their main axis, 276	

along the helical bundle, makes a 30° angle with the symmetry axis of the ring (Fig. 4b). The 277	

lateral contacts are mediated by interactions between TssFa and TssFb from two adjacent 278	

wedge complexes (Fig. 4b). Overall, the two protomers are perpendicular to each other, 279	

TssFa wrapping the adjacent TssFb (Fig. 4c). In detail, the TssFa D1 and BD domains interact 280	

with the antenna of the adjacent TssFb whereas TssFa D3 and D4 domains interact with the 281	

adjacent TssFb D3 and BD domains (Fig. 4c). To a lesser extent, contacts also exist between 282	

two adjacent TssFb, two adjacent TssFa, and TssG and TssFb (Fig. 4b). In the TssK ring, one 283	

TssK protomer, belonging to the TssK1 trimer (grey density), interacts with two TssK 284	

protomers belonging to the TssK2 trimer in the adjacent wedge complex (green and brown 285	

densities) (Fig. 4b). Finally, there are contacts between TssFa and two TssK protomers from 286	

the TssK2 trimer from the adjacent wedge complex (Fig. 4b). 287	

The D1, D2 and BD domains of the TssFa proteins delineate the inner surface of the wedge 288	

ring, defining a chamber named TssF chamber (Fig. 4a). Together with the wedge ring, the 289	

connector ring defines another chamber, named the TssK chamber. Both chambers are 290	

separated by a central constriction of ~ 40 Å in diameter due to TssFa D2 and BD domains 291	

(Fig. 4a). Fitting of the VgrG crystal structure in the assembled baseplate reveals that the 292	

TssFa chamber accommodates perfectly the gp27-like hub domain of VgrG while the VgrG 293	

gp5-like spike crosses the TssFa constriction and extends into the TssK chamber 294	

(Supplementary Fig. 8b). In agreement with previous bacterial two-hybrid data 27, this 295	

reconstruction suggests that the interactions between VgrG and the baseplate are exclusively 296	

mediated by TssFa-VgrG interactions (Fig. 4c; Supplementary Fig. 8b).  297	



Surprisingly, there is no density in the cryo-EM map of the V. cholerae baseplate that could 298	

accommodate TssE. All the densities seen in the baseplate region of this map could be 299	

attributed to TssK, TssG or TssF. The rest of the map corresponds to the VipAB sheath, the 300	

Hcp tube, and the VgrG spike. The fact that TssE is invisible in this map could be explained 301	

by some degree of flexibility of the protein within the structure after sheath assembly. 302	

However, based on the location of TssE in the cryo-EM of the EAEC TssKFGE complex, 303	

TssE elegantly fits in a space between the wedge helical bundle and TssB in the model of the 304	

assembled baseplate (Fig. 4d). 305	

 306	

 307	

DISCUSSION 308	

 309	

The T6SS baseplate - sheath connection 310	

The TssFGE wedge ring interacts directly with the sheath structure. A homology model of the 311	

EAEC extended sheath was fitted into the molecular model of the baseplate attached to the 312	

sheath. Our model suggests that the main contacts are established between the TssFb D2 313	

domain and the TssBC N-terminal antenna. In addition, the TssG head domain and TssE 314	

likely stabilize the interaction between the sheath and the baseplate (Fig. 4c-d) by interacting 315	

with the C-terminal domain of TssB as recently proposed 48. 316	

 317	

The T6SS baseplate - membrane complex connection 318	

A number of contacts have been identified between the baseplate components and the 319	

cytoplasmic domains of the TssL and TssM inner membrane proteins 26–28,38,39. The main 320	

contacts involve binding of TssK to both TssL and TssM 26,28,39 but additional contacts, 321	

notably between TssL and TssE, and between TssM and TssG have been reported 27,39. While 322	

these contacts could not be explained by the current structure, it is known that structural 323	

rearrangements occur in the bacteriophage T4 upon sheath contraction 49–51. If such 324	

conformational changes occur in the T6SS baseplate, different contacts may stabilize the 325	

interaction of the baseplate with the membrane complex after sheath contraction. 326	

However, the position of the TssK connector ring confirms that TssK is the major determinant 327	

for mediating baseplate docking to the membrane complex. We have recently shown that the 328	

TssKS domain shares homology with siphophage receptor-binding proteins, whereas it has 329	

evolved a specific C-terminal head domain, TssKH, to use the membrane complex as a 330	

receptor 28. In agreement with these results, the orientation of the TssK trimers in the 331	

baseplate places the TssKS domains in contact with the TssFG cap complex (Fig. 2c), whereas 332	

the TssKH domains extend in the opposite direction compared to the sheath, at the predicted 333	

location of the membrane complex (Fig. 4a).  334	

 335	

Comparison between T6SS and bacteriophage baseplates. 336	

(A detailed version of this section is provided in supplementary information) 337	

 338	

While	 our	 data	 confirms	 a	 strong	 analogy	 between	 the	 T6SS	 baseplate	 and	 the	 “simple	339	

contractile	 baseplate”	 from	 the	 Mu	 phage, it is also clear that T6SS and T4 phage wedge 340	

components are structurally related to each other. Indeed, the structures of TssF and TssG 341	

reavealed that they are gp6 and gp7 counterparts in the T4 phage baseplate (Fig. 5a-b) 342	

(Supplementary Fig. 9a-b). Interestingly, a detailed analysis of both baseplate architectures 343	

revealed that, while inter-wedge contacts are different in the T4 and the T6SS baseplates (Fig. 344	

4b & Fig. 5c), interactions with the central spike and the contractile sheath are quite well 345	

conserved (Fig. 5c-d, Supplementary Fig. 9c-e). Finally, this comparison revealed how the 346	



apical part of the each baseplate is structurally specialized to interact with different targets 347	

(Fig. 5c-e).  348	

 349	

Assembly mechanism and stability of of the T4 and T6SS baseplates  350	

(A detailed version of this section is provided in supplementary information) 351	

 352	

While the T4 bacteriophage wedge complex appears to be transient, the T6SS wedge complex 353	

is stable, as shown by the isolation of TssKFG or TssKFGE complexes in EAEC, S. 354	

marcescens and uropathogenic E. coli (this work; 36,37). By contrast, the fully assembled T4 355	

phage baseplate is much more stable than the T6SS baseplate, since we did not succeed to 356	

purify the T6SS hexagonal baseplate. This higher stability of a preformed T6SS baseplate 357	

intermediate may reflect an adaptation to the secretion process. Delayed polymerization of the 358	

wedge around the VgrG hub and fast recycling of the wedge complexes might be necessary 359	

during each secretion cycle  360	

 361	

	362	

 363	

Concluding remarks 364	

 365	

 In	this	work,	we	provide	an	unprecedented	functional	and	structural	study	of	 the	T6SS	366	

baseplate	 building	 block,	 the	 wedge	 complex. Due to the conservation of T6SS wedge 367	

complexes among pathogenic bacteria, the atomic model of the TssKFGE complex will 368	

facilitate the design of anti-T6SS compounds targeting hot spots of the baseplate assembly, 369	

paving the way towards new therapeutic avenues to replace or help classical antibiotherapies. 370	

 371	

 372	

 373	
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 504	

Figures legends. 505	

 506	

Figure 1. Composition of the T6SS wedges complex. a. Fluorescence microscopy 507	

recordings showing TssKsfGFP localisation in the absence of the TssF, TssG, TssE, VgrG and 508	

TssA proteins. The positions of foci corresponding to fully-assembled baseplates are indicated 509	

by arrowheads. Microscopy analyses were performed independently three times, each in 510	

technical triplicate, and a representative experiment is shown. Scale bars, 1 µm. b. Native 4-511	

16% gel analysed by Coomassie staining (upper left panel) or immunobloting using anti-GFP 512	

antibodies (right panel) or anti-GFP, anti-Streptag and anti-FLAG antibodies (lower left 513	

panels). The TssKsfGFP-6�His and TssKsfGFP-6�His-FG produced and purified from 514	

BL21(DE3) cells show the positions of two high-molecular weight complexes (HMWC, 515	

indicated by * and **). Formation of the higher HMWC is monitored in different tss mutant 516	

backgrounds, revealing that the * and ** complexes correspond to a TssKsfGFP trimer and 517	

TssKsfGFP-TssF-TssG complex, respectively. Native gel experiment was performed 518	

independently three times and a representative experiment is shown. c. Summary of protein-519	

protein interactions within the TssKFGE complex, as defined by pair-wise pull-down 520	

experiments (see Supplementary Fig. 2 and 4). Arrows indicate interactions between the two 521	

proteins or domains. d. Purification and biochemical characterization of the TssKFGE wedge 522	

complex. Analytical size-exclusion chromatography analysis of the purified TssKFGE 523	

complex (continuous line) on a Superose 6 column, calibrated with 43-, 75-, 158-, 440- and 524	

660-kDa molecular mass markers (dotted lines). The molecular mass of each marker (in 525	

kilodaltons) is indicated on the top of the corresponding peak. An arrow indicates the position 526	

of the peak fraction corresponding to the TssKFGE complex. Inset: Purified TssKFGE 527	

complex subjected to sodium dodecyl sulfate 12.5%-acrylamide PAGE and Coomassie 528	

staining. The different proteins are indicated on the right, whereas molecular weight markers 529	

are indicated on the left. TssKFGE complex purification and analytical size-exclusion 530	

chromatography analysis experiments were performed at least three times and a representative 531	

result is shown. 532	

 533	

Figure 2. Cryo-EM density map of the TssKFGE wedge complex. a. Surface 534	

representation of the composite cryo-EM density map of the TssKFGE complex. The maps 535	

corresponding to the root and stalk/wings regions were refined separately (see material and 536	

methods section). Dimensions and labelling of the various densities of the complex are 537	

shown. b. Schematic representation of the different densities of the TssKFGE map. c. Two 538	

copies of the TssK trimer crystal structure (PDB:5M30; 28) can be fitted in the density 539	

corresponding to the “roots”. d. Segmentation of the stalk and wing regions of the density 540	

map (shown in the same orientation than B). Two regions forming the wings (in cyan and 541	

blue) interact with a central backbone (in yellow). e-f. Densities corresponding to the two 542	

wing sub-regions, positioned in the same orientation (e) and superimposed (f). Each of these 543	

densities corresponds to one TssF subunit. g. The density corresponding to the central 544	

backbone is displayed alone. It corresponds to one TssG subunit. h. At lower density 545	

threshold, a density appears at the tip of the TssFG density. A TssE homology model could be 546	



fitted into this new density with a correlation of 0.870. The scale bars correspond to 25 Å for 547	

each panel. 548	

 549	

Figure 3. Structure of the TssKFGE complex. a. Ribbon diagram of one TssK protomer. 550	

The structure can be divided into 4 parts, from N- to C-terminus: N-terminal helix (residues 1-551	

42, blue), shoulder domain (residues 43-185, cyan), neck domain (residues 186-312, green) 552	

and head domain (residues 313-444, red). b. Ribbon diagram and surface representation 553	

(transparent) of one TssK trimer viewed from the side (top panel) and from the bottom 554	

(Bottom panel). Each TssK protomer is colored in beige, dark green and brown. c. Ribbon 555	

diagram of the TssG protomer. The structure can be divided into 6 parts, from N- to C-556	

terminus: N-terminal head domain (residues 8-144, blue), neck domain (residues 145-192, 557	

green), body domain (residues 146-215, 252-300 and 331-342, red) and C-terminal extension 558	

(residues 342-356, purple, foot1 (residues 216-252) and foot2 (residues 300-330), in yellow. 559	

c. Ribbon diagram of the TssF protomer. The structure can be divided into 6 parts, from N- to 560	

C-terminus: N-terminal antenna (residues 4-82, blue), domain 1 (residues 140-295, green), 561	

domain 2 (residues 304-416, red), domain 3 (residues 453-502, magenta) and domain 4 562	

(residues 503-587, purple). A branching domain connects domains 1, 2 and 3 (residues 83-563	

139, 296- 303 and 417-452, yellow). e. Ribbon diagram of the TssFG complex. It contains 564	

one copy of TssG (yellow) and two copies of TssF, named TssFa (cyan) and TssFb (blue). f. 565	

Ribbon diagram of the TssG-TssFa-TssFb trimer scaffold. TssG, TssFa and TssFb are 566	

represented in yellow, cyan and blue respectively. The triangular organization is highlighted 567	

by the red dotted-line triangle. g. The TssG-TssFa-TssFb trimer scaffold is decorated by TssF 568	

wing and TssG N-terminal head domains. The trimer scaffold is represented as ribbons 569	

(magenta). The decorations are represented as ribbons and transparent surfaces. The colour 570	

code is the same as in panel e. h. Ribbon diagram of the whole TssKFGE wedge complex. 571	

The complex made of TssG (yellow), TssFa (cyan) and TssFb (blue) interacts with two TssK 572	

trimers (TssK1 and TssK2), same color code as in B. i. Interaction between TssG foot 573	

domains and TssK trimers. The same color code is used as in B. and E. TssK1 and TssK2 are 574	

depicted in surface rendition and ribbon diagram respectively. TssG antenna and body are 575	

represented as ribbons while the feet are represented as surfaces.  576	

 577	

Figure 4. Structural model of the EAEC T6SS baseplate. 578	

a. Overall view of the interaction between the T6SS baseplate and the TssB/C sheath. The 579	

color code used to identify the various subunits is shown on the left of the panel. Left panel: 580	

surface representation of the model of the EAEC T6SS baseplate in interaction with a model 581	

EAEC sheath. While TssB/C protomers are colored in grey, the TssB/C protomers interacting 582	

with the baseplate are colored in orange. The different parts of the tail (connector ring, wedge 583	

ring, extended sheath) are indicated, as well as the putative location of the membrane 584	

complex. Middle panel: central slice of the complex seen in the left panel. The different parts 585	

of the tail, as well as the two chambers delimitated by the TssFa and TssK subunits (TssF and 586	

TssK chamber, respectively) are indicated. Right panel: surface representation of the 587	

baseplate viewed from the membrane complex (top view) and from the sheath (bottom view). 588	

b. Interaction surface between two wedge complexes as they are assembled in the baseplate. 589	

The color code used to identify the various subunits is shown on the left of the panel. The 590	

predicted interacting residues between two wedge complexes are colored in red. Left panel: 591	

the two bound wedge complexes as they are assembled in the baseplate. The red dotted lines 592	

represent the baseplate symmetry axis (vertical line) and the wedge complex main axis (tilted 593	

line). Right panel: the same two wedge complexes are split open to reveal the interaction 594	

surfaces between them. The main interfaces are identified. c. Ribbon diagram and transparent 595	

surface representation of TssFa-TssFb belonging to two adjacent wedge complexes (main 596	



interface between wedge complexes within the T6SS baseplate). TssFa and TssFb are 597	

represented in cyan and blue respectively. Within each subunit, the regions interacting with 598	

VgrG and TssBC are colored in magenta and orange respectively. d. Ribbon diagram and 599	

surface representation of the wedge-TssB/C interaction. The color code used to identify the 600	

various subunits is shown on the left of the panel. Top panel: surface representation views 601	

(rotated 180° along the axis) of TssBC bound to the TssFa-TssFb-TssG-TssE complex. The 602	

ribbon diagram of the same complex is shown on bottom. 603	

 604	

Figure 5. Comparison between the T4 bacteriophage and T6SS baseplates. 605	

In all panels, T6SS and T4 bacteriophage representations are shown on left and right, 606	

respectively. For panels c-e, the color code used to identify the various subunits or domains is 607	

shown on the left of each panel. a. T6SS and T4 bacteriophage trimer scaffolds share the 608	

same structural organization. In the T4 baseplate, the backbone of the wedge domain is made 609	

of a heterotrimeric helical bundle and a trifurcation unit (in purple), which are made of the 610	

gp6/gp7 antennas and of the gp6/gp7 α/β domains, respectively. As seen in Fig. 3F, this 611	

organization is conserved in the T6SS baseplate (purple). In gp6, two consecutive β-sandwich 612	

domains following the N-terminal antenna are called the wing domains (green). These 613	

domains resemble the TssF D2, and BD (green). b. Same assembly as in a., seen from the 614	

bottom. Both T6SS and T4 bacteriophage wedge complexes contain a trifurcation unit made 615	

of the α/β domains in TssFa-TssFb-TssG and gp6a-gp6b-gp7 respectively. A red triangle 616	

delineates this trifurcation unit. c. Top views of the T6SS and T4 bacteriophage baseplates. 617	

For the T4 bacteriophage baseplate, the inner and intermediate baseplate are separated by a 618	

red dotted line. The inter-wedge gp6a/gp6b main interface is indicated. d. Bottom views of 619	

the T6SS and T4 bacteriophage baseplates. The domains interacting with the sheath are 620	

indicated and colored in orange. e.  Side views of the T6SS and T4 bacteriophage baseplates.  621	

 622	

Figure 6. Schematic representation of the T6SS assembly pathway. 623	

Upper panel: schematic representation of the T6SS assembly pathway, starting with the initial 624	

positioning of the membrane complex (MC, blue) (stage 1), the assembly of the wedge 625	

complexes (grey), their polymerization around the VgrG spike (pink), the recruitment of 626	

effectors (light orange skull), and the recruitment of the baseplate (BP) to the MC (stage 2); 627	

and the polymerization of the tail tube/sheath complex (TTC, salmon). A surface 628	

representation of the modeled T6SS baseplate with the extended sheath bound to the 629	

membrane complex is shown on right. OM, outer membrane; PG, peptidoglycan; IM, inner 630	

membrane. Lower panel: from left to right, the TssKFGE wedge structure (same color code as 631	

in Fig. 3); the structure of the assembled T6SS BP (same color code as in Fig. 4) and a 632	

schematic represenation of the protein-protein contacts and topology of the fully-assembled 633	

baseplate. 634	

 635	

 636	
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SUPPLEMENTARY INFORMATION 638	

 639	

Supplementary Information includes 19 figures and 3 tables. 640	
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	677	

Methods 678	

 679	

A key resource table (supplementary table 1) provides details about the reagents, strains, and 680	

software used in this study. 681	

 682	

Strains, media and chemicals  683	

The strains, plasmids and oligonucleotides used in this study are listed in Supplementary Table 1. The 684	

E. coli K-12 DH5α strain was used for cloning procedures; E. coli K-12 BL21(DE3) strain was used 685	

for protein expression and purification; E. coli K-12 W3110 bearing the pUA66-rrnB vector (KanR 686	

and GFP+, 1) was used as recipient for antibacterial competition assays. Strains were routinely grown 687	

in lysogeny broth (LB) rich medium or in Sci-1-inducing medium (SIM; M9 minimal medium, 688	

glycerol 0.2%, vitamin B1 1 µg.mL-1, casaminoacids 100 mg.mL-1, LB 10%, supplemented or not with 689	

bactoagar 1.5%) 2 with shaking at 37°C. Plasmids were maintained by the addition of streptomycin 690	

(100 µg.mL-1), kanamycin (50 µg.mL-1), chloramphenicol (30 µg.mL-1) or ampicillin (100 µg.mL-1). 691	

Expression of genes from pCDF, pRSF and pETDuet vectors was induced with 1 mM of isopropyl-β-692	

D-thio-galactopyrannoside (IPTG, Eurobio) for 16h at 16 ˚C. 693	

 694	

Strains construction  695	

Gene deletion into the enteroaggregative E. coli 17-2 tssKsfgfp strain 3 was achieved by using a 696	

modified one-step inactivation procedure 4 as previously described 5 using plasmid pKOBEG 6. 697	



Briefly, a kanamycin cassette was amplified from plasmid pKD4 using oligonucleotide pairs carrying 698	

5’ 50-nucleotide extensions homologous to regions adjacent to the gene to be deleted. After 699	

electroporation of 600 ng of column-purified PCR product, kanamycin-resistant clones were selected 700	

and verified by colony-PCR. The kanamycin cassette, inserted at the gene locus on the bacterial 701	

chromosome, was then excised using plasmid pCP20, leaving an FRT scar 4. Gene deletions were 702	

confirmed by colony-PCR and sequencing. All the mutations have been previously trans-703	

complemented for the T6SS-dependent bacterial competition or Hcp secretion phenotype by plasmid 704	

expressing the WT version of the T6SS genes TssFG 7 and TssK8. 705	

 706	

 707	

Plasmid construction 708	

PCRs were performed using the Phusion DNA polymerase (Thermo Scientific). Restriction enzymes 709	

were purchased from New England Biolabs and used according to the manufacturer’s instructions. 710	

Custom oligonucleotides were synthesized by Sigma Aldrich and are listed in Supplementary Table 1. 711	

Enteroaggregative E. coli 17-2 chromosomal DNA was used as a template for all PCRs. Construction 712	

of pCDF-TssKH-SF-GF has been previously described 9. Plasmids pCDF-TssKH-SF-GFlag-EHA and 713	

pETDuet-VgrGHa were engineered by restriction cloning. Briefly, the sequences encoding the full-714	

length tssE and vgrG were PCR-amplified using primers 5-pRSF-EHA 
715	

(ATAAAGCTTAAGGAGATATACATATGCCGCGTCCTTCCCTTTATGAAATTCTCTATGGC) 716	

and 3-pRSF-EHA 717	

(ATAGCGGCCGCTCAAGCGTAATCTGGAACATCGTATGGGTACGTCTGCACGTAGCGCTGCT718	

GTTTCAGATGGC), and 5-pETDuet-VgrGHA 
719	

(ATAGGATCCAAGGAGATATACATATGAATCTCACTGACTCCCTGCAAAATGTTTTATCCG720	

G) and 3-pETDuet-VgrGHA 721	

(TATAAGCTTTCAAGCGTAATCTGGAACATCGTATGGGTATTCTGTTTCTCCATGAATTTTTAC722	

CTTCCCAAACTC), respectively. Primers introduced a C-terminal HA epitope tag extension 723	

(italicized in the primer sequences), and HindIII/NotI and BamHI/HindIII restriction sites (underlined 724	

in the primer sequences) respectively. All other plasmids were constructed by restriction-free cloning 725	
10. Briefly, the gene of interest was amplified with oligonucleotides carrying 5’ extensions annealing to 726	

the target vector. The product of the first PCR was then used as oligonucleotide for a second PCR 727	

using the target vector as template. All constructs have been verified by DNA sequencing (Eurofins 728	

Genomics). 729	

 730	

Interbacterial competition assay  731	

The antibacterial growth competition assay was performed as previously described 11. Wild-type E. 732	

coli K-12 strain W3110 bearing the pUA66-rrnB plasmid (conferring kanamycin resistance and 733	

constitutive GFP fluorescence (gfp gene under the control of the ribosomal rrnB promoter, 12 was used 734	

as recipient. Attacker and recipient cells were grown for 16 h in LB medium, diluted in SIM to allow 735	

maximal expression of the sci-1 gene cluster 2. Once the culture reached A600nm~ 0.8, cells were 736	

harvested and normalized to A600nm = 0.5 in SIM. Attacker and recipient cells were mixed to a 4:1 ratio 737	

and 15-µl drops of the mixture were spotted in triplicate onto a pre-warmed dry SIM agar plate 738	

supplemented or not with arabinose 0.5 mg.mL-1. After incubation for 4 h at 37°C, the bacterial spots 739	

were resuspended in LB and bacterial suspensions were normalized to A600nm = 0.5. For the 740	

enumeration of viable prey cells, bacterial suspensions were serially diluted and spotted onto 741	

kanamycin LB plates. The assays were performed from at least three independent cultures, with 742	

technical triplicates and a representative technical triplicate is shown.  743	

 744	

TssKFGE complex production and purification 745	

The tags were rationally positioned at specific locations in the TssKFGE complex: Introduction of the 746	

tags (i) still permits protein-protein interaction as assayed by bacterial two hybrid (BTH) and (ii) 747	

allows trans-complementation of the T6SS-dependent “interbacterial competition” phenotype in a 748	

mutant deleted for a specific gene with a plasmid encoding a tagged version of this same gene. The 749	

pCDF–TssKH-SF-GF-HaE plasmid was transformed into the E. coli BL21(DE3) expression strain. Cells 750	

were grown at 37°C in lysogeny broth (LB) to A600nm ~ 0.6 and the expression of the tssKFGE genes 751	



was induced with 1.0 mM IPTG for 16 h at 16 °C. Cell pellets were resuspended in ice-cold 50 mM 752	

Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA supplemented with DNase I (100 mg.mL-1), lysozyme 753	

(100 mg.mL-1), MgCl2 (10mM) and EDTA-free protease inhibitor (Roche) to an A600nm of 125. Cells 754	

were broken using an Emulsiflex-C5 (Avestin) and clarified by ultracentrifugation at 20,000×g for 30 755	

min. The supernatant was loaded onto a 5-mL HisTrap HP (GE Healthcare) column equilibrated in 756	

affinity buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl) supplemented with 20 mM imidazole. The 757	

column was then washed using the affinity buffer supplemented with 50 mM imidazole and the 758	

TssKFGE complex was eluted in the same buffer supplemented with 250 mM imidazole. Peak 759	

fractions were pooled and loaded onto a Superose 6 10/300 column (GE Healthcare) equilibrated in 50 760	

mM HEPES pH 7.5, 150 mM NaCl. The complex eluted as a single monodisperse peak and the 761	

sample was used for EM sample preparation. 762	

 763	

Protein production and purification for interaction studies 764	

Plasmids expressing the genes combination of interest were co-transformed into E. coli BL21(DE3) 765	

and cells were treated as described before. For His-tag affinity, the supernatant was loaded, washed 766	

and eluted as above. For strep-tag affinity, the supernatant was loaded onto a 5-mL StrepTrap HP 767	

column (GE Healthcare), washed with affinity buffer and eluted in affinity buffer supplemented with 768	

2.5 mM desthiobiotin (IBA Technologies). The lysate, flow through, wash and elution fractions were 769	

collected, resuspended in Laemmli loading buffer supplemented with 300 mM 2-Mercaptoethanol, 770	

heated for 10 min at 96°C prior to analyses by SDS-PAGE and immunoblotting. 771	

 772	

SDS–PAGE, protein transfer, immunostaining and antibodies 773	

SDS–PAGE was performed on Bio-Rad Mini-PROTEAN® systems using standard protocols. For 774	

immunostaining, proteins were transferred onto 0.2-µm nitrocellulose membranes (Amersham 775	

Protran). Immunoblots were probed with primary antibodies and goat secondary antibodies coupled to 776	

alkaline phosphatase, and developed in alkaline buffer in presence of 5-bromo-4-chloro-3-777	

indolylphosphate and nitro-blue tetrazolium. The anti-HA (HA-7 clone, Sigma Aldrich), anti-Flag 778	

(M2 clone, Sigma Aldrich), anti-StrepII (Sigma Aldrich), anti VSV-G (Sigma Aldrich) and anti-5His 779	

(Sigma Aldrich) monoclonal antibodies, and mouse secondary antibodies (Millipore) were purchased 780	

as indicated.  781	

 782	

Native polyacrylamide gel electrophoresis  783	

After overnight cultures in LB, the enteroaggregative E. coli EAEC strain 17-2-tssKsfgfp and its mutant 784	

variants were diluted 1/100 in 500 mL of SIM and grown at 37°C to an A600nm ~ 1,2. Cells were 785	

harvested, resuspended in ice-cold 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA to an A600nm 786	

= 120 and broken using an Emulsiflex-C5 (Avestin). After clarification by ultracentrifugation at 787	

20,000×g for 30 min, lysates were loaded on a native 4-16% gel (Mini-PROTEAN® TGX, Bio-Rad). 788	

After migration, proteins and protein complexes were transferred onto a nitrocellulose membrane and 789	

immunoblotted as described above. 790	

 791	

Mass spectrometry  792	

Purified TssKFG and TssKFGE protein complexes were first buffer exchanged with 500 mM 793	

ammonium acetate by size exclusion chromatography on Superdex 200 increase (3.2 / 300) using a 794	

ÄKTAmicro System (GE healthcare) at isocratic flow of 50 µL.min-1. Samples were then nano-795	

electrosprayed using a TriVersa NanoMate (Advion Biosciences, Ithaca, USA) coupled to a Synapt 796	

G2-Si mass spectrometer (Waters Corporation, Manchester, UK). The instrument was calibrated from 797	

1,000 m/z to 12,000 m/z with CsI (50 mg/mL-1) with an accuracy of 6 ppm. Native mass 798	

measurements were recorded between 2,000 and 20,000 m/z with sensitivity mode activated. The 799	

following settings were chosen: sampling cone 150 V, source offset 45 V, source temperature 40°C, 800	

trap gas flow 5 mL.min-1, helium cell gas flow 180 mL.min-1. Sub-complexes were obtained with the 801	

same parameters and additional collisional activation up to 60 NCE (Normalized Collisional Energy). 802	

Data were accumulated several minutes, averaged and smoothed with the Mass Lynx smoothing 803	

Algorithm (30 cycles, 30 amu large channel). Theoretical masses were calculated with the algorithm 804	

embedded within MassLynx using the protein sequence of the constructs. Measured masses were 805	



obtained averaging the mass calculated for the most intense charge states of the complex with a 806	

minimum of 3 charge states. 807	

 808	

Fluorescence microscopy, image treatment and analyses 809	

Fluorescence microscopy experiments were performed as described 8,13. Briefly, cells were grown 810	

overnight in LB medium and diluted to A600nm ~ 0.04 in SIM. Exponentially growing cells (A600nm ~ 811	

0.8–1) were harvested, washed in phosphate-buffered saline buffer (PBS), resuspended in PBS to 812	

A600nm ~ 50, spotted on a 1.5% agarose pad and covered with a cover slip. For domain interference, the 813	

E. coli 17-2 tssK-sfgfp or tssB-mCherry strains expressing TssK or TssG domains were cultured as 814	

described above, except that 0.05% (w/v) arabinose was added in the culture once reached A600nm ~ 0,6 815	

for 30 min. Fluorescence and phase contrast micrographs were captured using AxioImager M2 816	

microscope (Zeiss) equipped with an OrcaR2 digital camera (Hamamatsu). Fluorescence images were 817	

acquired with a minimal exposure time to reduce bleaching and phototoxicity effects, typically 500 ms 818	

for TssK-sfGFP and 200 ms for TssB-mCherry. Noise and background were reduced using the 819	

‘Subtract Background’ (20 pixels Rolling Ball) and Band plugins of imageJ (Image J, National 820	

Institutes of Health). The sfGFP foci were automatically detected using the microbeJ plugin 821	

(http://www.microbej.com/index.html). Box plots representing the number of detected foci for each 822	

strain were made using microbeJ. The number of sheath per cells was measured manually. Microscopy 823	

analyses were performed at least three times, each in technical triplicate, and a representative 824	

experiment is shown. 825	

 826	

Cryo-EM grids preparation and data acquisition 827	

For cryo-EM analyses, the buffer of the purified TssKFGE complex was exchanged for 50 mM 828	

HEPES pH 7.5, 150 mM NaCl to a final protein concentration of 0.2 mg.mL-1. 3.5 µL of the protein 829	

solution was deposited on Lacey grids and vitrified using a Vitrobot (Thermo Fisher, Waltham, MA, 830	

USA ) (parameters: blotting 4 s, temperature 4°C, humidity 100 %). Micrographs (Supplementary Fig. 831	

11a) were recorded at a specimen temperature of 85 K in a Titan Krios electron microscope (Thermo 832	

Fisher, Waltham, MA, USA) at 300 kV and a nominal magnification of 130,000 on a K2 summit 833	

direct electron detector mounted on a Bioquantum LS/967 energy filter (Gatan, Pleasanton, California) 834	

in counting mode with a pixel size of 1.1 Å, at an electron flux of about 12.35 e-/px/s. Dose-835	

fractionated movie frames (30 in total) were acquired for 4 s with 0.13 s exposure time per frame. The 836	

total electron dose was ∼45 e-/Å2 (1.5 e-/Å2/frame). The defocus range chosen for the automatic 837	

collect was 0.7 to 2 µm, which resulted in an actual range between 0.4 to 3 µm. 838	

 839	

Cryo-EM image processing 840	

750 micrographs were processed (Supplementary Fig. 10a). Subframes were divided into 5×5 patches 841	

and corrected with MotionCor2, with dose weighting (1.5 e-/Å2/frame) to dampen the high-resolution 842	

signal in later frames 14. CTF parameters were estimated by gCTF 15. Particles on micrographs were 843	

picked manually in box size of 450 pixels and classified into 2D class averages. Selected classes were 844	

used as references for autopicking in RELION 2.1 16. The total number of initial extracted particles 845	

(167,825) was reduced to 52,069 by subsequent rounds of 2D classifications (Supplementary Fig. 10b) 846	

and an initial model (Supplementary Fig. 10c) of what appears to be 2 TssKFGE full complexes 847	

(12×TssK, 4×TssF, 2×TssG, 2×TssE) was generated on cryoSPARC 0.6 17. The selected particles 848	

from the 2D classifications were converted back to RELION 2.1 using the script csparc2star.py 18 and 849	

then subjected to an additional round of 2D and 3D classification (Supplementary Fig. 10c), with the 850	

initial model low-pass filtered to 60Å. A final cleaner dataset of 32,504 particles was selected for 851	

further processing. The 40-Å low-pass filtered 3D class was then used as an initial model for 3D 852	

refinement with a solvent mask corresponding to most well defined half of the larger TssKFGE 853	

complex (6×TssK, 2×TssF, 1×TssG, 1×TssE). No symmetry was applied during any of the 3D 854	

classifications and refinements. To obtain the density map of the single repeating unit of the assembly 855	

of the two complexes (hereafter called TssKFGE), the complex with the least defined wing was 856	

subtracted, and a soft mask was applied to the remaining region for 3D auto-refinement. The final 857	

resolution was 4.6 Å, calculated with masked post-process by refining two half-maps independently, 858	



according to the “gold standard” FSC 0.143 criterion. The B factor applied of -136 gave a local 859	

resolution range between 3.9 and 18 Å (Supplementary Fig. 11a-c).  860	

To obtain the best density map for the root-like domains that correspond to TssK, the regions 861	

corresponding to the wings were subtracted and a soft mask was applied to the TssK trimers during 862	

autorefinement, producing a map with a 4.3-Å overall resolution. The calculated B factor was -111 863	

and it gave a local map resolution of 3.8-33 Å (Supplementary Fig. 11d-f, j-k).  864	

Masking was not sufficient to improve the density map of the flexible regions. A re-centering of the 865	

particles in the wings region was thus performed using the REP algorithm 19 and the box size was 866	

reduced to 200 pixels. A masked 3D auto-refinement to exclude the root-like domains was performed 867	

to obtain a resolution of 4.7 Å (4.3-8 Å local with B factor of -202; Supplementary Fig.11g-i). 868	

All of the densities obtained were subjected to Autosharpen 20 in the Phenix software package. All the 869	

models were built on autosharpened densities. Subsequent molecular graphics and analyses were 870	

performed using UCSF Chimera 21.  871	

 872	

Evolutionary Covariance Analysis.  873	

Residue–residue contacts can be predicted based on sequence information alone through the 874	

evolutionary covariance analysis 22 Essentially, the prediction of residue–residue contacts is linked to 875	

strong evolutionary constraints, such as the presence of functionally important structures, and is 876	

measured by the covariance of contacting residues. Evolutionary constraints can be detected at a 877	

sequence level by aligning thousands of homologous protein sequences. Statistical probability models 878	

can separate direct from indirect residue–residue couplings, increasing the signal-to-noise ratio in the 879	

predicted contact map. Therefore, contacts with the strongest signal, indicated by the highest global 880	

statistical scores, are most likely to represent the true residue interactions in a protein. In this work we 881	

use two software packages that uses distinct statistical probability models: EVcomplex 23 and RaptorX 882	
24 for inter-molecular and intra-molecular contact prediction, respectively. EVcomplex computes co-883	

evolution between proteins, pairing up protein sequences and assuming proximity of the two 884	

interacting partners on the genome, with the goal of reducing incorrect pairings. The paired sequences 885	

are concatenated and statistical co-evolution analysis is performed using EVcoupling 25. The RaptorX 886	

algorithm predicts intra-molecular contacts by integrating evolutionary coupling, pairwise potentials, 887	

and sequence conservation information through an ultra-deep neural network. 888	

 889	

 890	

TssKFGE model fitting and de novo tracing 891	

Two copies of the trimeric TssK unit (PDB: 5M30; 9 were docked into the EM density map of the 892	

TssKFGE complex and fit as rigid bodies in Chimera 21. Missing regions were manually built using 893	

Coot 26. The final model was refined by multiple rounds of manual refinement in Coot 26, Rosetta 894	

refine 27 and the real-space refine function of Phenix 28.  895	

Owing to the lack of structural information for TssF and TssG and the limited resolution of the density 896	

map in that region, we devised an iterative semi-automatic protocol that employed several sources of 897	

information and pieces of software (Supplementary Fig. 12). The sources of information included the 898	

EM density map, the stoichiometry and the symmetry of the TssFG subcomplex, the position of bulky 899	

residues in the sequence, a homology model of TssF based on the T4 bacteriophage gp6 (generated 900	

using i-TASSER, consensus secondary structure obtained using PSIPRED 29, Rosetta 27, Phyre2 30, 901	

DeepCNF 25, and i-TASSER 31, and intra-molecular contact predictions for TssF and TssG using the 902	

RaptorX contact prediction tool 31 (Supplementary Fig. 12b). Contact maps are binary two-903	

dimensional matrices that represent the proximity between all residue pairs for a given protein 27. The 904	

RaptorX algorithm predicts contacts by integrating evolutionary coupling, pairwise potentials, and 905	

sequence conservation information through an ultra-deep neural network. Predicted contact maps were 906	

obtained by filtering RaptorX contacts with a score higher than 0.4.  Model contact maps, which are 907	

compared with the predicted ones, were obtained from a structure calculating the pairwise distances 908	

between Cα atoms and considering as a contact any distance below 12 Å. We tested the quality the 909	

predicted contact maps by calculating the accuracy on a known structure. Using the enteroaggregative 910	

E. coli TssK structure as model 9; PDB: 5M30) (Supplementary Fig. 12c), the ratio between predicted 911	

contacts consistent with the structure and the total contacts within the structure gave an accuracy of 912	

0.97 (Supplementary Table S3).  913	



The protocol described below iterates between structural refinement and sequence-structure 914	

registration based on contact prediction. It is organized into four steps (Supplementary Fig. 12a): 915	

Step 1. Initial segmentation and manual tracing. The TssFG map was segmented using Segger v1.9.4 916	

in UCSF Chimera 21 and the density of one half of the wing superimposed with the other half to 917	

identify repeating patterns due to the presence of two TssF monomers in the complex. The segmented 918	

map identified densities corresponding to TssG and the two TssF subunits. An initial Cα tracing of the 919	

TssFG complex was based on the three density segments. The sequence registering was guided by 920	

sequence position of bulky amino-acids and consensus prediction of secondary structures. The model 921	

building was aided by the use of the Coot-trimmings script 32 and sharpening of the map was 922	

modulated by varying the resolution limit.  923	

Step 2. Sequence Registration using predicted contact maps. The model was validated and registered 924	

using residue contact prediction 33. The contact map of the obtained model was computed and aligned 925	

to the predicted contact-map using the MapAlign software 34. Using the resulting contact-map 926	

alignment we identified regions of the model that agree and disagree with the predicted contact-map. 927	

The boundaries of these regions were used to divide the structure into several fragments. The 928	

connectivity and the sense (N- to C-terminus orientation) of the fragments were globally optimized 929	

using dynamic programming and the MapAlign scoring function.  930	

Step 3. De novo modeling of inconsistent regions. The model generated in the previous step was again 931	

validated comparing its contact-map with the predicted contact-map. Regions in disagreement (TssG-932	

D1, residues 1-144; TssG-D2 body, residues 180-300; and TssF-D1, residues 495-585) were modeled 933	

de novo using ARIA with predicted contacts as distance restraints 35. Inter-residue contacts for the 934	

TssG-D1, TssG-D2 and TssF-D1 domains were predicted from co-evolution analysis using RaptorX 31 935	

and the top scoring contacts were converted to distance restraints. Secondary structure predictions 936	

from DeepCNF 25,36 were converted to canonical dihedral angle restraints for residues predicted to be 937	

in α-helical and β-strand conformation. Additionally, hydrogen bond restraints were generated 938	

between residues i and i+4 in regions predicted as α-helical (same face of the helix). Atomic models 939	

were calculated by successive rounds of restrained molecular dynamics simulated annealing with CNS 940	
37 using the iterative ARIA approach 35,38. At each iteration, 100 conformations were produced using 941	

inter-residue distance, dihedral angle and hydrogen bond restraints and clustered from the coordinates 942	

of Cα atoms. The 15 best conformations of the lowest-energy cluster were then used to refine the list 943	

of predicted contacts on the basis of their structural consistency. A conformational database potential 944	

term was also used in the energy function during simulated annealing 39. 945	

Step 4. Refinement. All the models of different domains independently generated in step 2 and 3 were 946	

merged together in a single chain. The coordinates of the obtained single-chain model were modified 947	

manually using Coot 26 and refined with repeated rounds of Coot, Rosetta refine 40 and the Phenix real-948	

space refine function 28. Steps 2-4 were repeated until a model maximally consistent with the EM map 949	

(Supplementary Fig 12e) and the predicted contact-maps was obtained. 950	

For TssK and TssFGE the EMRinger 41 scores were 1.74 and 0.23 and the Molprobity 42 scores were 951	

1.9 and 2.36 respectively. Final accuracies of the TssF and TssG contact maps generated from the 952	

structures were 0.85 and 0.87, respectively (Supplementary Table 2). The models built in TssK and 953	

TssFGE were then fit as rigid bodies in the TssKFGE structure with EMRinger and Molprobity scores 954	

of 1.62 and 1.94 respectively (Supplementary Table 2).  955	

FSC curves were calculated between the model and the map using Phenix after real space refinement. 956	

To assess the presence of overfitting, as described before 43, the FSC computed between the model and 957	

the autosharpened map (FSC-sum) was compared to the FSC calculated between the "shaken" model 958	

(applying a  random pertubation of 0.5Å to the atomic coordinates, with the module pdbtools of 959	

Phenix, Adams et al., 2010) refined against the first half map (FSC-work) and the resulting model 960	

refined with the second half map (FSC-free, Supplementary Figure 11c,f,i). The overlapping between 961	

the FSC-free and FSC-work curves demonstrates the absence of overfitting. Interaction surfaces were 962	

analysed using the PISA software 45. For illustration purposes, TssFGE secondary structures were 963	

predicted using Cablam 46.  964	

 965	

Data and software availability 966	



The cryo-EM structure of the full complex TssKFG , TssK and TssFGE have been deposited in the 967	

EMDB under ID codes EMD-0008, 0010, 0009. The TssKFG, TssK and TssFGE model have been 968	

deposited in the PDB under ID codes PDB 6GIY, 6GJ3, 6GJ1. Raw cryo-EM data are available on 969	

request. 970	
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Supplementary Results 
 
Native mass spectrometry. 
Native mass spectrometry (Native MS) was used to measure the mass of the intact protein complex from 
which the stoichiometry can be deduced 1. The molecular mass of each individual subunit was firstly 
checked in denaturing conditions. A molecular mass of 499,490 ± 200 Da was obtained for the complex 
indicating that the TssKFGE complex comprises six TssK, two TssF, one TssG and one TssE subunits 
(TssK6F2G1E1; theoretical mass: 498,905 Da) (Supplementary Fig. 3b). The difference from the 
measured and theoretical masses arises from the presence of numerous salt adducts, which is a common 
phenomenon in native MS. A similar stoichiometry was obtained for the purified TssKFG complex 
(TssK6F2G1; measured mass: 481,916 Da ± 200 Da, theoretical mass: 481,520 Da; Supplementary Fig. 
3c). For TssF, TssG and TssE, this stoichiometry is in agreement with previous studies, indicating the 
conserved nature of the T6SS wedge among various species. Interestingly, native MS analyses confirmed 
the peripheral and weaker association of TssE in the TssKFGE complex, as TssE dissociates first when 
the TssKFGE complex is submitted to collisional activation (Supplementary Fig. 3d). Only 3 TssK 
monomers per wedge complex were found in Serratia marcescens and uropathogenic E. coli 2–4. These 
discrepancies could be explained by the different approaches used to purify or assess the stoichiometry of 
the complex, or by differences in T6SS baseplate composition in these various bacterial species.  
 
Segmentation of the CryoEM map 
Our native MS and biochemical analyses of the purified TssKFGE complex unambiguously showed that 
TssE is present with a stoichiometry of one TssE per complex. At lower density thresholds, the cryo-EM 
map reveals a density that could be attributed to TssE at the tip of the TssFG. In agreement with this 
hypothesis, a model of the EAEC TssE generated based on the gp25 crystal structure (PDB: 5IW9; 2) fits 
into the identified density (Fig. 2h). 
 
 
Dominant-negative approach by “small domain interference” (SDI) 
First, to validate this approach, we performed SDI with TssK sub-domains. It was previously shown that 
the TssK N-terminal shoulder domain is anchored into the baseplate whereas the TssK C-terminal head 
domain binds the membrane complex 5. We reasoned that overproduction of TssK shoulder (TssKS) or 
TssK shoulder and neck (TssKSN) sub-domains should interfere with T6SS wedges assembly, and by 
lacking the head domain will prevent proper association with the membrane complex. In vivo, 
overproduction of TssKSN and, to a lower extent, TssKS in wild-type cells impacts the assembly of T6SS 
wedges, blocks T6SS sheath dynamic and prevents T6SS activity (Supplementary Fig. 5a-c). The 
difference in the negative effect observed between TssKSN and TssKS could be explained by the 
stabilization of the TssK trimer by the helix packing of the neck domains 5 that results in a better 
incorporation of TssKSN compared to TssKS into the TssKFGE complex in vitro (Supplementary Fig. 
5d). We then hypothesized that overproduction of the TssG domain which mediates the recruitment of 
TssK, should have a dramatic negative effect on T6SS function. Our competition experiments showed 
that only the overproduction of TssG-D2 has a negative effect on the T6SS-dependent killing of E. coli 
target cells (Supplementary Fig. 5e). This result confirms that TssG-D2 has a central role for T6SS 
wedge assembly. To provide further evidence for the position of TssG-D2 at the interface between TssF 
and the two TssK trimers, we used the EVcomplex program (Hopf et al., 2014) to predict inter-molecular 
interactions between TssG and TssK using evolutionary covariance analysis (see Methods section). First, 
the algorithm confirmed our previous findings, showing that the TssG-D2 domain is the major interface 
with the TssK shoulder domain. Second, the algorithm predicted a number of potential TssKS-TssG-D2 
interfacial residue pairs with high scores (Supplementary Fig. 6a). The corresponding TssG-D2 
residues, Pro-240 and Leu-255 were substituted, and these TssG-D2 variants (P240A and L255A and 
P240A-L255A) were assayed by SDI in interbacterial competition experiments. Although these TssG-D2 
variants were produced at levels comparable to the wild-type TssG-D2 (see insets in Supplementary Fig. 
6b), the TssG-D2 P240A and L255A mutants were drastically affected in their ability to inhibit T6SS-
function. Combining the P240A and L255A mutations decreases even further the T6SS-inhibitory effect 
of TssG-D2 overproduction (Supplementary Fig. 6b).  
 



The TssK-TssFG interface 
To rationalize the results of the Alanine mutation analysis discussed above, we mapped the positions of 
TssG Pro-240 and TssG Leu-255 on the TssKFG structure. Only Pro-240 is proximal to the TssKG 
interface, being directly in contact to TssK Leu-14. Thus, its mutation is compatible with a TssKG 
interface destabilization. On the other hand, TssG Leu-255 is far from the interface, and its mutation 
probably destabilized the fold of the C-terminal region. When compared with the structure, the Alanine 
mutational study above has revealed some key residues important for the stability of the TssK-G 
interaction stability, although the molecular mechanism remains to be addressed. 
 
Supplementary Discussion 
 
The T6SS baseplate - membrane complex connection 
As mentioned in recent publications, there is a symmetry mismatch between the 5-fold symmetric 
TssJLM membrane complex and the 6-fold symmetric baseplate 4–6. In this configuration, the 36 copies 
of TssK (6 per individual wedge) could contact the 10 copies of TssLM. However, our cryo-EM structure 
shows that the TssKH domains within each TssK trimer are in different orientations. We thus suggest that 
the flexibility of the TssKH domains is key to adapt to the symmetry mismatch and that only a subset of 
these TssKH domains engages with the membrane complex. This symmetry mismatch is likely to be 
important for T6SS function. It may maintain the system under a metastable conformation, allowing a 
higher turnover rate of ejection of the Hcp tube. It may also accommodate the large conformational 
changes expected between the baseplate and the membrane complex during sheath contraction. Finally, it 
may play a critical role in the controlled dissociation of the baseplate after firing, as suggested for the 
dissociation of V-ATPases 7. 
 
 
Comparison between T6SS and bacteriophage baseplates. 
Analogy	 between	 the	 T6SS	 baseplate	 and	 the	 “simple	 contractile	 baseplate”	 from	 the	 Mu	 phage	  –	 The	
architecture	and	stability	of	the	TssKFGE	wedge	complex	is	reminiscent	to	the	Mu	phage	baseplate	wedge	8.	
Although	 sequence	 identity	 between	 the	 T6SS	 and	Mu	phage	 protein	 is	 very	 low,	 their	 respective	 overall	
structural	organization	suggests	 that	 the	T6SS	and	Mu	phage	wedge	complexes	are	highly	similar.	The	Mu	
phage	wedge	 is	 formed	by	 the	proteins	Mup46,	Mup47,	 and	Mup48.	Mup46	 is	 a	gp25	homolog,	 like	TssE.	
Mup47	is	homologous	to	the	gpJ	wedge	protein	of	E.	coli	phage	P2,	like	TssF	9.	Mup48	is	homologous	to	the	
gpI	wedge	 protein	 of	E.	 coli	 phage	 P2,	 like	 TssG	 9.	Mup47	 and	Mup48	 form	 a	 stable	 complex,	 a	 behavior	
comparable	 with	 the	 T6SS	 TssF-TssG	 complex	 9.	 However,	 the	 relative	 stoichiometry	 of	 both	 wedge	
complexes	differs	significantly:	2:2:2	for	Mup46/47/48	and	6/2/1/1	for	TssK/F/G/E.	The	whole	Mu	phage	
baseplate	 is	 formed	 by	 the	 attachment	 of	 dimers	 of	 the	 Mup46/47/48	 wedge	 (BW1,	 BW2	 and	 BW3,	
according	 to	 the	 standard	nomenclature	previously	proposed	 8)	on	 the	Mup43/44	hub	complex	 (BH1	and	
BH2).	However,	 the	predicted	T6SS	baseplate	does	not	 seem	 to	 contain	 such	BH1/BH2	hub	 complex.	The	
T6SS	proteins	share	many	structural	characteristics	with	“simple”	contractile	baseplates,	even	though	TssK	
has	 no	 equivalent	 in	 Mu	 phage	 proteins.	 We	 have	 previously	 demonstrated	 that	 TssK	 is	 homologous	 to	
lactococcal	siphophage	receptor	binding	proteins	(RBP)	proteins	5	and	we	have	shown	in	this	work	that	TssF	
and	TssG	are	partly	a	T4	phage	gp6	and	gp7	homologs.	Therefore,	 the	T6SS	wedge	complex	and	baseplate	
seem	to	be	an	evolutionary	“patchwork”,	rooted	in	T4	bacteriophage,	siphophage	and	Mu	phage.	

 
TssF and TssG are gp6 and gp7 counterparts in the T4 phage baseplate – Previous structural studies on 
the T4 bacteriophage have reported the moderate to high-resolution structures of the whole baseplate 2,10–

12. Despite no sequence conservation, it was proposed that TssF and TssG could be the structural 
counterparts of gp6 and gp7 respectively 2,9. Gp6 and gp7 are subunits of the T4 phage inner baseplate in 
which they interact tightly to form the T4 phage wedge complex. The TssG and gp7 structures are not 
readily superimposable. However, TssG and the central part of gp7 (residues 640-900) display the same 
domain organization with an N-terminal antenna followed by a helical neck domain and an α/β body 
(Supplementary Fig. 9a). The rest of the gp7 structure is specific to the T4 baseplate. By contrast, based 
on secondary structure predictions 9, TssF shares much higher structural homology with the N-terminal 
region of gp6 (Supplementary Fig. 9b). The domain from residue 1 to 410 of gp6 is composed of an N-
terminal antenna followed by two consecutive β-sandwich domains (called the wing domains) and an α/β 
domain (called the trifurcation domain). These domains resemble the TssF antenna, D2, BD and D4 



domains, respectively (Supplementary Fig. 9b). The C-terminal region of gp6 structure is not present in 
TssF and is not found in any protein of the T6SS baseplate. Strikingly, not only TssF and TssG adopt a 
similar structure to portions of gp6 and gp7, but the structural organization of the T4 (gp6)2–gp7 
heterotrimeric unit is conserved in the T6SS wedge complex (Fig. 5a-b). In the T4 baseplate, the 
backbone of the wedge domain is made of a heterotrimeric helical bundle and a trifurcation unit, which 
are made of the gp6/gp7 antennas and of the gp6/gp7 α/β domains, respectively. This trimeric scaffold, 
which tightly connects gp7 and the two gp6, is very similar to that of the TssFG complex (Fig. 5a-b). 
Although the organization is identical, it is interesting to note that the T4 phage trifurcation unit 
comprises three equivalent domains made of two helices and one three-strands β sheet while the TssFG 
trimeric scaffold contains two helices and one four-strands β sheet (Fig. 5a-b).  
 
Inter-wedge contacts are different in the T4 and T6SS baseplates – The multimerization of T6SS wedges 
into the hexagonal baseplate diverge from the bacteriophage counterpart. In the T6SS baseplate, we 
showed that the inter-wedge contacts are mostly mediated by TssFa-TssFb interactions that spread in 
different domains of both protomers (Fig. 4b). In the T4 baseplate, the inter-wedge contacts are also 
mediated by gp6a/gp6b interactions. However, these interactions are restricted to the dimerization of a 
T4-specific gp6 C-terminal domain (residues 412-659) (Fig. 5c). Within each T4 wedge complex, these 
C-terminal domains are directly connected to the trifurcation unit. Therefore, a continuous ring of 
alternating trifurcation units and dimers of gp6 C-terminal domains stabilize the T4 inner baseplate 2,12,13. 
The T4 phage baseplate also comprises an additional subunit, absent from the T6SS baseplate, gp8, that 
interacts with the N- and C- terminal domains of gp7 and thus reinforces the overall structure.  
 
Interaction of the T4 and T6SS baseplates with the spike – Both T4 and T6SS baseplates contain a 
constriction at the center of the wedge ring that is delineated by gp6b and TssFa respectively. In the T6SS 
baseplate, TssFa wing domains exclusively cover the cavity that receives the VgrG gp27-like hub domain 
(Fig. 5c-d, Supplementary Fig. 9c). In the T4 baseplate, the gp6a wing domain mostly contributes to the 
central constriction but the gp27 hub position is stabilized in the cavity by a T4-specific component, gp53 
(Fig. 5c, Supplementary Fig. 9c).  
 
Interaction of the T4 and T6SS baseplates with the contractile sheath – The structure of the sheath 
component of the T4 phage gp18 is known (PDB: 3FOH; 14). Based on the cryo-EM structure of the 
native T4 phage tail in the extended conformation (EMD-1126; 15) determined at 12 Å, it is possible to fit 
gp18 in the sheath density and to reconstitute the extended sheath structure. The contacts between the 
sheath and the baseplate subunits can be inferred after docking to the T4 phage baseplate structure 2. 
These contacts are in agreement with previously published biochemical and genetics data 12,16,17. Overall 
the structures of the T4 and T6SS sheath building blocks (gp18 and TssBC complex respectively) are 
different (Supplementary Fig. 9d-e). However, they can be split in similar domains: an N-terminal 
antenna domain, a central globular domain and an α/β domain that protrudes from the central domain 
(Supplementary Fig. 9d-e). Strikingly, TssE and gp25 interact similarly with the sheath α/β domain and 
share the same fold as these TssBC and gp18 domains (Supplementary Fig. 9d-e). The baseplate-sheath 
connections in phage T4 and T6SS have conserved features but are stabilized by specific contacts. The N-
terminal domains of gp18 and of TssBC interact with one of the wing domains of gp6b or TssFb 
respectively (Supplementary Fig. 9d-e). In the T4 phage, the central domain of gp18 interacts with a T4-
specific protein, gp53 (Supplementary Fig. 9e). In the T6SS, this interaction is replaced by the 
interaction with the N-terminal head domain of TssG, which is T6SS-specific (Supplementary Fig. 9d).  
 
Specialization of the apical part of the T4 and T6SS baseplates – The T4 phage and the T6SS baseplates 
are specialized molecular machines that interact with different targets. The T4 phage baseplate interacts 
with the bacterial surface prior to infection, while the T6SS baseplate interacts with the T6SS membrane 
complex. To achieve this specialization, the T4 and T6SS baseplates contain dedicated adaptor proteins 
recruited by gp7 and its TssG counterpart (Fig. 5c). In T4, the N- and C- terminal domains of gp7 interact 
with gp9 and gp10, which in turn assemble the short tail fiber proteins gp12 (Fig. 5c-f) 17–20. In T6SS, the 
TssG foot domains recruit two TssK trimers, which then interact with the T6SS membrane complex to 
anchor the T6SS contractile device to the bacterial cell envelope (Fig. 5c-f).  



 
Assembly mechanism and stability of the T4 and T6SS baseplates – In the T4 bacteriophage the wedge 
complex appears to be transient or less stable preventing its purification. By contrast, the T6SS wedge 
complex is much more stable and prone to purification, as shown by the isolation of TssKFG or 
TssKFGE complexes in EAEC, S. marcescens and uropathogenic E. coli (this work; 2,3) This higher 
stability of a preformed T6SS baseplate intermediate may reflect an adaptation to the secretion process. 
One hypothesis is that a subset of toxin effectors needs to be loaded onto VgrG 21–23, hence delaying the 
polymerization of the wedge around the VgrG hub. By contrast, the fully assembled T4 phage baseplate is 
much more stable than the T6SS baseplate, since we did not succeed to purify the T6SS hexagonal 
baseplate. At the molecular level, TssF-TssF inter-domain interactions appear to be less tightly connected 
in the fully assembled T6SS baseplate, involving a limited contact surface area, as compared to 
bacteriophage T4 gp6-gp6 contacts. Consequently, the connection between individual T6SS wedges 
seems to be weaker, in agreement with the lower stability of the T6SS baseplate compared to that of 
bacteriophage T4. In addition, this could be explained by the presence of the T4-specific gp53 subunit 
that has been shown to promote polymerization of the wedges to form a hubless baseplate 19. This 
difference may have functional implications. In phage T4, the hubless baseplate needs to remain stably 
associated during the transport of the phage genome. By contrast, after firing, the T6SS baseplate needs to 
dissociate, releasing individual wedges that will presumably assemble a new baseplate at the membrane 
complex. This reversible association would allow a recycling of the individual T6SS wedges.  
 
 
 



Supplementary Table 1. Reagents and resources 

REAGENT or RESOURCE SOURCE IDENTIFIER  
Antibodies 
Mouse monoclonal anti-VSVG, clone P5D4 Sigma-Aldrich Cat# A5977; 

RRID:AB_439710 
Mouse monoclonal anti-FLAG, clone M2 Sigma-Aldrich Cat# F3165; 

RRID:AB_259529 
Mouse monoclonal anti-HA, clone HA-7 Sigma-Aldrich Cat# H3663; 

RRID:AB_262051 
Mouse monoclonal anti-StrepII, clone GT661 Iba Cat# 2-1507-001 

RRID:AB_513133 
Mouse monoclonal anti-polyHistidine, clone HIS-1 Sigma-Aldrich Cat# H1029; 

RRID:AB_260015 
Alkaline phosphatase-conjugated goat anti-mouse 
secondary antibody 

Millipore Cat# AP503A; 
RRID:AB_805353 

 
Bacterial Strains   
DH5α New England Biolabs Cat# C2987I 
W3110 Laboratory collection N/A 
BL21 (DE3  New England Biolabs Cat# C2527I 
Enteroaggregative E. coli strain 17-2 Laboratory collection N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP 25 N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP-ΔtssF This paper N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP-ΔtssG This paper N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP-ΔtssE This paper N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP-ΔvgrG This paper N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP-ΔtssA This paper N/A 
Enteroaggregative E. coli strain 17-2- tssK-sfGFP-ΔtssM 25 N/A 
Enteroaggregative E. coli strain 17-2 TssB-mcherry 26 N/A 
Enteroaggregative E. coli strain 17-2 TssB-mcherry- 
ΔtssM 

9 N/A 

 
Chemicals, Peptides, and Recombinant Proteins 
HisTrap high performance (5mL) GE Healthcare Cat# GE17-5248-01 

 
StrepTrap high performance (5mL) GE Healthcare Cat# GE28-9075-47 

 
Superose 6 increase 10/300 GL GE Healthcare Cat# GE29-0915-96 
Superdex 200 increase 3.2/300 GE Healthcare Cat# GE28-9909-46 
cOmplete™ ULTRA Tablets, EDTA-free, glass vials 
Protease Inhibitor Cocktail 

Roche Cat# 05892953001 

DNase I Roche Cat# 10104159001 
rLysozyme solution Merck Cat# 71110 
Ammonium Acetate Sigma-Aldrich Cat# A1542 
Imidazole Sigma-Aldrich Cat# 56750 
Hepes Sigma-Aldrich Cat# H3375 
NativeMark unstained protein standard Invitrogen Cat# LC0725 
NativePAGE Sample Buffer (4X) Invitrogen Cat# BN2003 
Mini-PROTEAN TGX Precast gel (4-15%) Bio-Rad Cat# 456-1084 
4X Laemmli Sample Buffer  Bio-Rad Cat# 161-0747 
2-Mercaptoethanol Sigma-Aldrich Cat# M3148 
Acrylamide/Bis-Acrylamide 37.5:1, 40% Biosolve Cat# 001422335BS 
Nitro blue tetrazolium (NBT) Apollo Scientific Cat# BIMB1019 
5-Bromo-4-chloro-3-indolyl phosphate disodium (BCIP) Apollo Scientific Cat# BIMB1018 
 
Recombinant DNA  



pKD4 27 Addgene Plasmid 
#45605 

pKOBEG 28 N/A 
pBAD33 29 N/A 
pBAD33-TssKS

VSVG    5 N/A 
pBAD33-TssKSN

VSVG 5 N/A 
pBAD33-TssKc

VSVG   5 N/A 
pBAD33-TssG-D1lag   This paper  N/A 
pBAD33-TssG-D2Flag This paper N/A 
pCDF-Duet1 Novagen Novagen Plasmid 

#71340-3 
pRSF-Duet1 Novagen Novagen Plasmid 

#71341-3 
pET-Duet1                                   Novagen Novagen Plasmid 

#71146-3 
pACYC-Duet1 Novagen Novagen Plasmid 

#71147-3 
pCDF-TssKH-SF-GFlag-HAE            This paper N/A 
pCDF-TssKH-SF-GFlag 5 N/A 
pCDF-SF-GFlag-HAE This paper  N/A 
pCDF-KHis-SF-HAE This paper  N/A 
pCDF-SF-GFlag This paper  N/A 
pCDF-KH This paper  N/A 
pRSF-KH This paper  N/A 
pCDF-KHa This paper  N/A 
pCDF-SF This paper  N/A 
pCDF-GFlag This paper  N/A 
pCDF-G(Δ1-32)Flag This paper  N/A 
pRSF-G(1-144)Flag This paper  N/A 
pRSF-G(168-end)Flag This paper  N/A 
pCDF-HAE This paper  N/A 
pRSF-HAE This paper  N/A 
pRSF-HE This paper  N/A 
pRSF-HE(Δ1-24) This paper  N/A 
pETDuet-VgrGHA This paper  N/A 
pETDuet-SVgrG This paper  N/A 
pACYC-FlagTssA This paper  N/A 
 
Software and Algorithms  
ARIA 30 http://aria.pasteur.fr 

Coot 31 https://www2.mrc-
lmb.cam.ac.uk/personal/pemsley/coot/ 

Coot trimmings 32 https://github.com/olibclarke/coot-
trimmings 

Cryosparc 0.6 33 https://cryosparc.com/ 

Csparc2star.py 34 https://github.com/asarnow/pyem/blob/ma
ster/csparc2star.py 

DeepCNF 35  http://raptorx.uchicago.edu/StructureProp
ertyPred/predict/ 

EMRinger 36 http://emringer.com/ 
EVcomplex program 37 https://evcomplex.hms.harvard.edu 

gCTF 38 https://www.mrc-
lmb.cam.ac.uk/kzhang/Gctf/ 

Gremlin 39 http://gremlin.bakerlab.org 

i-TASSER 24 https://zhanglab.ccmb.med.umich.edu/I-
TASSER/ 

ImageJ 40 https://imagej.net/ImageJ 
MapAlign 41 https://github.com/sokrypton/map_align 
MicrobeJ 42 http://www.microbej.com/index.html 
MolProbity 43 http://molprobity.biochem.duke.edu/ 



MotionCor2 44 http://msg.ucsf.edu/em/software/motionco
r2.html 

Phenix 45 https://www.phenix-online.org/ 
Phenix real-space refine 46 https://www.phenix-online.org/ 

Phyre2 47 http://www.sbg.bio.ic.ac.uk/phyre2/html/p
age.cgi?id=index 

PISA 48 http://www.ebi.ac.uk/pdbe/pisa/ 
RaptorX 24 http://raptorx.uchicago.edu/ContactMap/ 

RELION 2.1 49 
http://www2.mrc-
lmb.cam.ac.uk/relion/index.php/Download
_%26_install 

REP 50 https://github.com/rkms86/REP 

Rosetta 51 https://www.rosettacommons.org/softwar
e 

UCSF Chimera 52 https://www.cgl.ucsf.edu/chimera 
 
Protein accession numbers 

TssE WP_061358700.1 type VI secretion system baseplate 
subunit TssE [Escherichia coli] 

TssF WP_000342463.1 type VI secretion system baseplate 
subunit TssF [Escherichia coli] 

TssG WP_000553781.1 type VI secretion system baseplate 
subunit TssG [Escherichia coli] 

TssK WP_000708638.1 type VI secretion system baseplate 
subunit TssK [Escherichia coli] 

 
Other 
Titan Krios Thermo scientific https://www.fei.com/krios-g3i/ 
K2 Summit camera Gatan, Pleasanton, USA http://www.gatan.com 
Vitrobot FEI - Thermo Fisher https://www.fei.com/products/vitrobot/ 

ÄKTAmicro GE Healthcare Life Sciences https://www.gelifesciences.com/en/at/sho
p/aktamicro-p-02952 

Synapt G2Si HDMS  Waters www.waters.com 

Triversa Nanomate Advion https://advion.com/products/triversa-
nanomate/ 

 
Deposited Data 

EAEC TssKFG complex This paper, deposited at 
EMdatabank EMD-0008 

EAEC TssK root-like domains This paper, deposited at 
EMdatabank EMD-0010 

EAEC TssFG wings and stalk 
domain 

This paper, deposited at 
EMdatabank EMD-0009 

EAEC TssKFG model This paper, deposited at PDB PDB 6GIY 
EAEC TssK model This paper, deposited at PDB PDB 6GJ3 
EAEC TssFG model This paper, deposited at PDB PDB 6GJ1 
 
 



Supplementary table 2. Cryo-EM	data	collection,	refinement	and	validation	statistics	
 
	 TssKFG	

(EMDB-0008)	
(PDB	6GIY)	

TssK	
(EMDB-0010)	
(PDB	6GJ3)	

TssFG	
(EMDB-0009)	
(PDB	6GJ1)	

Data	collection	and	
processing	

	 	 	

Magnification				 130,000X	 130,000X	 130,000X	
Voltage	(kV)	 300	 300	 300	
Electron	exposure	(e–/Å2)	 45	 45	 45	
Defocus	range	(μm)	 0.4	to	3	μm	 0.4	to	3	μm	 0.4	to	3	μm	
Pixel	size	(Å)	 1.1	Å	 1.1	Å	 1.1	Å	
Symmetry	imposed	 C1	 C1	 C1	
Initial	particle	images	(no.)	 167,825	 167,825	 167,825	
Final		particle	images	(no.)	 32,504	 32,504	 32,504	
Map	resolution	(Å)	
				FSC	threshold	

4.6Å	
0.143	

4.3Å	
0.143	

4.7Å	
0.143	

Map	resolution	range	(Å)	 3.9	and	18	Å	 3.8-33	Å	 4.3-8Å	
	 	 	 	
Refinement	 	 	 	
Initial	model	used	(PDB	code)	 6GJ1	and	6GIY	 5M30	 -	
Model	resolution	(Å)	
				FSC	threshold	

4.6Å	
0.143	

4.3Å	
0.143	

4.7Å	
0.143	

Model	resolution	range	(Å)	 	 	 	
Map	sharpening	B	factor	(Å2)	 81.97	 87.66	 188.97	
Model	composition	
				Non-hydrogen	atoms	
				Protein	residues	
				Ligands	

	
28969	
3649	
N/A	

	
17405	
2194	
N/A	

	
13013	
1638	
N/A	

B	factors	(Å2)	
				Protein	
				Ligand	

	
35.09-358.02	
N/A	

	
39.53-247.92	
N/A	

	
79.33-427.4	
N/A	

R.m.s.	deviations	
				Bond	lengths	(Å)	
				Bond	angles	(°)	

	
0.28	
0.62	

	
0.39	
0.63	

	
0.52	
0.76	

	Validation	
				MolProbity	score	
				Clashscore	
				Poor	rotamers	(%)				

	
1.94	
5.95	
0.32	

	
1.91	
5.11	
0.37	

	
2.36	
13	
0.31	

	Ramachandran	plot	
				Favored	(%)	
				Allowed	(%)	
				Disallowed	(%)	

	
87.06	
12.66	
0.28	

	
86.23	
13.45	
0.32	

	
80.28	
19.52	
0.2	

	
 
 



Supplementary	Table	3.	Agreement	of	model	contacts	with	predicted	contact	maps.		
#Consistent: number of predicted contacts consistent with the final structure.  
#Inconsistent: number of predicted contacts inconsistent with the final structure. 
 Accuracy: #consistent/(#inconsistent+#consistent) 
 #Consistent #Inconsistent Accuracy 

TssK 1696 54 0.97 

TssG 1180 180 0.87 

TssF 2554 432 0.85 
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Supplementary	Figure	1.	Statistical	analysis	of	TssKsfGFP	foci	formation.	Related	to	Figure	1.	
Statistical	analysis	of	TssKsfGFP	foci	formation	in	various	T6SS	mutant	backgrounds.	Shown	are	the	box-
and-whisker	plots	of	the	measured	number	of	TssKsfGFP	foci	per	cell	for	each	indicated	strain	with	the	
lower	and	upper	boundaries	of	the	boxes	corresponding	to	the	25thand	75th	percentiles	respectively	
(black	dot,	the	median	values	for	each	strain;	whiskers,	the	10th	and	90th	percentiles);	The	number	of	
cells	analyzed	for	each	strain	is	indicated	on	top.		
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Supplementary	 Figure	 2.	 Protein-protein	 interaction	 network	 between	 the	 TssKFGE	 complex.	
Related	to	Figure	1.	
a,	b,	and	d.	Soluble	extracts	of	E.	coli	BL21(DE3)	cells	producing	the	indicated	protein	were	submitted	

to	 an	 affinity	 purification	 step	 on	 HisTrap	 or	 StrepTrap.	 The	 lysate	 (total	 soluble	material,	 L),	 and	

eluate	(E)	were	subjected	to	denaturing	12.5%-acrylamide	polyacrylamide	gel	electrophoresis	(PAGE)	

and	immunodetected	with	the	appropriate	antibody.	 Immunodetected	proteins	are	indicated	in	the	

right.	Molecular	weight	markers	(in	kDa)	are	indicated	in	the	left.	Tags:	H,	6×His;	S,	Strep-tag;	F,	FLAG;	

HA,	 hemagglutinin.	 In	 panel	 d,	 the	 result	 of	 the	 pairwise	 interaction	 is	 schematized	 (red	 cross	

indicates	 that	 no	 interaction	 is	 observed).	 Schematic	 summaries	 of	 panels	a-b	 and	d	 are	 shown	 in	
panels	 c	 and	 e	 respectively.	 Protein-protein	 interaction	 experiments	 have	 been	 performed	

independently	twice	and	a	representative	result	is	shown.	



a

elution volume (mL)

A 2
80

 (m
AU

)

-20

0

20

40

60

80

100

120

108 1412 16 20188 10 12 14 16 18 20
-20

0

20

40

60

80

100

120

140

b

re
la

tiv
e 

in
te

ns
ity

0

100

50

m/z (103)
1312111098765432

re
la

tiv
e 

in
te

ns
ity

0

100

50

m/z (103)
131211109876543

MWmeas 481,916 Da
MWtheo 481,520 Da

MWmeas 499,490 Da
MWtheo 498,905 Da

c

K6F2GE

K6F2G

14	 m/z	
0	

NCE 60

0	

0	

100	

K6F2G-TssE 481,916 Da

14 15 16 1713121110
m/z (103)

0

100

50

re
la

tiv
e 

in
te

ns
ity

NCE 0

0	

100	

501,411 DaK6F2GE

re
la

tiv
e 

in
te

ns
ity

0

100

50

d

TssKH

TssGF

STssF

16

30

50
64
98

36



Supplementary	Figure	3.	Purification,	biochemical	characterization	and	stoichiometry	analyses	of	the	
TssKFG	and	TssKFGE	complexes.	Related	to	Figure	1.	
a.	Left	panel:	Purified	TssKFG	complex	subjected	to	sodium	dodecyl	sulfate	12.5%-acrylamide	PAGE	and	
Coomassie	 staining.	 The	 different	 proteins	 are	 indicated	 on	 the	 right,	 whereas	 molecular	 weight	
markers	 are	 indicated	 on	 the	 left.	 Right	 panel.	 Biochemical	 characterization	 of	 the	 TssKFG	 complex.	
Analytical	size-exclusion	chromatography	analysis	of	the	purified	TssKFG	complex	(continuous	line)	on	a	
Superose	6	column,	calibrated	with	43-,	75-,	158-,	440-	and	660-kDa	molecular	mass	markers	(dotted	
lines).	The	molecular	mass	of	each	marker	(in	kDa)	is	indicated	on	the	top	of	the	corresponding	peak.	
An	 arrow	 indicates	 the	 position	 of	 the	 peak	 fraction	 corresponding	 to	 the	 TssKFG	 complex.	 TssKFG	
complex	 purification	 and	 analytical	 size-exclusion	 chromatography	 analysis	 experiments	 were	
performed	at	least	three	times	and	a	representative	result	is	shown.	b-c.	Mass	spectra	of	the	TssKFGE	
(b)	 and	 TssKFG	 (c)	 complexes	 obtained	 in	 native	 conditions.	 The	 stoichiometry	 (indicated	 in	 red	 and	
blue	 for	 the	 TssKFGE	 and	 TssKFG	 complexes)	 were	 defined	 based	 on	 the	 comparison	 between	
theoretical	(MWtheo)	and	measured	(MWmeas)	molecular	weight	markers.	d.	In-source	dissociation	(cone	
voltage:	150	V)	of	the	TssKFGE	complex	obtained	by	collisional	activation	 in	native	conditions.	Native	
mass	spectrometry	and	collisional	activation	experiments	were	performed	3	times	and	a	representative	
result	is	shown.	
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Supplementary	Figure	4.	TssG	domain	organization	and	interactions.	Related	to	Figure	1.	
a.	 TssG	 residue	 contacts	 predicted	by	RaptorX	 24	 plotted	 into	 a	 contact	map.	 X	 and	 Y	 axis	 are	 the	
residue	indexes	of	TssG.	Each	blue	dot	is	a	predicted	contact.	The	map	is	organized	into	two	blocks	of	
dense	 contacts	 located	 at	 the	N-	 (TssG-D1,	 red,	 residues	 15-140)	 and	 C-terminus	 (TssG-D2,	 green,	
residues	180-300).	b.	 Soluble	extracts	of	E.	 coli	 BL21(DE3)	 cells	 producing	 the	 indicated	protein	or	
domains	were	submitted	to	an	affinity	purification	step	on	HisTrap.	The	lysate	(total	soluble	material,	
L),	and	eluate	(E)	were	subjected	to	denaturing	12.5%-acrylamide	polyacrylamide	gel	electrophoresis	
(PAGE)	and	immunodetected	with	the	appropriate	antibody.	Immunodetected	proteins	are	indicated	
in	the	right.	Molecular	weight	markers	(in	kDa)	are	indicated	in	the	left.	Tags:	H,	6×His;	S,	Strep-tag;	F,	
FLAG;	 HA,	 hemagglutinin.	 Protein-protein	 interaction	 experiments	 have	 been	 performed	
independently	twice	and	a	representative	result	is	shown.	c.	Schematic	summary	of	the	interactions	
of	TssG-D1	and	-D2	with	the	TssKFE	proteins.		
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Supplementary	Figure	5.	Small	Domain	Interference	analyses.	Related	to	Figure	2.	
a-c.	Overproduction	of	TssK	domains	inhibits	T6SS	activity.	a.	Fluorescence	microscopy	recordings	and	
statistical	analyses	of	TssKsfGFP	foci	formation	upon	overproduction	of	TssK	domains	(TssKS,	shoulder;	
TssKSN,	 shoulder	 and	 neck;	 TssKH,	 head).	 A	 representative	 image	 is	 shown	 on	 the	 bottom	 (white	
arrowheads	 indicate	 TssKsfGFP	 foci).	 The	 graph	 representing	 the	 percentage	 of	 cells	 with	 diffuse	
(green),	and	foci	(blue)	patterns	is	indicated	on	top	(number	of	cells	analyzed	indicated	on	top	of	each	
bar).	 b.	 Fluorescence	 microscopy	 recordings	 and	 statistical	 analyses	 of	 TssBmCherry	 dynamics	 upon	
overproduction	of	TssK	domains.	A	representative	image	is	shown	at	the	bottom	(white	arrowheads	
indicate	 dynamic	 TssBmCherry	 sheaths).	 The	 graph	 representing	 the	 percentage	 of	 cells	 with	 diffuse	
(light	orange)	and	dynamic	(orange)	patterns	is	indicated	on	top	(number	of	cells	analyzed	indicated	
on	 top	 of	 each	 bar).	 Microscopy	 analyses	 were	 performed	 independently	 three	 times,	 each	 in	
technical	triplicate,	and	a	representative	experiment	is	shown.	Scale	bars,	1	µm.	c.	Antibacterial	assay.	
Gfp+	kanR	E.	coli	K-12	recipient	cells	were	mixed	with	the	indicated	attacker	cells,	spotted	onto	Sci-1-
inducing	medium	(SIM)	agar	plates	supplemented	with	0.05%	L-arabinose,	and	 incubated	 for	4	h	at	
37°C.	 The	 image	 of	 a	 representative	 bacterial	 spot	 is	 shown	 on	 the	 bottom	 and	 the	 number	 of	
recovered	E.	coli	recipient	cells	is	indicated	in	the	upper	graph	(in	log10	of	colony	forming	units	(cfu)).	
The	assays	were	performed	from	at	least	three	independent	cultures,	with	technical	triplicates	and	a	
representative	 technical	 triplicate	 is	 shown.	The	circles	 indicate	values	 from	the	 technical	 triplicate,	
and	the	average	is	indicated	by	the	bar.	d.	Purification	of	the	TssKFGE	complex	upon	overproduction	
of	 the	 TssKS	 and	 TssKSN	 domains.	 TssKFGE	 complexes	were	 purified	 from	 cells	 overproducing	 TssKS	
(left	panel)	or	TssKSN	 (right	panel).	The	different	proteins	are	 indicated,	as	well	as	molecular	weight	
markers	 (in	 kDa).	 Purification	 and	 sodium	 dodecyl	 sulphate	 12,5%-acrylamide	 PAGE	 analysis	 were	
performed	 twice	and	a	 representative	 result	 is	 shown.	e.	The	TssG-D2	domain	 interferes	with	T6SS	
antibacterial	activity.	Gfp+	kanR	E.	coli	K-12	recipient	cells	were	mixed	with	the	indicated	attacker	cells	
overproducing	 the	 indicated	 TssG	 domain,	 spotted	 onto	 Sci-1-inducing	 medium	 (SIM)	 agar	 plates	
supplemented	with	0.05%	L-arabinose,	and	incubated	for	4	h	at	37°C.	The	image	of	a	representative	
bacterial	spot	is	shown	on	bottom	and	the	number	of	recovered	E.	coli	recipient	cells	is	indicated	in	
the	 upper	 graph	 (in	 log10	 of	 colony	 forming	 units	 (cfu)).	 The	 circles	 indicate	 values	 from	 three	
independent	assays,	and	the	average	is	indicated	by	the	bar.		
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Supplementary	Figure	6.	TssG-TssK	interaction.	Related	to	Figure	2.	
a.	TssG-TssK	residue	contacts	predicted	by	EVcomplex	plotted	into	contact	maps.	X	and	Y	axis	are	
the	residue	indexes	of	TssG	and	TssK	(as	indicated).	Each	blue	and	green	dot	is	a	predicted	contact	
in	TssK	and	TssG	respectively.	The	residue	pairs	with	the	higher	EVcomplex	scores	are	indicated	on	
right.	 b.	 Gfp+	 kanR	 E.	 coli	 K-12	 recipient	 cells	 were	 mixed	 with	 the	 indicated	 attacker	 cells	
overproducing	 the	 indicated	 TssG-D2	 variants,	 spotted	 onto	 Sci-1-inducing	 medium	 (SIM)	 agar	
plates	 supplemented	 with	 0.05%	 L-arabinose,	 and	 incubated	 for	 4	 h	 at	 37°C.	 The	 image	 of	 a	
representative	 bacterial	 spot	 is	 shown	 on	 the	 middle,	 the	 relative	 fluorescence	 of	 the	 spot	 (in	
arbitrary	units,	AU)	is	shown	on	the	top	graph	whereas	the	number	of	recovered	E.	coli	recipient	
cells	is	indicated	in	the	lower	graph	(in	log10	of	colony	forming	units	(cfu)).	The	error	bars	represent	
the	 standard	 deviation	 across	 three	 independent	 assays.	 The	 circles	 indicate	 values	 from	 three	
independent	assays,	and	the	average	is	indicated	by	the	bar.	The	levels	of	production	of	wild-type	
(WT)	and	mutant	TssG-D2	variants	is	shown	in	the	inset	(SDS-PAGE	and	immunoblot	analysis).		
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Supplementary	 Figure	 7.	 Structures	 and	 domain	 interactions	 of	 the	 TssKFG	 proteins,	 Related	 to	
Figure		3	
a.	Comparison	between	cryo-EM	and	crystal	structures	of	TssK.	Each	TssK	protomer	is	represented	in	
the	same	orientation.	For	the	cryo-EM	structure,	two	protomers	with	different	orientations	for	the	C-
terminal	 domain	 are	 presented	 (in	 brown	 and	 beige).	 For	 the	 crystal	 structure,	 the	 protomer	 for	
which	the	terminal	domain	could	be	built	is	presented	(in	green).	b.	Superimposition	of	cryo-EM	and	
crystal	structures	of	TssK.	The	same	protomers	as	in	A.	are	superimposed.	c.	Triangular	hub	at	the	top	
of	the	TssK	shoulder	domains.	The	three	loops	located	between	residues	105	to	145	define	a	triangle	
(in	red)	that	encompasses	the	loop	1-18	and	α1	helix	bundle	at	the	centre	of	the	trimer	(in	yellow).	d.	
Superimposition	 of	 the	 TssFa	 and	 TssFb	 protomers.	 TssFa	 and	 TssFb	 are	 represented	 as	 ribbons	 in	
cyan	 and	 blue	 respectively.	 Both	 protomers	 differ	 only	 by	 the	 position	 of	 the	 N-terminal	 antenna	
(indicated	by	 the	 black	 arrow).	e.	 Comparison	between	 the	 TssFa	 and	 TssFb	D1	domains	 and	 TssG	
body	structures,	shown	in	the	same	orientation.	f-g.	 Interactions	between	the	TssK1	(f)	or	TssK2	(g)	
trimer	 and	 TssG.	 The	 TssK	 protomers	 (green,	 beige	 and	 brown)	 and	 TssG	 feet	 and	 C-terminal	
extension	are	represented	as	surfaces.	TssG	antenna	and	body	are	represented	as	ribbons.	TssG	is	in	
yellow	with	the	exception	of	its	C-terminal	extension	that	is	coloured	in	purple.		
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Supplementary	Figure	8.	T6SS	extended	sheath	bound	to	the	baseplate.	Related	to	Figure	4	
a.	Fitting	of	the	structure	of	the	EAEC	TssKFGE	complex	into	the	cryo-EM	structure	of	the	V.	cholerae	
baseplate	associated	to	a	non-contractile	sheath	(EMD-3879).	Left	panel:	side	view	highlighting	one	
TssKFGE	complex	(ribbon	diagram)	fitted	into	the	baseplate/sheath	density	(surface	representation).	
Right	panels:	side	(top)	and	bottom	(bottom)	slice	of	the	TssKFGE	complex	fitted	into	the	baseplate/
sheath	density.	 The	bars	 correspond	 to	100	Å	b.	Same	 representation	of	 the	EAEC	baseplate	 and	
sheath	models	as	 in	Figure	4a,	with	the	location	of	the	Hcp	tube	and	VgrG	spike	from	V.	cholerae.	
The	 bar	 corresponds	 to	 100	 Å	 c.	 Ribbon	 diagram	 and	 surface	 representation	 of	 TssFa-TssFb	
belonging	to	two	adjacent	wedge	complexes	(main	interface	between	wedge	complexes	within	the	
T6SS	baseplate).	TssFa	and	TssFb	are	represented	in	cyan	and	blue	respectively.	The	TssFa/Fb	seen	
in	Figure	4c	 is	 split	open	and	 the	 two	protomers	are	placed	 in	 the	 same	orientation.	Within	each	
subunit,	 the	 regions	 interacting	 with	 VgrG	 and	 TssBC	 are	 coloured	 in	 magenta	 and	 orange	
respectively.	Left	and	middle	panels	display	 the	same	protomers	rotated	by	90°	around	their	 long	
axis.	In	the	right	panel,	the	protomers	in	ribbon	diagram	are	shown	in	the	same	orientation	as	in	the	
left	panel.	
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Supplementary	Figure	9.	Comparison	of	the	bacteriophage	T4	and	T6SS	baseplates.	Related	to	
Figure	5.	
a.	 Comparison	 between	 TssG	 and	 gp7	 structures	 (ribbon	 diagram).	 The	 structural	 features	
conserved	in	both	structures	are	represented	in	purple.	The	structural	elements	specific	to	each	
protein	 are	 represented	 in	 yellow.	 b.	 Comparison	 between	 TssF	 and	 gp6	 structures	 (ribbon	
diagram).	The	structural	features	conserved	in	both	structures	are	represented	in	purple	(trimer	
scaffold)	 and	 green	 (wing	 domain).	 The	 structural	 elements	 specific	 to	 each	 protein	 are	
represented	in	blue.	c.	 Interaction	between	TssFa	and	gp6a	with	the	spike.	For	TssFa	and	gp6a,	
the	 same	 colour	 code	 as	 in	 panel	 B	 is	 used.	 Top	 row:	 for	 the	 T6SS,	 TssFa	 and	 VgrG	 are	
represented.	 For	 the	 T4	 bacteriophage,	 gp6a,	 gp53	 (grey)	 and	 gp27-gp5	 are	 represented.	 For	
each,	a	ribbon	diagram	and	surface	representation	of	the	same	view	(side	view)	is	displayed	on	
the	left	and	right	part	respectively.	Bottom	row:	surface	representation	of	the	same	assemblies	
but	without	the	spike	(Top	and	bottom	views	on	left	and	right	respectively).	d.	Ribbon	diagram	of	
the	T6SS	wedge-TssBC	 interaction.	The	colour	code	used	 to	 identify	 the	various	 subunits	 is	 the	
same	 as	 in	 Figure	 4D	 (TssFa,	 cyan;	 TssFb,	 blue;	 TssG,	 yellow;	 TssE,	 green;	 TssBC,	 orange).	 The	
different	 protomers	 and	 domains	 are	 identified.	 e.	 Ribbon	 diagram	 of	 the	 bacteriophage	 T4	
wedge-gp18	interaction.	The	different	protomers	and	domains	are	identified.	
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Supplementary	Figure	10.	Structure	determination.	Related	to	Figure	2.	
a.	Representative	cryo-micrograph	of	 the	purified	TssKFGE	complex.	The	scale	bar	corresponds	to	
50	 nm	 b.	 Typical	 2D	 classes	 of	 the	 4	 different	 views	 of	 the	 complex	 in	 ice	 (scale	 bar,	 100	
nm).	c.	 Flowchart	of	 the	 cryo-EM	processing	procedure.	 The	 colour	of	 the	 arrows	 represents	 the	
different	software	packages	used	(light	blue,	Relion;	red,	Phenix;	violet,	Cryosparc;	orange,	REP).		
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Supplementary	Figure	11.	Analysis	of	model	quality	and	refinement.	Related	to	Figure	2.	
a,	d,	 and	g.	 Local	 resolution	of	 the	TssKFGE	 (a),	 TssFGE	 (d)	 and	TssK	 (g)	 autoshapened	densities.	 b,	
e,	and	h.	Fourier	shell	correlation	(FSC)	of	the	final	reconstruction	of	TssKFGE	(b),	TssFGE	(e)	and	TssK	
(h).	The	resolution	limit	was	calculated	at	the	cut-off	0.143.	c,	f,	and	i.	Model	validation	by	comparison	
of	 the	Fourier	 shell	 correlation	 (FSC)	between	model	and	half	map	1	 (work),	model	and	half	map	2	
(free),	and	model	versus	full	sharpened	map	(sum)	plotted	in	red,	green	and	purple	respectively	for	of	
the	TssKFGE	(c),	TssFGE	(f)	and	TssK	(i).	j.	Representative	local	density	of	an	a-helix	(residues	19-33	of	
TssK	chain	H).	k.	Representative	local	density	of	a	b-strand	(residues	147-152	of	TssK	chain	H).	
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Supplementary	Figure	12.	Structural	modeling	of	TssF	and	TssG.	Related	to	Figure	2.	
a.	 Flowchart	 of	 the	 structural	modelling	 of	 TssG	 and	 TssF.	b.	 Example	 of	 TssG	 contact	map	 fit	
progressing	with	the	different	steps	of	the	pipeline.	The	grey	and	orange	dots	are	the	predicted	
and	model	contacts,	respectively,	as	defined	in	the	supplementary	methods	text.	c.	Contact	maps	
of	 the	 final	 TssK,	 TssG,	 and	 TssF	 structures	 compared	 to	 the	 corresponding	 predicted	 contact	
maps	of	the	modelling	pipeline.	Green	and	red	dots	are	predicted	contacts	in	agreement	and	in	
disagreement	with	the	structure,	respectively.	d.	 	Ensemble	of	models	for	TssG-D1,	TssG-D2	and	
TssF-D1	obtained	 from	 the	predicted	 contacts	 and	 the	ARIA	modelling	 software	 (Step	3	of	 the	
pipeline).	 e.	 Fitting	 of	 the	 TssF	 and	 TssG	 structures	 in	 the	 postprocessed	 cryo-EM	 density	
(TssFGE),	coloured	according	to	B-factor	values.	The	scale	bar	corresponds	to	10	Å.	


