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Abstract 

Biological invasions have reached an unprecedented level and the number of introduced species is 

still increasing worldwide. Despite major advances in invasion science, the determinants of success 

of introduced species, the magnitude and dimensions of their impact, and the mechanisms 

sustaining successful invasions are still debated. Empirical studies show divergent impacts of non-

native populations on ecosystems and contrasting effects of biotic and abiotic factors on the 

dynamics of non-native populations; this is hindering the emergence of a unified theory of 

biological invasions. We propose a synthesis that merges perspectives from population, 

community, and ecosystem levels. Along a timeline of ecosystem transformation driven by non-

native species, from historical to human-modified ecosystems, we order invasion concepts and 

theories to clarify their chaining and relevance during each step of the invasion process. This 

temporal sorting of invasion concepts shows that each concept is relevant at a specific stage of the 

invasion. Concepts and empirical findings on non-native species may appear contradictory. 

However, we suggest that, when mapped onto an invasion timeline, they may be combined in a 

complementary way. An overall scheme is proposed to summarise the theoretical dynamics of 

ecosystems subjected to invasions. For any given case study, this framework provides a guide 

through the maze of theories and should help choose the appropriate concepts according to the 

stage of invasion. 

Keywords: non-native populations; geographic expansion; invasiveness; invasibility; dispersal; 

phenotypic plasticity; evolution; historical ecosystem; hybrid ecosystem; novel ecosystem  
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I. Introduction 
The number of invasive non-native populations, defined as organisms that are introduced to a 

region through human activity, establish self-perpetuating populations, and spread over 

substantial distances from introduction sites (Richardson, Pyšek & Carlton, 2011), is increasing 

globally (Seebens et al., 2017). Biological invasions are now widely recognized as a major 

component of global change that can alter ecosystem functioning (Murphy & Romanuk, 2014; 

Mollot, Pantel & Romanuk, 2017), and redefine biogeography at a worldwide scale (Capinha et al., 

2015). Concomitantly, invasion biology has grown into one of the most vibrant fields of ecology 

(Simberloff, 2004; Simberloff & Vitule, 2014). The field has accumulated a multitude of hypotheses 

and theories (Catford, Jansson & Nilsson, 2009), some of which at first sight may appear to be 

redundant, complementary, or contradictory (Enders, Hütt & Jeschke, 2018). Despite attempts to 

develop a unified framework (Hallett, 2006; Catford et al., 2009; Blackburn et al., 2011; Dick et al., 

2017), the plethora of proposed concepts, theories, and definitions makes it difficult to navigate this 

theoretical maze. As a result, choosing and applying the appropriate theory to a given case of 

invasion represents a major challenge. Nowadays, despite strong connections between ecological 

and evolutionary concepts of invasion biology (Facon et al., 2006; Vanderhoeven et al., 2010), an 

integrated view of the spatio-temporal dynamics of the invasion process is still lacking. 

 Most of the theories proposed so far to explain invasions are useful, and valid, at least partly, 

for a given species (or group of species), habitat, invasion stage, spatial or temporal scale. 

Meanwhile, given the huge evolutionary and functional diversity that exists in the global invasive 

biota, a single model that describes or profiles a “good invader” or a “successful invader” is clearly 

an unrealistic aim (Facon et al., 2006; Kueffer et al., 2013). Moreover, divergences between empirical 

evidence are frequently reported, as are discrepancies between theories and observations (Jeschke, 

Pyšek & Richardson, 2012). Consequently, the main predictors driving differences in the 

magnitude of the invasion success in recipient communities and ecosystems are not understood in 

general. 

Three challenging questions currently dominate the research agenda in invasion biology: 

(1) How can the exceptional success of some invasive populations in recipient environments be 

explained? (2) What effects do invasive populations have on local communities? (3) What will be 

the features of tomorrow’s ecosystems? Work addressing these questions during the past two 

decades has mainly been focussed at population and ecosystem levels, with insights at the 

ecosystem level being increasing being sought when addressing these questions. 

 Here, we propose a synthesis that integrates perspectives on biological invasions at 

population, community and ecosystem levels to highlight the spatio-temporal and functional links 

between invasion theories at different stages of the introduction-establishment-naturalization-

invasion continuum (sensu Richardson & Pysek, 2006). While studies are mostly taxon-focused, we 

include all potentially invasive populations in all groups, and their interactions. Along a theoretical 

timeline from the importation of propagules to the transformation of ecosystems and ecosystem 

services driven by non-native populations (Hobbs et al., 2009; Richardson & Gaertner, 2013; Hobbs 

et al., 2014), we order concepts and theories related to invasions to picture their chaining and 

relevance during the sequential stages of the invasion process. Each concept and theory is 



emphasized with a short name in bold and can be retrieved along the invasion timeline presented 

in Figure 1. In so doing, we organize the variety of concepts associated with invasion processes and 

incorporate them into an innovative spatio-temporal framework. Our invasion timeline, besides 

allowing the positioning of events that play out over a range of time scales such as spatial sorting, 

alteration of ecological interactions, or evolution, opens valuable research questions on the 

functioning and fate of future ecosystems and their underlying services. This perspective better 

captures the range of transformations occurring at population, habitat and ecosystem levels, their 

interconnections and feedback loops. In particular, it emphasizes the importance of the temporal 

dynamics of invasion processes and the unintended effects they may have on the rest of the 

ecosystem. 

II. Introduction and establishment of non-native populations in historical ecosystems
(1) Pre-introduction events: the traits of non-native populations in their native ranges and transport 

One of the first keys of the success of non-native organisms’ integration into historical ecosystems 

may be found in the features of populations and environments in the native range of the species 

(Renault et al., 2018). 

Key adaptation events of non-native populations may occur at different steps of the 

invasion process (Rey et al., 2012). Most studies focus on evolutionary changes that occur following 

introduction to the recipient habitat (i.e., post-introduction adaptation scenario, Lee, Remfert & 

Gelembiuk, 2003) or, more specifically at a primary site of invasion (Lombaert et al., 2010). 

Adaptation events that take place before introduction within the native range of the invader (i.e. 

prior-adaptation scenario) are less often considered. However, a preselection of traits responsible 

for the invasive character of a non-native population may occur in its native area (1: PRESE, Fig. 1) 

(Rey et al., 2012). This is particularly true when ecotypic variation exists in the native range. For 

instance, the invasion of Israel by the tropical ant Wasmannia auropunctata likely occurred after the 

sampling of a particularly cold-tolerant population at the southern limit of its native range (Rey et 

al., 2012). In addition, multiple introductions from different source populations are expected to 

increase invasion probability, as reported in the green crab Carcinus maenas whose northward 

expansion in the eastern North America may have been facilitated by a second independent 

introduction of a presumably cold-adapted ecotype from Europe (Jeffery et al., 2017; 2018).  

Similar ecological niches, or at least similar climatic environments, occur in many parts of 

the world that have been connected through human-mediated transportation of species. In some 

instances, invasion may be facilitated by the introduction of organisms in regions displaying 

environmental characteristics, including climate, soil, disturbances, similar to those of their native 

range, as highlighted by Hufbauer et al. (2012). In this vein, a non-native population would be “pre-

adapted” to environmental conditions of the recipient ecosystem (2: PREAD) (Mack, 2003; Vermeij, 

1991). For example, in marine environments, ocean sprawl, i.e., the worldwide artificialization of 

coastal marine habitats, is a major driver of invasion success (Bishop et al., 2017). This high 

prevalence of non-native organisms in artificial habitats, which are hubs and bridgehead for their 

future spread (3: BRIDG, bridgehead scenario/effect, Lombaert et al., 2010), may presumably result 



from adaptation to resist some particular abiotic factors typical of these habitats (such as pollutants, 

climatic conditions, availability of trophic resources), which evolved in their native range. 

The continuing increase in the number of invasive populations worldwide (Seebens et al., 

2017) is strongly related to anthropochory (4: ANTHRO) through inter- and intra-continental 

exchanges (Perrings et al., 2005). Populations are transported along commercial and touristic routes 

by aircraft, ships, cars or hikers. For example, invasion routes of the fruit fly Drosophila suzukii are 

closely related to fruit trade flows and pathways (Cini et al., 2014); the invasion of European 

countries by the horse chestnut leafminer Cameraria ohridella was supported by flows of people, 

cars, trains and trucks (Gilbert et al., 2004). The invasion of the Great Lakes drainage basin by 

numerous Ponto-Caspian species, such as Dreissena mussels, has been ascribed to ballast waters 

(Ricciardi & MacIsaac, 2000). A model based on observational data also showed that both shipping 

intensity and habitat match are good predictors of the risk of marine invasion (Seebens et al., 2016). 

Unbridled anthropochory can lead to the introduction of multiple populations (Fig. 1). This 

process increases propagule pressure and the probability of population establishment. The 

Propagule Pressure Hypothesis (5: PROP) (Simberloff, 2009), also known as “introduction effort” 

hypothesis (Blackburn & Duncan, 2001), combines the number of propagules introduced and the 

number of introduction events. It is recognized as a major universal determinant of establishment 

and further colonization success of non-natives. As such, this hypothesis is often seen as the “null 

model” when looking for determinants of species invasions (Colautti, Grigorovich & MacIsaac, 

2006; Cassey et al., 2018). Indeed, high propagule pressure increases the probability of persistence 

of the non-native populations by counteracting negative effects associated with small populations 

(mostly Allee effects), and helps increase genetic diversity, and thus adaptive potential of non-

native populations. 

(2) First contacts of non-native organisms with their recipient ecosystems 
Non-native organisms can fail to integrate into the introduction area, partially succeed in 
integration, or become fully integrated and establish self-perpetuating populations. Williamson et 
al. (1996b) studied the proportion of imported species (including pests) achieving different levels 
of invasion success: 1 in 10 imported plants or animals subsequently appear in the wild (introduced 
or casual) into recipient communities. The same proportional rule prevails between introduced and 
naturalised populations, and between naturalised and invasive populations (6: 3TENS, the “3 tens 
rule”; Williamson, 1996a). 

The causes of invasion failure are still poorly studied. In most cases, characteristics of 
individuals do not match with biotic and/or abiotic characteristics of the area of introduction (but 
see below 7: SINV, 8: EINV and 9: ELTON). In some instances, non-native population 
characteristics and recipient environment characteristics may match only partially. In this case, the 
newcomer organisms face difficulties to fully ensure their fundamental biological functions. For 
instance, some non-native plants are unable to reproduce sexually in their invasion range 
(Lambertini et al., 2010). Their proliferation is almost exclusively or totally ensured by clonal 
multiplication (10: CLON), at least in the early stage of the invasion process. Their sterility can be 
due to sub-suitable climatic conditions in recipient ecosystems (e.g. too cold to allow reproduction), 
to pollen sterility or auto-incompatibility, to the absence of cross-fertilization (low number of 
partner or dioecious species with only one sex introduced in the invasion range (Lambertini et al., 
2010), or to the absence of associated pollinators (Bufford & Daehler, 2014). Importantly, this 
apparent weakness of the lack of sexual reproduction may be converted into an advantage when 



vegetative reproduction is more efficient than sexual one for invading recipient ecosystems 
(Lambertini et al., 2010). Such clonal reproduction is frequent among non-native ornamental 
populations (Bufford & Daehler, 2014) and aquatic plants, and has been reported in both recent 
(Elodea nuttalllii, Lagarosiphon major; Egeria densa) and ancient Vinca minor (Darcy & Burkart, 2002; 
Čepková et al., 2016) plant invasions. 

The successful integration of non-native organisms in the new area highly depends on their 

intrinsic characteristics, i.e. species invasiveness (7: SINV) (Pyšek & Richardson, 2007; Richardson 

& Pisek, 2006), and on the characteristics of the recipient environment, i.e. ecosystem invasibility 

(8: EINV) (Alpert, Bone & Holzapfel, 2000; Richardson, 2006). Invasiveness and invasibility 

usefully tease apart the determinism of species invasions. These concepts avoid dressing one-sided 

considerations that would assign the “invasive” attribute to a species regardless of the 

characteristics of the invaded habitat, or conversely attribute the feature “invasible” to an 

ecosystem regardless of the traits of potentially invasive organisms (Sol, Vilà & Kühn, 2008). A 

more synthetic view integrates the relationship between SINV and EINV. For instance, the 

framework proposed by Hui et al. (2016) considers the invasion fitness of an introduced population 

as a function of its trait value relative to the trait values of resident populations, or relative to the 

degree of trait saturation in the recipient community. Similarly, David et al. (2017) highlighted that 

the phylogenetic, functional, or ecological originality of an invading population relative to the 

recipient community can also affect the likelihood of its establishment success. 

(3) Key determinants of species invasiveness 

Species invasiveness (7: SINV) resides in (i) the performance, (ii) the originality and (iii) the 

plasticity of functional traits. Yet, the ability to predict which introduced populations will become 

invasive remains fuzzy (Mack et al., 2000; Williamson, 2006; Romanuk et al., 2009). Several authors 

have tried to resolve this question by asking whether invasive populations share biological traits 

and, in parallel, whether invaded habitats have similar features to ascertain which ones could be 

associated to ecosystem invasiveness (8: EINV) (Lonsdale, 1999; Kolar & Lodge, 2001; Romanuk et 

al., 2017). 

The functional traits that enable a non-native population to become a successful invader 

(7: SINV) are usually those that favour fast reproduction and dispersal to rapidly establish viable 

populations. Those traits are, for plants, high ploidy level and uniparental reproduction, and for 

plants and animals, high reproduction rate, high phenotypic plasticity, broad and flexible diet, 

reduced systemic inflammatory responses (Lee & Klasing, 2004), and a broad ecological tolerance 

that allow establishment and subsequent potential spread (Rejmanek & Richardson, 1996; Alpert, 

Bone, & Holzapfel, 2000; Kolar & Lodge, 2001; Pyšek & Richardson, 2007). The meta-analysis of 

van Kleunen et al. (2010) established that invasive plant species generally have higher values of 

performance-related traits (11: HTRAIT) characterizing physiology, leaf-area allocation, shoot 

allocation, growth rate, size, i.e. better values for many proxies of plant fitness, than non-invasive 

species do. However, several contradictory results of global analyses searching for important traits 

have been reported (Daehler, 2003; Leffler et al., 2014). For Kueffer et al. (2013), conclusions about 

the invasiveness and impacts of a non-native species can be misleading without an understanding 

of the anthropogenic, ecological and evolutionary processes. 



The Life History hypothesis (described as “Ideal Weed” in plant ecology) is directly related 

to the invasiveness concept and focuses on traits of non-native plant populations enhancing their 

establishment, spread and/or competitive abilities allowing to outcompete indigenous populations 

(Elton, 1958). Among these traits, in light of Baker’s law (Baker, 1967), uniparental reproduction 

through, for instance, autonomous selfing or asexual reproduction is likely to be part of the 

invasiveness syndrome. Indeed, uniparental reproduction has consistently been reported in 

invasive terrestrial plants, across biogeographic regions and taxa (van Kleunen & Johnson, 2007; 

van Kleunen et al., 2008), as an important trait for both establishment and spread (Pannell et al., 

2015). However, theoretical models on the evolution of dispersal and selfing in plants indicate that 

selfing in invasive species could only be expected under certain circumstances, not in general 

(Cheptou & Massol, 2009; Massol & Cheptou, 2011a, 2011b).  

Compared with their native congeners, many non-native individuals possess original, 

species-unique traits, which can contribute to their invasion potential (12: TRAIT), i.e. no 

functionally equivalent trait is present among the species of the invaded ecosystem (Atallah et al., 

2014; Macel et al., 2014). Individuals with novel life form arriving in a new environment have good 

chances to become invasive (Mack, 2003). In particular, a limited functional redundancy with 

native organisms enhances establishment success (Ordonez, Wright, & Olff, 2010; Divíšek et al., 

2018). Accordingly, the concept of limiting similarity (14: SIMLIM; Abrams, 1983) states that 

invasive populations will be unlikely to establish in a community dominated by functionally 

similar populations because of greater niche overlap (MacArthur & Levins, 1967; Funk et al., 2008). 

Numerous studies have investigated the role of limiting similarity in invasion success, sometimes 

supporting (e.g. Dukes, 2001; 2002; Wang et al., 2013), sometimes contradicting (e.g. Larson et al., 

2013; Yannelli et al., 2017) the SIMLIM theory. For example, Dukes (2002) found the summer-active 

annual invasive forb Centaurea solstitialis to be most effectively suppressed by the presence of 

Hemizonia congesta ssp. luzulifolia which belongs to the same functional group. Conversely, Larson 

et al. (2013) showed that invasion success of the thistle Cirsium arvense was not affected by the 

presence of confamilial species, while early establishment of dissimilar guilds had negative effects. 

Adaptive phenotypic plasticity, which confers high performance in a broad range of 

environmental conditions (Richards et al., 2006), may also be key of establishment success, by 

allowing an invader to thrive in environmental conditions that only partially match those of its 

native area (see Renault et al., 2018 for a review). According to the phenotypic plasticity hypothesis 

(13: PLASTI), invasive organisms may have a greater plasticity in ecologically important traits as 

compared with non-invasive ones. In addition, populations of invasive species are expected to 

evolve greater plasticity in their invasive range compared to populations within the native range 

(Richards et al., 2006). The phenotypic plasticity hypothesis has supporting examples (e.g. 

Davidson, Jennions, & Nicotra, 2011), but also counter-examples (e.g. Palacio-López & Gianoli, 

2011). Fewer studies compared invasive and non-invasive populations, and most of these 

investigations concern plants. For instance, Lamarque et al. (2015) compared populations of Acer 

negundo and Acer platanoides from both their invasive and native ranges. These authors found that 

invasive populations of A. negundo expressed greater plasticity for diameter growth and 

phenological sensitivity, while no differences were observed between populations of A. platanoides. 



According to (Lande, 2015) the discrepancy in the observed tendency can be explained by several 

parameters, including the type of plasticity (reversible vs. irreversible). Plasticity should 

theoretically be highly beneficial at the early stages of invasion, because of the probable costs of 

maintaining plasticity (van Kleunen & Fischer, 2005), and because it may allow for novel genetic 

variation to arise (Pigliucci, Murren, & Schlichting, 2006). A trait may then lose its environmental 

sensitivity, and therefore become stable to environmental changes by genetic assimilation (Pigliucci 

et al., 2006). However, fluctuating environments are predicted to favour phenotypic plasticity, and 

this could explain the long-term persistence of plasticity in invaders of disturbed areas. The 

maintenance of adaptive plasticity could also be based on particular molecular genetic 

mechanisms, such as environmentally sensitive alleles, regulatory loci or epigenetic variation 

inducing environment-dependent expression patterns (Bock et al., 2015; Estoup et al., 2016; 

Gutekunst et al., 2018). 

Searching for lists of traits related to invasiveness, such as phenotypic plasticity or original 

traits, has often remained inconclusive (Mack et al., 2000). These traits are only applicable to a few 

taxonomic groups (Kolar & Lodge, 2001) and are context-dependent (Leffler et al., 2014). This 

extensive work on traits has revealed the large variety of invasive strategies, which depends on the 

temporal interaction of habitat characteristics and individual traits (Fig. 1). Importantly, the 

determinism and role of traits of invasive organisms change with the stage of ecosystem 

transformation, and this has been poorly considered so far. In historical ecosystems, trait 

characteristics of the newcomer (performance, originality and plasticity) have been 

acquired/preselected in their native areas. At this initial stage of invasion, trait originality seems to 

be a particularly important requisite, as the new populations need to make use of original niche 

and resources. Furthermore, trait plasticity enables invaders to enter and occupy disturbed and 

environmentally varying habitats across the globe. 

(4) Biotic resistance as guardian of historical ecosystems 

Ecosystem invasibility (8: EINV) is determined by abiotic (physico-chemical factors) and biotic 

components (e.g., local community composition, ecological networks, competition, predation). The 

biotic resistance of the recipient ecosystem partly explains the failure of many invasion attempts, 

previously described by the 3 tens rule (6: 3TENS). Some historic ecosystems are species-rich, stable 

and may hinder the infiltration and integration of new populations. Since Elton's hypothesis (9: 

ELTON), we know that species richness in a community partly explains its resistance to the arrival 

and integration of new populations, including non-native populations (Elton, 1958; Levine & 

D'Antonio, 1999). In theory, at least two different mechanisms can explain this pattern: either 

resource and niche availability decrease with species richness, or species-rich communities tend to 

comprise competitively superior species (Stachowicz & Tilman, 2005). Most experimental tests to 

date seem to favour the former interpretation, i.e. that species-rich communities are protected 

against invasion through a saturation of niches and a decrease in resource (Tilman, 1997; 

Stachowicz & Tilman, 2005; but see Hodgson, Rainey & Buckling, 2002 for an experimental counter-

example involving species dominance in bacterial communities). Such a biotic resistance 

hypothesis assumes that the number of filled niches should be greater in a species-rich assemblage, 

which would also include a greater number of predators and competitors (Crawley et al., 1999). 



Both native plant species richness and functional group identity are important mediators of 

opportunities for the establishment success of an invasive population, as shown for the waterweed 

Lagarosiphon major (Petruzzella et al., 2018). The number of non-native populations in an ecosystem 

accumulates over time, and may also modify (increase or decrease) the biotic resistance of historical 

ecosystem. Previous invasions can increase invasion resistance for functionally similar invaders by 

removing the populations more sensitive to invasion (Rodriguez, 2001). Conversely, ingress of a 

non-native population may also open the door for further invasive ones, as suggested by the 

invasional meltdown hypothesis (49: MELT) which is discussed below. Stohlgren et al. (1999) 

showed that hot spots of plant diversity and biodiversity in general were successfully invaded by 

non-native plant populations in many landscapes in the USA, with a probable link with the degree 

of resource availability in native plant communities, independently of species richness. It was thus 

suggested that high species richness may not systematically support a complete use of all available 

resources, community stability, or resistance to invasion; conversely negative richness-invasibility 

correlations might not always be due to ecological processes but might instead be attributed to 

sampling effects (Wardle, 2001). Levine, Adler & Yelenik. (2004) also suggested that biotic 

resistance may have a stronger influence on the non-native populations, once established, than 

during their establishment (Levine et al., 2004), as exampled by invaded native fish communities 

in the USA (Carey & Wahl, 2010). Similarly, microcosm experiments by Dukes (2001) suggested 

that functional diversity is a better proxy of resistance against invasion, whereas species diversity 

is a good proxy of resistance against negative effects of the invader on the ecosystem, once 

established (Dukes, 2001). 

Among the most important contributors of biotic resistance to invasions are the local native 

consumers / predators. Native consumers could prefer non-native over native prey, and may 

consequently limit invasions (Parker & Hay, 2005). The mechanism behind this susceptibility of 

non-native prey to native consumers may be the absence of shared evolutionary history. The 

increased susceptibility hypothesis (15: ISH; Colautti et al., 2004) posits that non-native prey have 

not experienced selection from these consumers and therefore lack effective defences. 

Several theoretical studies have assessed species invasiveness and ecosystem invasibility 

from a food web perspective, mostly by using the niche model of Williams & Martinez (Williams 

& Martinez, 2000). Such work suggests that low-trophic level generalists are better invaders than 

specialists or higher-level consumers (Romanuk et al., 2009). Conversely, more densely connected 

food webs are more resistant to invasions (meeting Elton’s hypothesis, but through the number of 

links rather than the number of species), but suffer larger extinction cascades when a successful 

non-native population invades (Romanuk et al., 2017). Food webs with more compartmentalization 

(where food webs are subdivided into groups of species that are more likely to interact with one 

another than with those outside the compartment) were also less susceptible to invasion (Krause et 

al., 2003). Finally, the theoretical study of Hui et al. (2016), based on the evolutionary food web 

model of Loeuille & Loreau (2005), indicates that the invasibility of recipient communities depends 

not only on their food web architecture, but also on the ecological characteristics and properties of 

the invading individuals. 



(5) Invasibility of habitats and ecosystems 

Many historical ecosystems show weaknesses and breaches (‘invasion windows” sensu Johnstone, 

1986) that are exploited by non-native populations at their establishment. The high invasibility of 

historic ecosystems, developed below,  are mainly related to the use of niches neither exploited by 

local competitors nor defended by local enemies, such niches being more likely to occur in 

disturbed and heterogeneous sites. 

In colonized habitats, non-native populations can potentially escape predators, pathogens, 

and parasites, which can be grouped under the general term "enemies" (Enemy Release 

Hypothesis, 16: ERH; Keane & Crawley, 2002). This hypothesis predicts that a newly introduced 

invader establishes because of the lack of regulation by natural competitors and enemies 

(Williamson & Fitter, 1996; Keane & Crawley, 2002). For instance, using 26 host species of molluscs, 

crustaceans, fishes, birds, mammals, amphibians and reptiles, Torchin et al. (2003) found that 

introduced populations are less heavily parasitized than native ones. The absence of control by 

native enemies can in turn be partly explained by the Behavioural Constraint Hypothesis (17: 

BCH). BCH establishes that potential consumers and competitors need behavioural adaptations 

before recognizing and readily consuming or outcompeting an introduced population under 

natural conditions (Lankau, Rogers & Siemann, 2004). The absence of native "ecosystem guards" 

capable of slowing the progression of non-native population may increase the establishment 

success and geographic expansion in the invaded area. 

According to the Empty Niche Hypothesis (18: ENH; Stachowicz & Tilman, 2005), 

unsaturated ecological niches are poorly occupied because of their short evolutionary history (e.g., 

recent volcanic islands), their climatic (glaciation-deglaciation in northern systems), geologic and 

topographic (isolation of mountain ecosystems) histories, or their degree of anthropogenic 

alteration. The establishment success of non-native populations relies on the assumption of niche 

differentiation with native populations, involving either the exploitation of unused resources 

(empty niche), or enhanced competitive ability to access a shared resource (niche replacement). The 

functioning of the less interactive populations within these types of communities has also been 

described by the neutral theory (25: NEUTR; Hubbell, 2001; Chave, 2004). This theory has been 

applied to invasions with contrasted successes (Fargione et al., 2003; Herben et al., 2004; Tilman, 

2004), even though it represents an opportunity (26: OPPO) that may ease the integration of non-

native populations (Chabrerie et al., 2008). 

The combination of the use of an empty niche and enemy-release opportunities (18: ENH 

and 16: ERH) is likely to facilitate the establishment of non-native populations (Shea & Chesson, 

2002). Both ENH and ERH invoke aspects of Charles Elton’s hypothesis in seeking to explain the 

low biotic resistance of ecosystems. In this respect, insular ecosystems are particularly sensitive to 

the effects of invasion because they are often ‘ecologically unsaturated’, as depicted by the high 

number of non-native populations generally recorded on islands (Patiño et al., 2017). The high level 

of endemicity of island communities, which, in several instances, evolved under lower biotic 

pressures and in relative isolation as compared with continental communities, can make them more 

easily invaded by non-native populations. A famous example is the brown tree snake Boiga 

irregularis which decimated the avian forest community on Guam which was naïve to tree climbing 



predators (Wiles et al., 2003). A plant example is the invasion of the non-native tree Casuarina 

equisetifolia on recent volcanic flows on La Reunion Island (Potgieter et al. 2014). Other examples 

are the ability of the invasive fruit fly Drosophila suzukii to use unripe and ripening fruits before the 

other drosophila feeding on ripe and rotting fruits (Poyet et al., 2014), or invasive seed wasps who 

have priority access to limited resources due to earlier phenology than their competitors (Gidoin, 

Roques & Boivin, 2015). Such cases point to invasive populations accessing unused or under-

utilized resources or to gain competitive advantage to exploit shared and limited resources, leading 

to significant community-level impacts.  

(6) Environmental heterogeneity and habitat disturbance favour invasibility 

The environments in which invasions proceed are generally spatially and/or temporally 

heterogeneous in both their biotic and abiotic components. Environmental heterogeneity is likely 

to favour invasibility (19: HETE), possibly promoting coexistence mechanisms between native and 

non-native populations and limiting the ecological impact of invaders (Melbourne et al., 2007). For 

instance, pulsed resources generate episodes of increased resource availability that can both 

increase niche opportunities and relax interspecific competition; this can favour the establishment 

of non-native populations and the ability of native population to persist in the presence of 

competitive invaders (Davis, Grime & Thomson, 2000; Shea & Chesson, 2002). The environmental 

heterogeneity hypothesis also encompasses the Fluctuating Resource Hypothesis raised by Davis 

et al. (2000). This hypothesis assumes that invasion success can be favoured if (i) some resources 

are not (much) used (unsaturated niche, low to absence of functional redundancy), or (ii) if there is 

a temporal or spatial increase in resource availability for an opportunistic invader (Thiébaut, 2005), 

either through increase of supply (eutrophication), or (iii) resource use decreases through, for 

example, the local extinction of a competitor (Sher & Hyatt, 1999; Davis et al., 2000). In many cases, 

this biotic and abiotic heterogeneity, which increases habitat invasibility, result from human-

mediated disturbances. 

Habitat disturbance (20: DIST) is globally recognized as an important feature of 

susceptibility to the installation and spread of non-native populations (Lozon & MacIsaac, 1997). 

Many easily invaded environments correspond to disturbed ones, especially on oceanic islands 

(D’Antonio & Dudley, 1995). Invasion frequency generally increases as levels of disturbance or 

ecosystem modification increases (Lonsdale, 1999; Richardson & Pysek, 2006), as habitat 

disturbances affects native population abundance and diversity, in turn favouring non-native 

populations (Didham et al., 2005). MacDougall & Turkington (2005) were among the first to 

empirically test the effects of habitat disturbance and invasive population abundance on native 

species declines using invasive grasses in fire-suppressed oak savanna of British Columbia. Other 

example includes the intensive grazing which exacerbated the dominance of the invasive annual 

grass Bromus tectorum in the endangered Artemisia tridentata big sagebrush ecosystems of the 

Intermountain West, USA, by disrupting key resistance mechanisms associated with bunchgrass 

abundance and composition (Reisner et al., 2013).  

(7) Life history strategies of the colonizers along an invasion course 



The constellation of human-modified sites provides an intercontinental network of disturbed 

niches that facilitates the installation of r-strategy non-native populations (21: RSTR). These r-

strategist populations/species are likely to be replaced by more competitive populations/species in 

later stages of the invasion (Facon et al., 2008). From this observation, two types of invasions can be 

distinguished: (i) early or "primary" invasions involving the appropriation of empty or poorly 

exploited niches and (ii) "secondary" invasions corresponding to the annexation of already 

occupied niches, possibly leading to competitive exclusion of taxa already present in those niches. 

Obviously, these two types of invasion are not expected to be associated with the same life-history 

strategies (Facon et al., 2006). Primary invasions will more frequently be caused by r-strategist 

species (Davis, 2005) with a set of life-history traits that facilitate colonization e.g., small size, early 

reproduction, high fecundity, short-life expectancy. A good illustration has been highlighted by 

Rejmánek & Richardson (1996) who showed that pine species that invade habitats undergoing 

strong disturbances were mainly characterized by three r-selected traits, i.e., short juvenile period, 

light seeds, and short time intervals between breeding events. 

On the contrary, secondary invasions will stem from K-strategist species with a set of life-

history traits associated with competitive abilities, e.g., large size, late reproduction, low fecundity, 

long-life expectancy (22: KSTR). Two series of successive invasions, one concerning Tephritid flies 

in La Réunion island (Duyck et al., 2007) and the other on Thiarid snails in Martinique island (Facon 

et al., 2008), illustrate this process. In both situations serial replacements of taxa already present by 

better competitors occured in the same habitat. The key traits determining invasion success can be 

expected to shift during the course of an invasion (Sakai et al., 2001). Specifically, features related 

to r-strategies will be advantageous in the initial phases of invasion that mostly occur in historical 

ecosystems. Traits related to K-strategies will be favored in the subsequent stages of the invasion, 

when the invader enters into competitive interaction with the already invaded community in 

hybrid and novel ecosystems. A meta-analysis in birds suggested that invasiveness cannot be solely 

explained by the r-K trade-off (Sol et al., 2012). A bet-hedging life history, characterized by delayed 

reproduction and longer lifespan, could be the best invasive strategy reducing (i) the risk of 

reproductive failure associated with maladaptation to a novel environment and (ii) population 

fluctuations (Sol et al., 2012). It has been supported experimentally in an invasive ladybird by Tayeh 

et al. (2015), who highlighted that life histories can evolve rapidly within non-native populations, 

converging to a fine-tuned evolutionary match between the invader and the invaded environment. 

(8) Low effects of non-native populations on native diversity in the early stages of introduction 

At the onset of the invasion process, when the non-native population has been recently introduced 

into a historical ecosystem, its impact on community composition and ecosystem processes is 

usually superficial or even undetectable. This “ecological silence” accompanying the first stages of 

an invasion (latency period after introduction; 1: LATE) could explain why the reality of the 

consequences of invasive species on their host environment was initially hotly debated (Gurevitch 

& Padilla, 2004; Asner et al., 2008; Simberloff et al., 2013). In the 1990s and early 2000s, a few studies 

demonstrated the effective impact of non-native plants on the diversity (especially species richness) 

of native plant communities (Costello, Lunt, & Williams, 2000). The relationship between the 



richness of non-native species and that of native species could even be positive according to the 

spatial scale of observation (Sax, 2002; Byers & Noonburg, 2003) and the nature of the interactions 

between the native and the non-native species. For example, the presence of the invasive Water 

Primrose can have a positive effect on local diversity and ecosystem processes since the plant may 

act as a 'magnet' species facilitating pollinator visits to the native species Lythrum salicaria (Stiers, 

Coussement, & Triest, 2014).  

Native and non-native species diversity are often positively correlated in large-scale 

studies, but negatively correlated in small-scale studies (Sax, 2002; Byers & Noonburg, 2003). 

Indeed, the same factors (light, degree of human-mediated modification of habitats, etc.) can have 

a positive effect on both non-native and native species, generating correlations between the 

diversity of the two groups of species, without the existence of strong causal relationships between 

native and non-native species diversity. The simple correlation between dominance of non-native 

populations and decline of native diversity does not constitute evidence that diversity changes are 

driven by non-native populations (Didham et al., 2005).  

III. Expansion of non-native populations and modifications of assembly rules in hybrid
ecosystems 
The main events characterizing the post-establishment stage of non-native populations are (i) their 

expansion, with a progressive adaptation to the environments encountered in their invasion area, 

and (ii) the modifications of assembly rules in hybrid ecosystems. 

(1) Paradoxical success of genetically impoverished populations 

Invasive populations are generally thought to be founded locally by a small number of individuals 

(Dlugosch & Parker 2008) representing a more or less reduced fraction of the genetic diversity of 

the source population (Nei et al., 1975; Barrett & Husband, 1990). This population/genetic 

bottleneck leads to high inbreeding levels (27: INBRE) in introduced populations (Willi, van 

Buskirk, & Hoffmann, 2006). Furthermore genetic diversity is considered an important basis for 

the ability of populations to adapt to new environmental conditions (Fisher, 1930). From these two 

assumptions emerges the Genetic Paradox of Invasions (28: GPI): how do invasive populations 

adapt to the novel selective pressures encountered in the introduced area despite presumed 

reduced genetic diversity (Sax & Brown, 2000; Estoup et al., 2016)? In this context, genetic analyses 

investigations first focused on comparing levels of genetic diversity between native and introduced 

populations (Bossdorf et al., 2005; Dlugosch & Parker, 2008; Wares et al., 2005). Many authors 

showed decreased levels of genetic diversity in the introduced populations compared with the 

native populations (Hagenblad et al., 2015). However, reduced genetic diversity is not the rule in 

every environment. In particular, twenty years of genetic studies of introduced marine and aquatic 

populations have consistently reported similar or higher genetic diversity in introduced 

populations compared to their native counterparts (e.g., 76% of the European marine introduced 

species, Rius et al., 2015). High propagule pressure from genetically diversified sources (5: PROP) 

can explain this pattern (Rius et al., 2015, Viard et al., 2016). Dlugosh et al. (2015) suggested that 

there is little explanatory power of the level of measured (and often neutral) genetic diversity on 

the introduction success. This does not imply that genetic variation is not important to consider, 



because 1) admixture processes may create evolutionary novelties, and 2) neutral genetic diversity 

may not correspond to adaptive variations on traits that are relevant for invasiveness (Rius & 

Darling, 2014; Dlugosh et al. 2015; Viard et al., 2016).  

Genetic bottlenecks do not seem to constrain invasive success (Sax et al., 2007), or even prevent 

rapid adaptive change (Prentis et al., 2008), as illustrated with the invasion case of Drosophila 

subobscura in Chile (Huey et al., 2005). Severe genetic bottlenecks have been demonstrated for 

introduced populations worldwide. This is, for example, the case of the seaweed Sargassum 

muticum, for which 14 microsatellites failed to detect any genetic variation over >1200 individuals 

sampled from 46 locations over its Pacific and Atlantic introduction ranges (Le Cam et al., 2019). In 

the same study, distinct introductions, but all accompanied by a severe genetic bottleneck, were 

then confirmed with ddRad-Sequencing. As pointed by Prentis et al. (2008), it is noteworthy that 

genetic bottlenecks can enable rapid adaptive change to occur (through the conversion of epistatic 

variance to additive variance for example (Whitlock et al., 1995) or a complex interaction between 

inbreeding depression and recipient environment (Schrieber & Lachmuth, 2017). Alternative 

mechanisms such as phenotypic plasticity (13: PLASTI) could play a major role in the rapid 

adaptation of invasive populations as suggested for the parthenogenetic marbled crayfish 

(Gutekunst et al., 2018). 

The genetic (and ecological) paradox between inbreeding depression and adaptive success of 

non-native populations may also be solved by understanding the evolution of the mutation load 

during the invasion process. The mutation load is defined as the proportion by which the 

population fitness, or any other attribute of interest, is altered by recurrent mutation (Kimura, 

Maruyama & Crowe, 1963), and which constitutes a genetic burden. Consanguineous mating can 

purge a part of the mutation load and lethal mutations can also be purged in small populations 

(Glémin, 2003). Thus, small populations of non-natives, through the increase of consanguineous 

mating, may benefit from this purge of homozygous deleterious alleles (29: PURG) reducing their 

mutation load and promoting invasion, as it has been shown for the invasive harlequin ladybird 

(Facon et al., 2011). 

(2) Evolution of traits in non-native populations 

At early invasion stages, traits (variations in morphological, reproductive, life-cycle, physiological 

or chemical attributes) of individuals of non-native populations frequently differ from those of 

their congeners from the native range. Because they escape natural enemies in their invasive range 

(16: ERH), non-native populations can save the energy formerly used for defence, and reinvest it 

in growth, biomass, reproduction and competitiveness. This theory (Evolution of Increased 

Competition Ability, 30: EICA) first studied in plants (Blossey & Nötzold, 1995) -and modified by 

Joshi & Vrieling (2005)- may partly explain the classic phenomena of latency during naturalisation 

(23: LATE), and the sudden explosion of invasive populations after environmental filtering during 

the expansion stage (Pyšek & Prach, 1993). This could also explain and reinforce the differences in 

performance commonly observed between native and non-native populations (Heberling & 

Fridley, 2013), or between different populations of non-native species differing by the time since 

their introduction (Boiché et al., 2011). For example, Siemann & Rogers (2001) demonstrated 



significant post-invasion genetic differences in the invasive tree species Triadica sebifera. Previously, 

Daehler & Strong (1997) showed a reduction of herbivore resistance in introduced Spartina 

alterniflora after one century. Through this increase in individual performances of non-natives, 

fundamental ecosystem processes, such as productivity, would be gradually ameliorated in space, 

but also in time through the extended phenology of leaf production among non-native populations 

(Fridley, 2012). The EICA hypothesis was also modified by taking into consideration the defence 

of invaders against novel enemies, such as pathogens, encountered in their new habitats (Müller-

Schärer, Schaffner, & Steinger, 2004; Lee & Klasing, 2004). However, studies attempting to test the 

EICA or refined EICA (more efficient and less costly immune responses) hypotheses have reported 

mixed results (Zou, Rogers & Siemann, 2008; Cripps et al., 2009; Diagne et al., 2017). 

(3) Unbridled dispersal at the invasion front 

After a latency period (23: LATE) during naturalisation and release from natural enemies (16: 

ERH), non-native populations can expand rapidly their geographic range. In this process, dispersal 

ability crucially determines the speed at which colonisation of new habitats will occur (Renault et 

al., 2018). Range expansion is often characterized by sequential founder events (Slatkin & Excoffier, 

2012), resulting from short (stepping stone) or long-distance jumps. Individuals colonizing new 

habitats distant from the core population can have direct fitness advantages. Indeed, recently 

established individuals can benefit from decreased intra-specific competition pressure (Travis & 

Dytham, 2002; Burton et al., 2010). Moreover, founder individuals, supposedly characterized by a 

majority of individuals with good dispersal abilities (Renault et al., 2018), will share and transmit 

their genetic background at the invasion front (passive assortative mating). As this phenomenon 

repeats as the invasion front moves forward, dispersal traits should be enhanced at the leading 

edge of the range expansion, generating phenotypic differentiation between front and core 

individuals (Laparie et al., 2013; Messager & Olden, 2019), and possibly breaking genetic 

covariation between dispersal and other traits encountered in native populations (Brown et al., 

2015). Behind the front wave and in core populations, higher population densities should favour 

competitive abilities of individuals, rather than biological traits enhancing their dispersal capacities 

(Burton et al., 2010). The promotion of dispersal traits at the invasion front has been highlighted in 

the cane toad Rhinella marina rapidly invading the north-east coast of Australia (Phillips et al., 2006; 

2010), and this has led to the theory of spatial sorting (31: SORT; Shine et al., 2011). Using such 

experimental evolution in replicated microcosm landscapes with different animal and plant 

models, several studies dissected which factors may drive the evolution of increased dispersal 

during range expansion and how this evolutionary shift may impact the ecological dynamics of 

invasion (Szucs et al., 2017; Weiss-Lehman, Hufbauer & Melbourne, 2017). All these studies end to 

the conclusion that at least five different processes may impact the evolution of the dynamics of 

range expansions: 1) novel selection pressures in the new habitat, 2) spatial sorting, 3) lower density 

at the expansion edge, 4) gene surfing, and 5) number and genetic background of the founders. 

The consequences of range expansion for population dynamics and the potential of invasive 

species to encompass rapid range expansion and adaptation are now being extensively studied in 

theoretical and empirical works (Courant et al., 2019; Morris, Börger & Crooks, 2019). Despite such 



advances, our understanding of the processes generating phenotypic or genotypic variation in 

dispersal ability along the invasion gradient remains incomplete, especially under non-equilibrium 

conditions like range expansion and invasion (but see Phillips & Perkins 2019). Moreover, human-

assisted dispersal events and multiple reintroductions impede our understanding of the actual 

expansion sequence. Spatial sorting should contribute to selecting dispersive phenotypes at the 

front (see Chuang & Peterson, 2016 for a review), the magnitude of this process being down-

regulated by a range of life-history trade-offs that may either facilitate or constrain invasion 

success, with subsequent fitness consequences (i.e. constrained energetic outputs). While there are 

supporting evidence for this expectation (Schreiber & Beckman, 2019), some authors also failed in 

seeing reproductive consequences in the best dispersers (Tabassum & Leishman, 2018). This area 

of invasion science seems very promising. For example, genomic scanning methods provide the 

tools for discriminating evolutionary forces occurring on the genome (demographic events or 

genetic drift affect the whole genome, whereas selection acts on particular loci). However, in the 

context of range expansion, drift is expected to be strong in low-density invasion-front populations, 

allowing random alleles to arise from standing variation and reach high frequencies, thus 

displaying a positive selection-like signal (mutation surfing; Gralka et al., 2016; Travis et al., 2010). 

White et al. (2013) showed that this problem could be solved by sampling replicated invasion-front 

populations, as surfing produced by drift would result in independent allele ‘selection’ when 

adaptive trait promotion would affect the same loci. 

In contrast with spatial sorting, which tends to accelerate invasion waves, the existence of an 

Allee effect (32: ALLEE) in invasive populations can dampen invasion speed. An Allee effect is 

characterized as positive density-dependence of population growth at low density. Many processes 

can cause Allee effects, e.g. mate finding, pollen limitation, or collective behaviours affecting 

organism fitness, and it is likely a general process among animal and plant taxa (and yet proper 

evidence of demographic Allee effect is rare (Gascoigne et al., 2009; Kramer et al., 2009). The link 

between Allee effects and invasion has been the subject of several studies (Taylor & Hastings, 2005; 

Grayson & Johnson, 2018). Allee effects may decrease the probability that an invader will get 

established; examples of this include the pinewood nematode Bursaphelenchus xylophilus and its 

vector the pine sawyer Monochamus alternatus (Yoshimura et al., 1999) and the mass-attacking 

spruce bark beetle Ips typographus which had not established in North America in 2001 despite 

nearly 300 interceptions by US port inspectors since 1985 (Haack, 2001). Regarding the invasions 

that finally succeeded, such as the non-native vine Vincetoxicum rossicum (Cappuccino, 2004) or the 

smooth cordgrass Spartina alterniflora (Davis et al., 2004), negative effects of low density may 

explain the lag time before invasion (23: LATE). Evidence that Allee effects may slow spatial 

expansion has been gathered for the house finch Carpodacus mexicanus (Veit & Lewis, 1996) and for 

the gypsy moth Lymantria dispar (Tobin et al., 2009); however, the dispersal capacities of introduced 

organisms may counteract Allee effects by increasing the chances of finding a mate, as reported in 

the house mice experimentally introduced on an island (MacKay et al., 2019). 

While a large class of models have found that the Allee effect can decrease invasion speed 

(Travis & Dytham, 2002), even to the point of countering spatial sorting (Shaw & Kokko, 2015; 

Shaw et al., 2018), others have raised the possibility of peculiar phenomena taking place during 



invasion. Such phenomena include patchy range expansion and the decoupling of persistence and 

spatial spread in predator-prey systems (Petrovskii et al., 2005) or fluctuating invasion speeds when 

Allee effect is combined with negative density-dependence at large densities (Sullivan et al., 2017). 

Recent innovative theoretical work on the dynamics of invasion waves has also shown that Allee 

effects might help maintain higher genetic diversity at invasion fronts (Roques et al., 2012), partly 

because decreased invasion speed lowers the intensity of genetic drift (INBRE) at the front. 

(4) Role shifting from non-native passenger to non-native driver of ecosystem changes 
Given enough time, established non-native populations are likely to change assembly rules in their 
recipient community. Dominant invaders, through their activities, start modifying the ecosystem 
properties that pre-existed their introduction. Invaded ecosystems are thus progressively 
becoming ‘hybrid’ ecosystems (Mascaro et al., 2013), with features intermediate between historical 
ecosystems comprising only native populations, and the ecosystems affected by non-native ones. 
The non-native populations go from the status of “passenger” (24: PASS; MacDougall & 
Turkington, 2005) to the status of driver of environmental changes. In the driver model (33: DRIVE; 
MacDougall & Turkington, 2005; Chabrerie et al., 2008; White et al., 2013), invasive populations 
affect local diversity by using ecosystem resources and space more effectively than native ones 
(Parker et al., 1999). The dominant invaders subordinate native populations, which are thus limited 
or excluded by competition (MacDougall & Turkington, 2005). Because of the great transformations 
imposed to invaded ecosystems, these non-native species have been termed invasive engineers (34: 
ENGE; Cuddington & Hastings, 2004), drawing on the concept of ecosystem engineers proposed 
by Jones, Lawton, & Shachack (1994). Invasive engineers (or habitat modifiers, habitat formers or 
bio-constructors) are among the most ecologically influential forms of biological invaders. Such 
populations create, destroy or transform the invaded habitats, thereby affecting native organisms 
(Guy-Haim et al., 2017). They sometimes trigger abrupt, and persistent changes in the structure and 
functioning of ecosystems akin to catastrophic shifts and alternative stable states studied in models 
of ecosystem functioning. The review by Guy-Haim et al. (2017), which focused on marine and 
estuarine environments, showed a wide variety of significant effects either positive or negative 
when considering studies separately, while concluding a small negative impact in their meta-
analysis. Some studies show that the impacts of invasive ecosystem engineers depend on their 
density, and that at low density their effects can be positive (e.g. on soil microorganisms; Straube 
et al., 2009). 

(5) Expansion of non-native populations associated with novel biological weapons and defences 

The “Novel Weapon Hypothesis” (35: NWH; Callaway & Ridenour, 2004; Vilcinskas, 2015) was 

formulated as an alternative explanation for the success of invasive populations. NWH posits that 

invasive populations may be equipped with new weaponry not detected or little used in the native 

range. In plants, numerous field and laboratory experiments have established the potential 

allelopathic effect of non-native populations on seed germination and direct inhibition of native 

plants (Thorpe et al., 2009; Pinzone et al., 2018). NWH also covers various invasive plant 

phytochemical activities, including anti-herbivore functions, as well as anti-fungal and anti-

microbial effects (Schaffner et al., 2011; Cipollini, Rigsby & Barto, 2012). This has been demonstrated 

with the phytotoxic disruption of Alliaria petiolata on native mutualistic mycorrhizal associations 

(Portales-Reyes et al., 2015). However, NWH is compatible with the biotic resistance hypothesis (9: 

ELTON) insofar as invasive populations ‘weapons’ can sometimes be thwarted by defence 

mechanisms in native species (Barto, Friese & Cipollini, 2010), thus slowing their transformation 



into hybrid ones. The NWH can be (i) the result of changes of biological characteristics in the 

invasive population between its populations of origin and its host range or (ii) existing traits related 

to negative interactions with its natural enemies in its native range against which native population 

of its invasive range are not adapted (Callaway & Ridenour, 2004; Yuan et al., 2013). In native 

plants, novel weapons of invaders are known to induce two responses: either (i) non-tolerance to 

the harmful allelochemicals due to the so-called “naïveté” observed with any antagonistic 

interactions (Schaffner et al., 2011; Carthey & Branks, 2012) or (ii) evolved tolerance to novel 

allelochemicals through natural selection (Callaway et al., 2005).  

The shifting defence hypothesis (36: SDH) differentiates between defences based on their 

effectiveness against specialist and generalist herbivores. It postulates that invasive plants may 

evolve towards new levels of chemical defence compounds in the invaded area for lack of their 

specialist herbivores (16: ERH), but are now under attack by native generalist herbivores (Joshi & 

Vrieling, 2005; Doorduin & Vrieling, 2011). Hence plants shift towards less expensive qualitative 

defences (toxins) and fewer quantitative ones in the introduced range because digestibility 

compounds are costly to produce (Glawe et al., 2003). An example is the Eurasian native Senecio 

jacobaea which is an aggressive invader in North America, Australia, and New Zealand. The 

production of pyrrolizidine alkaloids was found to be higher in the invasive populations of S. 

jacobaea compared to native populations, which makes invasive populations better defended 

against the generalist herbivore Mamestra brassicae. Pyrrolizidine alkaloids and other toxic 

compounds levels were also found at higher concentrations in invasive individuals than in native 

individuals in a common garden experiment (Doorduin & Vrieling, 2011). If the defence chemicals 

against generalists are less expensive than the defence chemicals against the specialists, such an 

evolutionary shift in defence strategy in invasive populations may result in a net gain of resources 

for the plant, at the benefit of growth and reproduction (Joshi & Vrieling, 2005). 

Although NWH and SDH were first developed from work on invasive plants, they are also 

relevant for invasive animals. Some invasive insects harbour new chemical weapons by using 

molecules naturally present in the local resources of invaded ecosystems. This is the case of the 

non-native fruit fly Drosophila suzukii which is able to feed and use the toxic compounds of native 

plants present in its invasive range (Poyet et al., 2015). This drosophila lays its eggs preferentially 

in a toxic substrate (containing atropine, a compound naturally present in the fruits of the native 

plant Atropa belladonna) in the presence of parasitoids (Poyet et al., 2017). Interestingly, the presence 

of atropine in the developmental medium confers a better resistance of Drosophila offspring against 

parasitoids, thus revealing the existence of a form of transgenerational medication in this species. 

This new weapon may result from a shifting defence mechanism as the toxic plants used by the 

invasive insects are present in their invaded area but absent in their native area. 

In contrast to native populations, some introduced plants can benefit from improved 

mutualisms with soil microorganisms (especially symbiotic fungi), which will increase their 

performance (Enhanced Mutualism Hypothesis, 37: EMH; Marler, Zabinski & Callaway, 1999; 

Reinhart & Callaway, 2006). According to the EMH, mutualism may be relatively more beneficial 

in novel ranges because the invasive population has escaped from the negative effect of natural 

enemies that may attenuate the positive effect of mutualists (mainly bacteria and fungi). For 



example, neutral to negative impacts of soil biota were found for the populations of Triadiaca 

sebifera in their native range (China) whereas positive effects of soil biota were reported in a North 

American non-native range of the species. These positive effects were linked to the higher levels of 

arbuscular mycorrhizal fungi colonization and to the greater net benefits to the invader in North 

America than in China (Yuan et al., 2013). Importantly, one needs to assess individual interactions 

between microbial species and non-native macro-organisms to tease apart the importance of EMH 

from ERH. In contrast with the EMH, the Mutualism Disruption Hypothesis (38: MDH; Callaway 

et al., 2008) predicts that invasive populations can also suppress soil mutualists in introduced 

ranges more aggressively than mutualists in their native ranges. 

(6) Non-native species are playing with their natural enemies during the expansion stage 
Despite the loss of their enemies (16: ERH), non-native populations may carry some of their 

parasites (12 to 50%) during the invasion process (Médoc et al., 2017). Parasites may spread into 
new environment and infect local species, which is defined as ‘spillover’ (Daszak, Cunningham & 
Hyatt, 2000; Power & Mitchell, 2004). Non-natives may also catch and amplify a part of local 
parasites, then constituting reservoirs for parasite transmission and acting as hosts to ultimately 
release them into ecosystem, which is defined as ‘spillback’ (Kelly et al., 2009a). For example, the 
co-introduction of grey squirrels, Sciurus carolinensis, and the squirrel poxvirus from North 
America to the UK led to the pauperization of local red squirrel, S. vulgaris (Tompkins, White & 
Boots, 2003). Spillback can also induce untargeted metabolomics declines in native populations. 
For instance, the non-native grass Avena fatua amplifies and releases local viruses that are shared 
with the native grass Elymus glaucus, and then induce a population decrease of the latter species 
(Borer et al., 2007). These two phenomena are not exclusive and some cases report spillback and 
spillover processes (38: SPILL) occur on the same species. Weinstein & Lafferty (2015) relate that 
dog’s nematodes in North America were found within local species (spillover) and conversely local 
nematodes from red wolf, Canis rufus, were found within domestic dogs, Canis lupus familiaris, and 
thus increase inoculum size by release through native hosts (spillback). 

Spillover and spillback processes (38: SPILL) have an effect on host-parasite dynamics and 
thus on ecosystems dynamics (Kelly et al., 2009b; Lymbery et al., 2014; Amsellemen et al., 2017). 
Several parameters (climate, temperature, difference in virulence, accumulation capacity, 
connectivity of host, etc) could affect parasite prevalence over time and space via spillback and 
spillover (Clark et al., 2018). A parasite introduced in a new area under more favourable climatic 
conditions could lead to more generations per year and thus more infections of native populations. 
The virulence could also affect the intensity of spillback and spillover (Strauss, White & Boots, 
2012). In the case of spillover, we expect that invasive populations could be already adapted to the 
associated parasite (Strauss et al., 2012).On the other hand, local species are at best insensitive to 
parasites. Parasites may have different effects on their hosts, ranging from death to avirulence. 
They can modify the host behaviour and make it more likely to be predated. In some cases, all 
conditions seem to be in place for a spillback and/or spillover process but it was not observed 
(Folcher et al., 2011). For now, some studies have explored the relationship between the 
phylogenetic proximity and the probability to share parasites but no clear patterns have emerged 
(Clark et al., 2018; Strauss et al., 2012; Streicker et al., 2010). 

In some cases, invaders may act as poor hosts for native parasites; in these circumstances, 
their density and risk of infection will decrease, a phenomenon referred to as the “dilution effect” 
(Kopp & Jokela, 2007; Kelly et al., 2009a). For instance, after the introduction of the non-native 
round goby, Neogobius melanostromus, the population of a local parasite, Dilostomum sp., declined. 
Invasive populations acted as a decoy for parasites and thus positively affected native fish which 
were less infected (Gendron & Marcogliese, 2017). These phenomena can be difficult to observe, 



because either they occur too quickly (Dunn & Hatcher, 2015) or the origin of the parasite is unclear. 
Finally, spillback and spillover processes might be common and their effects on native populations 
may be absent or valuable (avirulence or symbiotic for example). In the future, new technologies, 
including next-generation sequencing, should be used to detect parasites and their origins (Mangla, 
Inderjit & Callaway, 2008; Wells et al., 2015), and thus better detect the occurrence of spillback or 
spillover phenomenon. In parallel, modelling offers opportunities for elucidation of the effects of 
such processes on population dynamics and a better understanding of parasite assembly (Stauss et 
al., 2012; Clark et al., 2018), as exampled in a range of genera (Dunn & Hatcher, 2015). In general, 
when invasive species modify the community of parasites in their new areas, these can all gather 
in an “enemy alliance” (Strauss et al., 2012) that affects the interactions between native and non-
native populations. 

(7) A delayed invasion but an invasion debt to be finally paid 

The impact of invasive populations on recipient ecosystem is not immediate (23: LATE). Once a 

non-native is introduced in the historical ecosystem, its effects on natives may be delayed by the 

local biotic resistance (9: ELTON), the preponderant investment of introduced populations in 

dispersal efficiency (31: SORT), and the pace of adaptation of the non-native to its new 

environment (29: PURG, 30: EICA). The time lag between the introduction and the invasion stages 

can be very long (23: LATE), up to several centuries for some plant species (Groves, 2006). The 

LATE phenomenon was first observed for some weed species that are characterized by a time lag 

of more than 50 years between naturalization and a significant increase of their population. Groves 

(1999) first call them “sleeper weeds” (Groves, 1999). The term “invasion debt” (40: DEBT) was 

then used as a general term to describe the time-delayed invasion of populations that are already 

present in a region (Seabloom et al., 2006; Essl et al., 2011). This invasion debt is problematic because 

a low invasion level (i.e. a low number of introduced individuals) at a given time does not ensure 

the maintenance of ecosystem integrity in the future, even if no new individuals are introduced, 

thus masking the potential invasibility of ecosystems (Essl, Mang & Moser, 2012). However, the 

concept of invasion debt also provides a valuable metric that can be used to quantify the 

dimensions of future threats (Rouget et al., 2016). By separating the invasion into components 

corresponding to different stages in the invasion process (introduction, establishment, spread and 

impact debts), Rouget et al. (2016) worked with 45 non-invasive Acacia species from South-Africa, 

and calculated that four could become established (establishment debt). The spread debt over a 20-

year period varied from 0 (species unlikely to extend any further) to 10,000 km² for species with a 

large potential range. This corresponds to a current impact debt of 174 million US$ per species, 

which could increase to 500 million in 20 years if left unmanaged. In Europe, Haeuser et al. (2018) 

estimated the invasion debt of ornamental plant species by considering climate change. Modelling 

the effect of climate and species characteristics on naturalisation risk together with climate 

projections allows the forecasting of future threats and the implementation of proactive 

management of non-native populations. Preventing new introduction or managing current 

invasive populations does not eliminate the invasion debt, since debt already incurred will have to 

be paid in the future even if new introductions cease. 

(8) Climate change as a major driver of non-native populations expansion  



Climate change (39: CLIM) can alter the reproductive strategies of non-native plants, by promoting 

a shift from clonal spread to greater sexual reproduction as it was established for Reynoutria taxa 

in northern regions (Holm et al., 2018). Changing climatic conditions can also facilitate the 

reproduction and subsequent establishment of non-native populations that have until now not 

been able to establish. Such successful non-natives may in the future encounter conditions more 

suitable for breeding and spread, as exampled by the tree Schinus molle in South Africa (Richardson 

et al., 2010). Global changes may also facilitate the transport and arrival of new non-native 

populations (Gillard et al., 2017). The review of Juroszek & von Tiedemann (2015) also established 

that disease risk is projected to remain unchanged or to be reduced in the future, mainly due to 

supra-optimal temperature conditions for the development of some pathogens during the growing 

season and/or reduced rainfall and leaf wetness, respectively. Climate change can exacerbate the 

impact of invasive populations on ecosystem through the disruption of the local species interaction 

networks. Specifically, warming alters plant-herbivore interactions by increasing ectotherm 

metabolism and growth rates (Miranda et al., 2017), potentially leading to phenological mismatches 

between plants and pollinators, predators and prey, and pests and hosts.  

IV. Rapid evolution of non-native populations and emerging properties in novel
ecosystems 
(1) Admixture and hybridization of non-native populations 

Introduced populations may have been founded by different divergent lineages which were 

spatially isolated in the native species range. These introduced individuals with distinct genetic 

background may come into contact and reproduce; the result of this interbreeding between two or 

more previously isolated genetic lineages (in the native or in the introduced ranges) is called 

genetic admixture (41: ADMI). ADMI increases the overall genetic variance, generates 

heterozygosity and heterosis, and increases species fitness (Keller et al., 2014; Lawson Handley et 

al., 2011). ADMI can contribute to enhancing the spread and can facilitate the adaptation of 

introduced populations, as suggested for the green crab Carcinus maenas, following the 

independent introduction and hybridization between cold- and warm-adapted ecotypes (Jeffery et 

al., 2018 and references therein). The same process may, on the other hand, also contribute to 

outbreeding depression, i.e. a decrease in average fitness. The role of admixture in biological 

invasions remains an open question and deserves further work (Rius & Darling, 2014).  

In cases where populations were fully reproductively isolated, inter-specific hybridization 

and introgression (42: HYBRID) can occur, as shown in salamanders (Fitzpatrick et al., 2010), 

marine mussels (Saarman & Pogson, 2015) or plants (Abbott, 1992; Petit et al., 2004). Hybridization 

might benefit the non-native populations through adaptive introgression (Hedrick, 2013) (i.e. the 

introgression of adaptive alleles from native to non-native populations), and also threaten native 

populations (Todesco et al., 2016). Using a modelling approach validated by data obtained in two 

Cakile species, Mesgaran et al. (2016) proposed that hybridization might also protect the non-native 

populations from genetic Allee effects. Importantly, hybridization can occur without introgression, 

as shown in bird species in the genus Himantopus (Steeves et al., 2010) and in the tunicate Ciona spp. 

(Bouchemousse et al., 2016). Both intra- and inter-specific hybridization (sensu lato) are important 



mechanisms to consider as they could, among other things, counteract genetic depletion of founder 

events, and finally promote evolutionary novelties by breaking species boundaries (Harrison & 

Larson, 2014;  Rius & Darling, 2014). From a genomic standpoint, rearrangements (43: GENO), 

like chromosomal inversions (Prevosti et al., 1988) and polyploidization (44: POLY) have been 

reported in Spartina species where hybridization between native and non-native taxa produced 

offspring with a wide range of chromosome numbers and fertility levels (Ainouche et al., 2009). In 

this context, the resulting complex evolution form, named “reticulate evolution” (45: RETIC) 

(Trewick et al., 2004; Linder & Reiseberg, 2004), can occur in species with relatively close common 

ancestors (species of the same or a closely related genus). At long terms, these complex forms of 

evolution may result in adaptive radiation (46: RADIA) of introduced populations confronted to 

contrasted environments in post-invasion events {Carroll & Dingle, 1996). Finally, the selection 

resulting in evolutionary adaptations may possibly lead to speciation (47: SPECIA) in invasive 

species (Lee, 2002); thus the invasive species of today would be the native species of tomorrow. 

In some cases, after a period of successful proliferation and expansion, an invasion may 

peter out, ending its race in an ecological and/or evolutionary dead-end (48: DEAD). This final and 

long-term invasion failure is different from the 3 tens rules (6: 3TENS) which corresponds to a 

short-term introduction failure due to a mismatch between the requirements of non-native 

populations (invasiveness) and recipient habitat characteristics (invasibility). The reasons for 

eventual long-term invasion failures are still to be studied. The trait performance or genetic 

diversity of the invasive population may decrease with time. 

(2) New species, new rules, new properties, new ecosystems 

The accumulation of non-native populations in a territory over time (Seebens et al., 2017) inevitably 

leads to new interactions; these may be weak or strong, positive or negative (see 35: NWH and 36: 

EMH). In a few cases (10 of the 256 case studies reviewed in Simberloff & Von Holle, 1999), the 

establishment of newly introduced populations is facilitated by previously introduced species. This 

is the concept of invasional meltdown (49: MELT; Simberloff & Von Holle ,1999). This facilitation 

between former and recent invaders can be due to increased ecosystem invasibility, linked to 

reduced species diversity (9: ELTON), or by environment transformation by ancient invasive 

populations (34: ENGE). Through cascading effects, former invaders then increase the probability 

of survival of newly introduced ones as well as the potential magnitude of their impact on the 

ecosystems. This is the case of the American cherry tree, Prunus serotina, introduced to Europe near 

Paris in 1623 (Starfinger, 1997). This species hosts and feeds the larvae of the Asiatic spotted wing 

drosophila (Drosophila suzukii) in its fruits (Poyet et al., 2014), a fly detected in 2008 for the first time 

in Europe (Asplen et al., 2015). In the same geographic location, organisms from three regions 

(Europe, North America and Asia) have met (Poyet et al., 2014). From a theoretical viewpoint, 

invasional meltdowns have been modelled in food webs, following the classic niche model, to 

assess the effect of non-native species coexistence (before the ‘impacting’ stage of invasion) on final 

invasion success (Pantel et al., 2017): while coexistence of non-native populations is not necessary 

to obtain an increasing probability of invasion success with the number of species introductions, 

introductions of populations that have previously coexisted elsewhere increases the slope linking 



the number of introductions to the fraction of successful invasions and thus make invasional 

meltdown more intense (Pantel et al., 2017). 

These recurrent international meetings of invasive populations over time produce novel 

combinations of non-native/native or non-native/non-native populations (50: COMBI) that are 

characterized by different biogeographic and evolutionary histories but complementary traits. 

Among these new combinations, new relationships between native and non-native populations 

can facilitate or impede the establishment of the non-native population (The New Associations 

Hypothesis NASS; Colautti et al., 2004). Local adaptation of species in the native community or 

native-invasive coevolution can diminish the impact of invaders and integrate them into the native 

communities (Strauss, Lau & Carroll, 2006; Lankau, 2012). From these associations, new 

environmental conditions and new ecosystem functions may emerge while others disappear. A 

new ecosystem applied to invasions (Novel ecosystem concept: Hobbs et al., 2006; Mascaro et al., 

2013; Richardson & Gaertner, 2013; 51: NOVEL) is being created with emerging properties (Forsyth 

et al., 2015; Kuebbing, Classen, & Simberloff, 2014) and with altered ecosystem services (Hobbs, 

Higgs & Harris, 2009). 

Novel ecosystems are characterized by the unprecedented nature of their structure and 

composition and often by the irreversibility of the invasion. Indeed, the return to a previous state 

of the ecosystem or the total eradication of an established invasive population is almost impossible 

in practice. Beyond their ecosystem impact, some invasive populations redefine the dynamics of 

landscapes and constrain management habits (Chabrerie et al., 2007). The multiplicity of potential 

combinations of species, previously unlikely and now possible, makes it difficult to predict what 

will be the ecosystem properties resulting from these association lotteries. 

V. A functional perspective of invasions 
A functional approach to ecosystem, based on the use of organism traits, would provide a better 

understanding of ecosystem changes following invasions (Drenovsky et al., 2012; Liao et al., 2008). 

A functional approach can help assess whether ecosystem states pre- and post-invasions are 

functionally homologous, and whether the services provided by ecosystems have changed (e.g. 

carbon storage, water quality). Several studies comparing coexisting native and invasive plant 

species have demonstrated differences between them in terms of functionally important traits 

(Baruch & Goldstein, 1999; Leishman et al., 2007). Invasive populations, bearing new effect traits, 

will alter the functioning of recipient ecosystem, but up to now only few studies have linked these 

alterations to the trait sets of non-natives (Levine et al., 2003). Using biological traits, allowing the 

computation of functional diversity indices at species and community scales, is a promising 

framework to understand changes in food webs and link ecosystem compartments such as below- 

and above-ground (Abgrall et al., 2017; Moretti & Legg, 2009). Through adaptive changes of 

morphological (Atallah et al., 2014) or behavioural traits, e.g. trans-generational medication (Poyet 

et al., 2017), non-native populations can benefit from a wider range of resources (Poyet et al., 2015) 

or better defend themselves than local populations and thus take precedence over them. However, 

native populations can also experience adaptive evolution in performance traits that mitigate the 

impact of non-natives (Mealor & Hild, 2007).  



Since parasites (sensu lato, i.e. pathogens and true parasites) are involved in indirect interactions at 

all trophic levels, parasitic infections play a major role in invasion impact and success. Host-

parasite interactions control and are controlled by the host immune response, and yet the 

immunology of invasions is still poorly known, with a clear imbalance in favour of theoretical 

rather than empirical studies (but see Vilcinskas, Mukherjee & Vogel, 2013). This observation is 

even more pronounced in invertebrate species, although it is now well established that 

invertebrates can acquire an immune experience from newly encountered microbes and transmit 

it to their offspring. Developing a framework for integrating ecology, microbiology, evolution and 

immunology to better understand the co-occurring spread of invasive species and their parasites 

would be useful. The main challenges in this regard are measuring a pertinent set of traits for the 

different biotic components of the ecosystem and discerning links between measured traits and 

ecological functions or processes. 

VI. Conclusions and future directions
This review has explored theories and hypotheses aimed at elucidating aspects of biological 

invasions at the level of populations, communities and ecosystems. The resulting synthetic scheme 

(Fig. 1) summarizes the logical articulations between these theories along the invasion timeline, 

from establishment to expansion and then evolution of invasive populations. This scheme allows 

us to consider invasions from the perspective of both the non-native populations and the invaded 

ecosystem, and thus to highlight links between them. For instance, the grouping of 21: RSTR and 

20: DIST hypotheses in Fig. 1 emphasizes the relation between the propensity of r-strategist species 

to be efficient invaders and the facilitation of such invasions by disturbances of ecosystems (Alpert, 

Bone & Holzapfel, 2000). Even earlier in the invasion process, the link between 7: SINV and 8: 

EINV hypotheses (Catford et al., 2012) alludes to the constraints on invasive population traits due 

to their insertion into local food webs, e.g. foraging traits matching available prey characteristics 

(Baiser, Russell & Lockwood, 2010; Romanuk et al., 2009). 

Invasion theories can greatly benefit from a functional perspective (Pantel et al., 2017). 

Studies on invasive plants have highlighted that taxonomic and functional diversities of the 

invaded community can have different effects on the success of potential invaders (Dukes, 2001). 

Functional overlap between the invading population and the ecosystem has been described as a 

potential explanation of invader’s success, but this only applies in particular contexts according to 

the meta-analysis of Leffler et al. (2014). A better perspective can be achieved through elucidation 

of the actual roles of species, e.g. based on species diet (David et al., 2017). For instance, the meta-

analysis of Mollot et al. (2017) showed that invasive predators are more likely associated with 

decreases in species richness, independently of invaded habitat type, than are species in other 

trophic levels. Because functional traits and trophic characteristics are not always available in the 

literature, phylogenetic information has often been used as a proxy for, or as a predictor of, 

functional traits, with various degrees of success (Pearse & Altermatt, 2013; Tan et al., 2015). 

Considering the functional characteristics of invasive populations can also help assess, 

understand and predict their effects on ecosystem services. For instance, Geslin et al. (2017) 

reviewed the literature on the effects of widely introduced populations of crops and pollinating 



insects on plant-pollinator interactions. One of their main conclusions is that domesticated insects 

generally occupy central positions in networks, and therefore probably compete with many other 

naturally occurring pollinators. In the case of the regulation of agricultural pests by predators, 

Jacquot et al. (2017) investigated the potential services and disservices of invasive ants in mango 

orchards, and they evidenced that distinct ant species had different effects depending on their 

omnivory and the trophic level on which they preferentially feed. 

Going back to our timeline scheme (Fig. 1), the link between the various hypotheses and 

theories presented therein and the effects of invasive populations on invaded ecosystem services 

appears as a topic deserving further research. Whether a non-native population succeeds in a novel 

environment because it lacks its natural enemies (16: ERH) or because of too much disturbances of 

the invaded ecosystem (20: DIST) might provide clues as to what the effect of the non-native 

population might be on the functioning of invaded ecosystem and its services. The overall message 

from this review and the synthetic timeline scheme (Fig. 1) is that invasions do not occur in a 

vacuum and no single hypothesis is adequate to predict the likelihood of invasion, the resilience of 

particular ecosystems to invasion, the alteration to expect after the invasion, or the likely 

evolutionary aftermath to result from the integration of the invasive species.  

Understanding biological invasions demands consideration of complex interactions 

between intrinsic species attributes, environmental attributes, and the effects of human actions 

(Thuiller et al., 2006). However, this does not mean that it is not possible to forecast future 

trajectories of invasions (Bocedi et al., 2014; Fournier et al., 2019). We suggest that Fig. 1 can serve 

as a graphical model whose components can be used to construct more formal statistical models of 

population, community, or ecosystem dynamics in habitats where researchers are interested in 

predicting changes in response to non-native populations or the likelihood of particular habitats to 

host invasive species. The model parameters can be tuned using other examples of invasions in the 

same or similar taxonomic groups or habitat types, sources of uncertainty in the model can be 

assessed, and the models can be fine-tuned as more data becomes available in an iterative updating 

process (Dietze, 2017; Urban et al., 2016). 
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Figure legend 

Figure 1: The invasion dynamics: hypotheses and concepts along the invasion timeline. Along the 
timeline, the above part of the scheme illustrates potential changes at the population scale of non-
native populations. The bottom part describes concomitant transformations of ecosystem subjected 
to invasions. 

Abbreviations of the concepts illustrated in figure 1 (bold characters): 

1 PRESE: A “preselection of traits” responsible of the invasive character of an exotic species can occur 
in its native area (Rey et al., 2012). 

2 PREAD: “Preadaptation” (Mack, 2003): invasions may be facilitated by the introduction of organisms 
in regions displaying environmental characteristics similar to those of their native range. The 
recurrence of anthropogenic disturbance worldwide may also increase the frequency of 
contemporary adaptation to human-altered habitats (see also AIAI: “Anthropogenically Induced 
Adaptation to Invade”, Hufbauer et al. (2012)). 

3 BRIDG: Many invasions have stemmed not from the native range, but from a particularly 
successful invasive population, which serves as the source of colonists for remote new territories. 
This phenomenon was called the invasive bridgehead effect (Lombaert et al., 2010). 

4 ANTHRO: The ever-increasing frequency of invasive species all over the world (Seebens et al., 2017) 
is strongly related to anthropochory through inter- and intra-continental exchanges (Perrings et al., 
2005). 

5 PROP: The “Propagule Pressure Hypothesis” (Simberloff, 2009), also known as introduction effort 
(Blackburn et al., 2011), combines the number of propagules introduced and the number of 
introduction events. It is recognized as a major determinant of establishment and further colonization 
success of invasive species. 

6 3TENS: The “3 tens rule”: Williamson & Fitter (1996) showed that there were statistical regularities 
to invasions: the statistical rule holds that 1 in 10 imported plants and animals appear in the wild 
(introduced or casual). The same proportional rule prevails between introduced and naturalised 
species, and between naturalised and invasive species (the “3 tens rule”; Williamson, 1996). 

7 SINV: “Species invasiveness” resides in the performance, the originality and the plasticity of 
functional traits (Alpert, Bone & Holzapfel, 2000; Pyšek & Richardson, 2007; van Kleunen et al., 2010). 

8 EINV: “Ecosystem invasibility”: the successful integration of non-native organisms in the new area 
also depends on the characteristics of the recipient environment (Alpert, Bone & Holzapfel, 2000; 
Richardson & Pysek, 2006). 



9 ELTON: According to “Elton’s resistance hypothesis” (Elton, 1958; Levine & D'Antonio, 1999), a 
high local diversity reduces community invasibility. 

10 CLON: Some exotic plants are unable to reproduce sexually in their invasion range (Lambertini et 
al., 2010). Their proliferation is almost exclusively or totally ensured by clonal multiplication, at least 
in the early stage of the invasion process. This apparent weakness of the lack of sexual reproduction 
may be converted into an advantage in the case where vegetative reproduction is more efficient to 
invade recipient ecosystems (Lambertini et al., 2010). 

11 HTRAIT: Invasive plant species generally have higher values of performance-related traits 
characterizing physiology, leaf-area allocation, shoot allocation, growth rate, size, i.e. a better fitness 
than non-invasive plant species (van Kleunen et al., 2010). 

12 OTRAIT: Compared with their native congeners, the non-native species possess “original, species-
unique traits”, which can contribute to their invasion potential. No functionally equivalent trait is 
present in the invaded ecosystem (Atallah et al., 2014; Macel et al., 2014). 

13 PLASTI: According to the “phenotypic plasticity hypothesis”, it is thus supposed that invasive species 
may have a greater plasticity in ecologically important traits than non-invasive ones, and populations 
of invasive species are expected to evolve greater plasticity in their invasive range compared to 
populations within the native range (Richards et al., 2006). 

14 LIMSIM: The concept of “limiting similarity” (Abrams, 1983) states that invasive species will be 
unlikely to establish in a community dominated by functionally similar species because of greater 
niche overlap (Funk et al., 2008; MacArthur & Levins, 1967). 

15 ISH: “Increased Susceptibility Hypothesis”: Native consumers may prefer exotic over native prey and 
consequently limit invasions (Parker & Hay, 2005). Exotic preys have not experienced selection from 
these consumers and therefore lack effective defences, as formulated by the Increased Susceptibility 
Hypothesis (Colautti et al., 2004). 

16 ERH: “Enemy Release Hypothesis” (Keane & Crawley, 2002). By experiencing a decrease in 
regulation by consumers or other natural enemies, exotic species may rapidly increase in abundance 
and distribution. 

17 BCH: The “Behavioural Constraint Hypothesis” establishes that potential consumers and competitors 
need behavioural adaptations before recognizing and readily consuming or outcompeting an 
introduced population (Lankau, Rogers & Siemann, 2004). 

18 ENH: “Empty Niche Hypothesis” Invasive species may expand into new areas by filling an ‘empty 
niche’; i.e. occupying previously unoccupied (or unsaturated) habitats or exploiting a resource 
unused by local species (Stachowicz & Tilman, 2005; Williamson, 1996 ). 

19 HETE and 20 DIST: Spatio-temporal environmental heterogeneity and disturbances  can 
promote invasions (Melbourne et al., 2007). 



21 RSTR and 22 KSTR: “r-strategy” species (pioneers, opportunists, generalists) are favoured in early 
invasion stages and then competitively displaced by “K-strategists” in later stages (Facon et al., 2008; 
Duyck et al., 2007). 

23 LATE: “Latency period” typically preceding population bloom of invasive species (Pyšek & Prach, 
1993). 

24 PASS: The correlation between dominance of invasive species and decline of native populations 
does not constitute evidence that ecological changes are driven by invasive species (Didham et al., 
2005). Indeed, habitat disturbances or fragmentation could have both detrimental impact on native 
population abundance and diversity while being beneficial for exotic species, then labelled as 
“passengers” of ecological change. This is the “Passenger model” (MacDougall & Turkington, 2005; 
Chabrerie et al., 2008) 

25 NEUTR: The “Neutral theory” (Hubbell, 2001; Chave, 2004), applied to invasions (Fargione et al., 
2003; Herben et al., 2004; Tilman, 2004). 

26 OPPO: “Opportunist model”. Non-interactive communities represent an opportunity (that may ease 
the integration of non-native species (Chabrerie et al., 2008; White et al., 2013). 

27 INBRE: Initial genetic bottleneck of incipient invasion leads to high inbreeding levels in 
introduced populations (van Buskirk & Willi, 2006). Inbreeding may lead to both negative 
(inbreeding depression) and positive (purging) effects on the invasive success (see GPI and PURG). 

28 GPI: “Genetic Paradox of Invasions”: how do invasive populations manage to adapt to the novel 
selective pressures encountered in the introduced area despite reduced genetic diversity (Sax & 
Brown, 2000; Estoup et al., 2016). 

29 PURG: The mutation load is defined as the proportion by which the population fitness, or any 
other attribute of interest, is altered by recurrent mutation (Kimura, Maruyama & Crowe, 1963). 
Consanguineous mating can “purge a part of the mutation load” and lethal mutations can also be purged 
in small populations (Glémin, 2003). Invasive species may benefit from this purge of homozygous 
deleterious alleles reducing their genetic/mutation load. 

30 EICA: “Evolution of Increased Competition Ability” (Blossey & Nötzold, 1995): because they escape 
natural enemies in their invasive range, non-native populations can save the energy formerly used 
for defence and reinvest it in growth, biomass, reproduction and competitiveness. 

31 SORT: Spatial sorting, selection of individuals with high dispersal ability at the leading edge of 
invasion (Shine et al. 2011). 

32 ALLEE: “Allee effect” (Petrovskii et al., 2005), occurring at the leading edge of invasion (Cappuccino, 
2004; Davis et al., 2004). 



33 DRIVE: “Driver model”: invasive populations affect local diversity by using ecosystem resources 
and space more effectively than native ones (MacDougall & Turkington, 2005; Chabrerie et al., 2008; 
White et al., 2013). 

34 ENGE: Because of the great transformations imposed to invaded ecosystems, some non-native 
species have been termed “Invasive engineers” {Cuddington, 2004 #511}. 

35 NWH: “Novel Weapon Hypothesis” (Callaway & Aschehoug, 2000; Callaway & Ridenour, 2004). 
Novel weapons may include chemical and biological weapons. 

36 SDH: “Shifting Defense Hypothesis” {Müller-Schärer, 2004 #3552;Doorduin, 2011 #3553}. 

37 EMH: “Enhanced Mutualism Hypothesis”: in contrast to native populations, some introduced plants 
can benefit from improved mutualisms with soil microorganisms (especially symbiotic fungi), which 
will increase their performance (Marler, Zabinski & Callaway, 1999; Reinhart & Callaway, 2006). 

38 MDH: The “Mutualism Disruption Hypothesis” predicts that invasive populations can also suppress 
soil mutualists in introduced ranges more aggressively than mutualists in their native ranges. 
(Callaway et al., 2008). 

38 SPILL: “Spillover – Spillback”. Non-native populations may carry their parasites, infecting local 
species, (‘spillover’), and may also catch and amplify a part of local parasites, then constituting 
reservoirs for parasite transmission and acting as hosts to ultimately release them into ecosystem 
(‘spillback’) (Dasak et al., 2000, Amsellem et al. 2017). 

39 CLIM: Climate changes facilitate the arrival of thermophilic non-native species and exacerbate 
their impacts. 

40 DEBT: Invasion debt describes the time-delayed invasion of populations that are already present 
in a region. This invasion debt is problematic because a low invasion level at a given time does not 
ensure the maintenance of ecosystem integrity in the future. This concept can help to quantify the 
future invasion risks (Rouget et al., 2016). 

41 ADMI: “Genetic admixture”, i.e. the result of interbreeding between two or more previously 
isolated populations within a species. It generates heterozygosity and heterosis increasing species 
fitness (Keller et al., 2014; Lawson Handley et al., 2011). 

42 HYBRID: Interspecific “hybridization” between native and invading species (Abbott, 1992; Petit et 
al., 2004) 

43 GENO: “Genomic rearrangements”, like chromosomic inversions (Prevosti et al.,1988) and 
polyploidy (POLY) can contribute to invasive species evolution. 

44 POLY: “Polyploidization”, i.e. genome duplication, in invasive species (Ainouche et al., 2009). 

45 RETIC: “Reticulate evolution”, a complex evolution form involving two genomic shocks: 
hybridization between evolutionary close native and invasive species (merger of divergent genomes), 



and polyploidization (whole genome duplication) Ainouche et al., 2009; Trewick, 2004). Reticulate 
evolution involving native and exotic species may lead to speciation (see the genus Spartina) through 
the creation of populations/species with various levels of polyploidy and various proportions of 
native and exotic genomes. 

46 RADIA: “Adaptive radiation” in post-invasion events (Carroll & Dingle, 1996). 

47 SPECIA: Selection resulting in evolutionary adaptations and possibly “speciation” in invasive 
species (Lee, 2002). 

48 DEAD: In some cases, after a period of successful proliferation and expansion, the invasion is 
petering out and ends his race in “an ecological and/or evolutionary deadlock”. 

49 MELT: The establishment of newly introduced populations is facilitated by previously introduced 
species. This is the concept of “Invasional meltdown” (Simberloff & Von Holle, 1999). 

50 COMBI: “New combinations” between exotic-native species and between exotic-exotic species (see 
example in Poyet et al., 2014). This includes new the “New Associations Hypothesis” NASS (Colautti et 
al., 2004): the relationships between non-native and native species can facilitate or impede the 
establishment of the non-native species and influence the invasion success. 

51 NOVEL: A new ecosystem with emerging properties (“Novel ecosystem” concept (Hobbs et al., 2006; 
Mascaro et al., 2013) applied to invasions (Richardson & Gaertner, 2013; Simberloff, 2015)) is created 
by the activity of the invasive species. 




