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Abstract We consider the constrained multi-objective optimization problem 
of finding Pareto critical points of difference of convex functions. The new 
approach proposed by Bento et al. [SIAM J. Optim., 28 (2018), pp. 1104-
970] to study the convergence of the proximal point method is applied. Our 
method minimizes at each iteration a convex approximation instead of the 
(non-convex) objective function constrained to a possibly non-convex set which 
assures the vector improving process. The motivation comes from the famous 
Group Dynamic Problem in Behavioral Sciences where, at each step, a group 
of (possible badly informed) agents tries to increase his joint payoff, in order 
to be able to increase the payoff of each of them. In this way, at each step, 
this ascent process guarantees the stability of the group. Some encouraging 
preliminary numerical results are reported.
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1 Introduction

In this paper, we consider the multi-objective optimization problem of find-
ing a Pareto critical point for a special class of non-convex vector functions
which can be written as difference of two convex vector functions (called DC
functions). Multi-objective optimization is the process of simultaneously opti-
mizing two or more real-valued objective functions. Usually, no single point will
minimize all given objective functions at once (i.e., there is no ideal minimizer),
and so some concepts have to be adapted. There is a wide research program
consisting of extension to the vector setting of several iterative methods for
scalar functions, for instance the steepest descent method (see Graña Drum-
mond and Svaiter [27] and Bento et al. [6]), projected methods (see Fukuda
and Graña Drummond [24], Graña Drummond and Iusem [26] and Brito et
al. [11]), subgradient method (see Bello Cruz [3,19]), Newton’s method (see
Fliege et al. [22] and Qu et al. [51]) and proximal methods (see Bonnel et
al. [10], Ceng and Yao [13], Bento et al. [5], Apolinário et al. [1] and Qu et
al. [52]). Multi-objective optimization has application in economics, industry,
agriculture, location of public facilities, among others. For more details see,
for example, Jahn [33], Luc [38], Miettinen [41] and Ross and Soland [54].

There are a lot of works devoted to the theory of DC functions in different
contexts; for instance, duality and optimality conditions (e.g. Hartman [29],
Hiriart-Urruty [30]), proximal algorithms (e.g. Moudafi and Maingé [45], Souza
and Oliveira [60], Sun et al. [61], Wen et al. [67]), subgradient methods (e.g.
Tao and Souad [62]), cutting angle and branch-and-bound methods (e.g. Ferrer
et al. [21], Tuy and Horst [65]), vector optimization (e.g. Flores-Bazán and
Oettli [23], Guo and Li [28]), variational inequality problems (e.g. Muu and
Quoc [49]), equilibrium problems (e.g. Dinh et al. [20]), trust-region problem
(e.g. Tao and An [63]), transportation problem (e.g. Holmberg and Tuy [31]).

The aim of this paper is to study convergence properties of a proximal
point method, for DC vector functions, adding a vectorial improving con-
straint which is not convex. In a finite dimensional multi-objective setting our
non-convex multi-objective proximal descent method generalizes the (exact)
convex multi-objective proximal point descent method introduced by Bonnel
et al. [10]. Our non-convex descent property also implies the one obtained
by Ji et al. [34]. It is worth to mention that even if DC function is a locally
Lipschitz function our method is different to the one considered by Bento et
al. [4] because our algorithm minimizes at each iteration a linear approxima-
tion of the objective function instead of minimizing the objetive function as
[4] does. As we will see in Section 6 our approach have important applications
in Behavioral Sciences.

A motivation to study the proximal point method involving DC vector
functions and a step by step vectorial improving constraint comes from the
very important “group dynamic” problem in Behavioral Sciences, where at
each step, a group of agents tries to increase his joint payoff, in order to be
able to increase the payoff of each of them. In this way, our ascent method
guarantees, at each step, the stability of the group. There is a huge literature



Title Suppressed Due to Excessive Length 3

in Behavioral Sciences on “group dynamics” (see, for instance, the force field
theory in Lewin [35,36] in Psychology, organization change theories in Man-
agement Sciences, see Poole and Van de Ven [50], and dynamic cooperative
games in Economics). As emphasized by Lewin [35,36], a major aspect of the
group dynamic problem is the presence of resistance to change, given that
becoming able to improve and then improving is costly. In order to modelize
this resistance to change aspect, we consider an original vectorial proximal
algorithm where the perturbation term includes the square of a quasi dis-
tance. This model of resistance to change comes from the recent variational
rationality approach of human dynamics (see Soubeyran [55–59]).

The paper is organized as follows. Section 2 presents the definition and
basic properties of quasi distances. Section 3 states formally the problem and
introduces some required definitions and results in multi-objective optimiza-
tion. The algorithm is presented in Section 4. Section 5 contains the conver-
gence analysis of the algorithm. An application to “group dynamic” problems
in Behavioral Sciences is given in Section 6. Finally, some numerical experi-
ments are presented in Section 7 to show the efficiency of the method and its
performance compared to another proximal method for DC functions.

2 Quasi distance

The motivation to handle with quasi distances as the regularization term in
proximal methods comes from applications. In Management Sciences costs of
moving (being able to move and move) from a position x to a position y is
not symmetric, i.e., C(y, x) 6= C(x, y). Thus, cost functions involving quasi
distances are better adapted to applications in Behavioral Sciences.

A quasi metric space is a pair (X, q) such that X is a non-empty set and
q : X × X → R+, called a quasi metric or quasi distance, is a mapping
satisfying:

1. For all x, y ∈ X, q(x, y) = q(y, x) = 0 ⇔ x = y;
2. For all x, y, z ∈ X, q(x, z) ≤ q(x, y) + q(y, z).

Therefore, metric spaces are quasi metric spaces satisfying the symmetric prop-
erty q(x, y) = q(y, x). Quasi distances are not necessarily convex, continuously
differentiable or coercive functions. Examples of quasi distances can be found
in [44] and references therein. In this paper, we consider quasi distances satis-
fying the following condition:
Condition 1: There are positive real numbers α > 0 and β > 0 such that

α||x− y|| ≤ q(x, y) ≤ β||x− y||, ∀x, y ∈ Rn. (1)

Remark 1 This condition has been used to prove convergence of proximal point
algorithms for non-convex and non-smooth functions, see for instance [7,8,44].
Moreno et al. [44] present several examples of quasi distances highlighting some
that satisfy Condition 1.
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Proposition 1 Let q : Rn × Rn → R+ be a quasi distance that verifies (1).
Then, for each z ∈ Rn the functions q(·, z), q(z, ·) are Lipschitz and q2(·, z),
q2(z, ·) are locally Lipschitz on Rn.

Proof See [44, Propositions 3.6 and 3.7]. ut

3 Multi-objective optimization

In this section we recall some basic definitions and properties of multi-objective
optimization which can be found, for instance, in Jahn [33] and Luc [38]. We
state and prove some results that will allow to define the algorithm and study
its convergence properties.

Let Rm be the m-dimensional Euclidean space with the partial order “ � ”
induced by the Paretian cone Rm+ , given by y � z (or z � y) iff z − y ∈ Rm+
with its associate relation “ ≺ ”, given by y ≺ z (or z � y) iff z − y ∈ Rm++,
where

Rm+ = {x ∈ Rm : xj ≥ 0, j ∈ I} , Rm++ = {x ∈ Rm : xj > 0, j ∈ I} ,

and I = {1, . . . ,m}. Given a vector function F : Rn → Rm, the problem of
finding a weak Pareto point of F consists of finding a point x∗ ∈ Rn such
that there exists no other x ∈ Rn with F (x) ≺ F (x∗). More generally, given a
non-empty set Ω ⊂ Rn, a point x∗ ∈ Ω is a weak Pareto point of the vector
function F constrained to the set Ω iff there is no x ∈ Ω with F (x) ≺ F (x∗).
We denote this problem by

minw{F (x) : x ∈ Ω}, (2)

and the set of all weak Pareto points of F in Ω by arg minw{F (x) : x ∈ Ω}.
Let F be a vector function given by F (x) := (f1(x), . . . , fm(x)). The Jaco-

bian m× n matrix of F at x ∈ Rn is defined by

JF (x) := (∇f1(x), . . . ,∇fm(x))
>
.

For a vector function F : Rn → Rm we say that F is Rm+ -convex if and
only if, for every x, y ∈ Rn and λ ∈ (0, 1)

F (λx+ (1− λ)y) � λF (x) + (1− λ)F (y).

Note that this concept is equivalent to component-wise convexity.
Let f : Rn → R be a locally Lipschitz function at x ∈ Rn and let d ∈ Rn.

The Clarke directional derivative of f at x in the direction of d, denoted by
f◦(x, d), is defined as follows

f◦(x, d) := lim sup
y→x
t↓0

f(y + td)− f(y)

t
,

and the Clarke subdifferential of f at x, denoted by ∂f(x), as follows

∂f(x) := {w ∈ Rn : 〈w, d〉 ≤ f◦(x, d), ∀ d ∈ Rn} ,

see Clarke [16].
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Proposition 2 Let f1, f2 : Rn → R be Lipschitz continuous at a point x ∈ Rn.
One has

∂(f1f2)(x) ⊂ f2(x)∂f1(x) + f1(x)∂f2(x).

Proof See [17, Proposition 2.3.13]. ut

Given a locally Lipschitz vector function F : Rn → Rm, i.e., all component
functions fi : Rn → R are locally Lipschitz functions, the Clarke subdifferential
of F at x ∈ Rn, denoted by ∂F (x), is defined as

∂F (x) := {U ∈ Rm×n : U>d � F ◦(x; d), ∀d ∈ Rn}, (3)

where F ◦(x; d) := (f◦1 (x; d), . . . , f◦m(x; d)). It is worth to point out that an
equivalent definition has appeared, in a more general context, in Thibault [64].
If F is C-convex, for some ordering cone C, a similar definition can be found
in Luc [37].

Let Ω be a closed and convex set. A point x ∈ Ω is said to be a Pareto-
Clarke critical point (or Pareto critical point) of F in Ω iff, for any y ∈ Ω,
there exists i ∈ I such that

f◦i (x, y − x) ≥ 0. (4)

Remark 2 Note that if m = 1 in the previous definition, we retrieve the (clas-
sical) definition of critical points for non-smooth functions: 0 ∈ ∂f(x). It is
worth to notice that, combining (4) with Clarke [16, Proposition 1.4], we have
the following alternative definition: a point x ∈ Rn is a Pareto critical point
of F in Ω if, for any y ∈ Ω, there exist i ∈ I and ξ ∈ ∂fi(x) such that
〈ξ, y − x〉 ≥ 0. Thus, if x is not a Pareto critical point of F in Ω, then there
exists y ∈ Ω such that

U(y − x) ≺ 0, ∀U ∈ ∂F (x).

The next result gives a necessary condition for a point to be a Pareto
critical point of a vector function.

Lemma 1 Let a, b ∈ Rm+ be such that at least one of the vectors is not equal to
zero. Assume that Ω is a non-empty, closed and convex set. If −(U>a+V >b) ∈
NΩ(x), for some U, V ∈ ∂F (x), then x is a Pareto critical point of F .

Proof We will prove just the case where a, b ∈ Rm+\{0}. The proof of the case
where one of the vectors a, b ∈ Rm+ is equal to zero follows the same argument.
Take x ∈ Ω and a, b ∈ Rm+\{0} such that −(U>a + V >b) ∈ NΩ(x). Let us
suppose, by contradiction, that x is not a Pareto critical point of F . From
Remark 2, there exists y ∈ Ω such that

U(y − x) ≺ 0 and V (y − x) ≺ 0.

Thus, we have 〈a, U(y− x)〉 < 0 and 〈b, V (y− x)〉 < 0 because a, b ∈ Rm+\{0}.
Therefore, we have that 〈U>a, y − x〉 < 0 and 〈V >b, y − x〉 < 0. Adding last
two inequalities, we obtain

〈U>a+ V >b, y − x〉 < 0,
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which contradicts the fact that −(U>a+V >b) ∈ NΩ(x), and hence the desired
result is proved. ut

We denote the distance function d : Rn → R of a point x ∈ Rn to a
non-empty set C ⊂ Rn as

dC(x) := inf{||x− c|| : c ∈ C}. (5)

The next result presents a necessary condition for a point x∗ to be a solution
of (2) in the particular case where D ⊂ Rn is a non-empty, closed and convex
set, and

Ω = {x ∈ D : sj(x) ≤ 0, j ∈ J} with sj : Rn → R. (6)

This kind of results have been extended to more general contexts such as vector
variational inequalities (see Mai and Luu [39]) and others minimal concept in
vector optimization such as relative minimal points; see Mordukhovich [48,
Definition 9.3].

Theorem 1 Let D ⊂ Rn be a non-empty, closed and convex set. Assume that
the set Ω in (2) is given as in (6), and the functions fj , sj : Rn → R, j ∈ I,
are locally Lipschitz. If x∗ ∈ Ω is a weak Pareto solution of (2), then there
exist real numbers uj ≥ 0, vj ≥ 0, with j ∈ I, and τ > 0 such that∑

j∈I
uj∂fj(x

∗) +
∑
j∈I

vj∂sj(x
∗) + τ∂dD(x∗) = 0,

with
∑
j∈I

(uj + vj) = 1 and vjsj(x
∗) = 0, j ∈ I.

Proof The proof follows from Minami [42, Theorem 3.1]. ut

Remark 3 As remarked by Minami [42, Remark 3.1], since D is a closed and
convex set, the cone {w : w ∈ τ∂dD(x∗), τ > 0} is the normal cone ND(x∗).

Remark 4 It is worth to mention that a stronger version of the above theorem
can be found in Mordukhovich [47, Theorem 5.61] and Mordukhovich [48, The-
orem 9.22] by using the Mordukhovich’s subdifferential; see also Mordukhovich
[46]. In [47,48], necessary optimality conditions for local minimizers are given
for constrained multi-objective problems under different perspectives such as
Pareto and weak Pareto points but also to other concepts of minimal points
in multi-objective optimization, for instance, relative, intrinsic relative and
quasi-relative minimal points. A visible disadvantage of weak Pareto points
is the non-empty interior requirement on the order cone in both finite and
infinite dimensional frameworks. In this case, the concept of relative interior
points seems to be reasonable. The relative-type minimal points handle with
a possible empty interior requirement of the order cone and they intermediate
the position between Pareto and weak Pareto minimal points (equivalence be-
tween them holds for instance in finte dimensional spaces with a non-empty
interior order cone).
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4 The algorithm

The (scalar) proximal point method was introduced in the literature by Moreau
[43], Martinet [40] and later popularized by Rockafellar [53] who performs the
method for the problem of finding zeros of operators. We recall that Bonnel
et al. [10] have proposed an extension of the proximal point method to vec-
tor optimization, i.e., when other underlying ordering cones are used instead
of the non-negative orthant Rm+ . If we restrict the analysis to the finite di-
mensional multi-objective setting, the method proposed in [10] generates a
sequence satisfying

xk+1 ∈ argminw

{
F (x) +

λk
2
||x− xk||2εk : x ∈ Ωk

}
, (7)

where {λk} ⊂ R++, {εk} ⊂ Rm+ , Ωk = {x ∈ Rn : F (x) � F (xk)} and
“argminw” denotes the set of weak Pareto solutions. The constrained set Ωk
assures the vector improving process in the sense that F (xk+1) � F (xk).

Recently, Ji et al. [34] have studied a proximal point method for vector
functions F = (f1, . . . , fm) : Rn → Rm such that, for each i ∈ I, fi(·) can be
written as difference of two convex function, namely, fi(x) = gi(x) − hi(x).
At the kth iterate, the algorithm proposed in [34] computes a point xk+1 ∈ S
solution of the following (scalar) subproblem

min
x∈S

max
i∈I

[
gi(x)− 〈vki , x− xk〉

]
+
θk
2
||x− xk||2, (8)

where vki ∈ ∂hi(xk), with ∂hi denoting a subdifferential of hi at xk, θk > 0 for
all k and, S is a compact and convex set. Note that (8) can be written as

min
x∈S

ξ

(
Fk(x) +

θk
2
||x− xk||2e

)
, (9)

where Fk(x) = G(x) − Vk(x − xk), Vk ∈ ∂H(xk), e = (1, . . . , 1) ∈ Rm and
ξ : Rm → R is a scalarization function given by ξ(x) = max1≤j≤m〈x, βj〉
where {βj} is the canonical base of the space Rm. The finite termination of an
algorithm given by (9) was analyzed by Bento et al. [5]. Clearly, the sequence
generated by (9) does not satisfies F (xk+1) � F (xk), for all k ∈ N as in (7).
This descent property plays an important role for a large class of application
problems; see for instance Bento and Soubeyran [7]. Other authors have con-
sidered variants of the proximal method proposed by Bonnel et al. [10] using
the improving constraint F (xk+1) �C F (xk), for some ordering cone C; for in-
stance Apolinário et al. [1], Bento et al. [5], Ceng and Yao [13], Ceng et al. [14],
Choung et al. [15], Villacorta and Oliveira [66]. However, the constrained set
Ωk is convex in all these works.

From now on, we assume the vector functions G,H : Rn → Rm are Rm+ -
convex with H continuously differentiable. Let F be a DC vector function
given by F (x) := G(x)−H(x). Take a vector z ∈ Rm+\{0} fixed, and auxiliar
sequences {λk} ⊂ R++ and {εk} ⊂ Rm++ such that ||εk|| = 1 for all k. In this
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case, the proximal point method generates a sequence {xk} as follows:

ALGORITHM 1.
Initialization: Choose x0 ∈ D.
Stopping rule: Given xk, if xk is a Pareto critical point, then set xk+p = xk

for all p ∈ N.
Iterative step: Take, as next iterate, xk+1 ∈ D such that

xk+1 ∈ arg min

{
〈G(x)− JH(xk)(x− xk) +

λk
2
q2(xk, x)εk, z〉 : x ∈ Ωk

}
,

(10)
where Ωk = {x ∈ D : F (x) � F (xk)}.

Next, we present some interesting comments and existing results about
proximal point methods in vector optimization literature.

Remark 5 As mentioned before, the first extension of the proximal point method
to vector optimization was proposed by Bonnel, Iusem and Svaiter [10] (see
(7)). They assume that each iterate of the sequence is a weak Pareto solution of
a (constrained) vector optimization problem. Note that Algorithm 1 computes
at each subproblem a solution of a scalar problem. This is the well-known
scalarization approach for solving a multi-objective optimization problem. As
mentioned in [10, Remark 5] the difference between the presentation of the
iterative steps in (10) and (7) is not substantial because every solution of the
scalar subproblems (10) is a weak Pareto solution of the subproblem (7) with
F (x) = G(x)− JH(xk)(x− xk); see [38, Proposition 2.2].

Remark 6 Note that in (7), for each k ∈ N, the mapping Fk(x) = F (x) +
λk

2 ||x − x
k||2εk is Rm+ - convex, and hence, its Pareto critical points are weak

Pareto point; see [25, Lemma 3.5]. This is why the authors in [10] take as next
iterate a point xk+1 which is a weak Pareto point of Fk (constrained to Ωk)
besides the fact that the set of weak Pareto contains the Pareto ones. In this
context, it is proved that the algorithm (7) converges to a weak Pareto solution
of F . In some applications it is often the case that only Pareto solutions
(instead of weak Pareto ones) are of interest; see [33]. In order to obtain
convergence of the proximal point method to a Pareto solution (instead of
weak Pareto point), the authors in [10] consider a more restrictive choice of
xk+1, namely, they take xk+1 a properly Pareto point of Fk (see this definition
in [10, page 957]). One has that a properly Pareto point is a Pareto point, and
hence, it is a weak Pareto point.

Remark 7 Recall that Algorithm 1 satisfies xk+1 ∈ Ωk, for all k ≥ 0, i.e.,

F (xk+1) � F (xk), (11)

which is an important property for some application problems, as we will see
in Section 6, while the algorithm in [34] satisfies∑

i∈I
αi(fi(x

k+1)− fi(xk)) ≤ 0, (12)
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for some αi ≥ 0 with
∑
i∈I αi = 1. Clearly, the descent property (11) implies

(12).

Remark 8 It is known that every DC function is a locally Lipschitz function;
see [30]. The proximal point method for locally Lipschitz functions in multi-
objective optimization was analyzed by Bento et al. [4] who firstly considered
a possibly non-convex vector improving constraints Ωk. However, we mention
that Algorithm 1 (applied for DC functions) offers an additional flexibility
for considering, at each step, a linear approximation G(x) − JH(xk)(x − xk)
instead of minimize the non-convex function F (x) = G(x) − H(x) directly.
Minimizing a linear approximation is very important for instance for appli-
cations in Behavioral Sciences when agents are badly informed, i.e., agents
have limited or partial knowledge. An interesting application by using a linear
(local) approximation of each (scalar) cost function was considered by Cruz
Neto et al. [18].

Remark 9 As mentioned in Huang and Yang [32], the vector functions

F (·) and eF (·) := (ef1(·), . . . , efm(·))

have the same set of weak Pareto points, where eα denotes the exponential
map valued at α ∈ R. This result can be easily extended to the Pareto critical
setting. Hence, concerning Pareto critical points, we can assume without loss
of generality that F � 0. On the other hand, any non-negative DC function
admits a non-negative DC decomposition; see [30]. Therefore, we will assume
throughout of this paper that G � 0.

Proposition 3 Algorithm 1 is well-defined.

Proof The proof will be made by induction on k. Let {xk} be a sequence
defined in (10) and φ : Rn → R ∪ {+∞} given by

φ(x) = 〈G(x), z〉 − [JH(xk)(x− xk)]>z +
λk
2
〈εk, z〉q2(xk, x) + IΩk

(x). (13)

Since G � 0 and (1) holds, it follows that φ is coercive taking into account
that (λk/2)〈εk, z〉 > 0. Then, as Ωk is closed, there exists x̃ ∈ Ωk such that

x̃ ∈ argminx∈Ωk
φ(x).

Therefore, we can take xk+1 := x̃ and the induction is done, which ends the
proof. ut

From now on, we consider {xk}, {λk} and {εk} the sequences appearing
in Algorithm 1. Next, we explore deeply the structure of the vector problem
by using the necessary condition for a weak Pareto point of a multi-objective
problem given by Theorem 1. The following result will be used in our main
convergence result.
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Proposition 4 For all k ∈ N, there exist Ak, Bk ∈ Rm×n, uk, vk ∈ Rm+ with
||uk + vk||1 = 1, wk ∈ Rm and τk ∈ R++ such that

[Ak−JH(xk−1)]>uk+λk−1〈εk−1, uk〉q(xk−1, xk)ηk+B>k v
k+τkw

k = 0, (14)

where

Ak ∈ ∂G(xk), Bk ∈ ∂F (xk), wk ∈ B[0, 1] ∩ND(xk), ηk ∈ ∂q(xk−1, ·)(xk).
(15)

Proof It follows from definition of the algorithm that, for each k ∈ N, xk is a
solution of the scalar problem

min

{
〈G(x)− JH(xk−1)(x− xk−1) +

λk−1
2

q2(xk−1, x)εk−1, z〉 : x ∈ Ωk−1
}
.

Thus, from [38, Proposition 2.2], we have that xk is a weak Pareto solution of
the vector problem

minw{G(x)− JH(xk−1)(x− xk−1) +
λk−1

2
q2(xk−1, x)εk−1 : x ∈ Ωk−1}.

Note that

(fk)j(x) = gj(x)− 〈∇h(xk), x− xk〉+
λk
2
q2(xk, x)εkj , with j ∈ I, (16)

and
(sk)j(x) = fj(x)− fj(xk), with j ∈ I, (17)

are locally Lipschitz functions, for each j ∈ I, because each function in (16) is
a sum of the convex function gj(·)−〈∇h(xk), ·−xk〉 with the locally Lipschitz
function λk

2 q
2(xk, ·)εkj and the functions in (17) are DC functions, for each

j ∈ I, and hence locally Lipschitz. Besides, taking into account that xk ∈ D,
we have that ∂dD(xk) = B[0, 1]∩ND(xk); see Burke et al. [12]. For each k ∈ N
fixed applying Theorem 1 for fj(x) = (fk)j(x) and sj(x) = (sk)j(x) given
by (16) and (17), respectively, we obtain that there exist Ak, Bk ∈ Rm×n,
uk, vk ∈ Rm+ with ||uk + vk||1 = 1, wk ∈ Rm and τk ∈ R++ such that

0 ∈ [Ak − JH(xk−1)]>uk +B>k v
k + τkw

k +
λk−1

2
〈εk−1, uk〉∂q2(xk−1, ·)(xk).

(18)
Applying Proposition 2 for f1(x) = f2(x) = q(xk, x), we have

∂q2(xk−1, ·)(xk) ⊂ 2q(xk−1, xk)∂q(xk−1, ·)(xk).

Combining this fact with (18) we have that there exists ηk ∈ ∂q(xk−1, ·)(xk)
such that (15) holds and the proof is finished. ut

Remark 10 Note that from (15), {uk}, {vk} and {wk} are bounded sequences.
As mentioned by Bolte et al. [9, Remark 1], ∂fj is bounded on compact sets.
So, we have that {Ak}, {Bk} and {ηk} are bounded sequences as long as {xk}
is bounded. Therefore, if {λk} and {xk} are bounded sequences, it follows from
(14) that {τk} is also bounded.
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As a consequence of the previous proposition, we obtain the following stop-
ping rule for Algorithm 1.

Corollary 1 Let k0 ∈ N be such that uk0 = 0. Then, xk0 is a Pareto critical
point of F .

Proof If there exists k0 ∈ N such that uk0 = 0, then (14) implies

B>k0v
k0 + τk0w

k0 = 0.

As τk0 > 0 and wk0 ∈ ND(xk0), last equality implies

−B>k0v
k0 ∈ ND(xk0).

Hence, the desired result follows by using Lemma 1 and taking into account
that vk0 ∈ Rm+\{0}. ut

As in [10], the stopping rule in Algorithm 1 can be changed by the following,
which is easier to check: after computing xk+1 the algorithm stops if xk+1 = xk,
i.e., we set xk+p = xk for all p ∈ N. Similar to Corollary 1 last proposition
combined with Lemma 1 allows to see that this condition is sufficient to get
the stopping rule given in Algorithm 1.

Corollary 2 If xk+1 = xk, then xk is a Pareto critical point of F .

5 Convergence analysis

In this section, we analyze the convergence of Algorithm 1. Note that, if the
algorithm terminates after a finite number of iterations, it terminates at a
Pareto critical point. Throughout this paper, we suppose that {xk} is an infi-
nite sequence. Thus, we assume that xk+1 6= xk and uk 6= 0 for all k ∈ N, in
view of Corollaries 2 and 1, respectively. Additionally, we assume that {λk} is
a bounded sequence such that

lim inf
k

λk〈εk, z〉 > 0, (19)

which is easily verified if z ∈ Rm++ and infk∈N λk > 0.

Proposition 5 The following properties hold:

i) {〈F (xk), z〉} is decreasing;
ii) lim

k→+∞
q(xk, xk+1) = 0.

Proof Since H is a differentiable and convex function, we have

〈JH(xk)(xk+1 − xk), z〉 ≤ 〈H(xk+1)−H(xk), z〉, ∀k ∈ N. (20)

On the other hand, from (10), we have, for each k ∈ N,

〈G(xk+1)− JH(xk)(xk+1 − xk) +
λk
2
q2(xk, xk+1)εk, z〉 ≤ 〈G(xk), z〉, (21)
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which, combined with (20) and F (x) = G(x)−H(x), implies that

〈F (xk+1), z〉+
λk
2
〈εk, z〉q2(xk, xk+1) ≤ 〈F (xk), z〉, ∀k ∈ N. (22)

Thus, using that (λk/2)〈εk, z〉 > 0 and xk+1 6= xk for all k ∈ N, item i) is
proved. Now, taking into account that F � 0 and z ∈ Rm+\{0}, from item i),
we have that {〈F (xk), z〉} is a convergent sequence. From (22), we have

0 ≤ λk
2
〈εk, z〉q2(xk, xk+1) ≤ 〈F (xk), z〉 − 〈F (xk+1), z〉, ∀k ∈ N. (23)

Thus, taking k → +∞ in last inequality, we obtain that the right hand-side of
(23) vanishes which combined with (19) leads to the desired result. ut

Theorem 2 Every cluster point of {xk}, if any, is a Pareto critical point of
F .

Proof Let x̂ be a cluster point of {xk} and consider a subsequence {xkl} of
{xk} converging to x̂. From Proposition 4, there exist sequences {Ak}, {Bk} ⊂
Rm×n, {uk}, {vk} ⊂ Rm+ , {wk} ⊂ Rm, {τk} ⊂ R++ and {ηk}, with ηk ∈
∂q(xk−1, ·)(xk), satisfying (14). Since {xkl} is convergent and {λk} is bounded,
it follows from Remark 10 that {Ak}, {Bk}, {uk}, {vk}, {wk}, {τk} and {ηk}
are bounded. Thus, we can assume without loss of generality that Akl → Â,

Bkl → B̂, ukl → û, vkl → v̂, wkl → ŵ and τkl → τ̂ (we may extract other
subsequences if necessary). From (14) we have

[Akl − JH(xkl−1)]>ukl + γklq(x
kl−1, xkl)ηkl +B>klv

kl + τklw
kl = 0, (24)

where γkl = λkl−1〈εkl−1, ukl〉. Note that {γk} is bounded. This fact combined
with Proposition 5 implies that {γklq(xkl−1, xkl)ηkl} converges to 0 as l →
+∞. Note that ∂fi(x) = ∂gi(x) − ∇hi(x), for each i ∈ I; see Bačák and
Borwein [2]. Thus, taking the limit as l→ +∞ in (24) and having in mind the
closedness property of ∂f(·) and ND(·) (in the sense that if wk → w, xk → x
and wk ∈ X (xk), then w ∈ X (x)), we have

Ĉ>û+ B̂>v̂ + τ̂ ŵ = 0, (25)

where Ĉ := (Â− JH(x̂)) ∈ ∂F (x̂), B̂ ∈ ∂F (x̂) and τ̂ ŵ ∈ ND(x̂). Hence, from
(25) we obtain

−(Ĉ>û+ B̂>v̂) ∈ ND(x̂). (26)

Note that û, v̂ ∈ Rm+ and from (15), we have that û 6= 0 or v̂ 6= 0. Therefore,
the desired result follows from (26) combined with Lemma 1. ut
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6 The “group dynamic” problem

In this section, we have in mind a group of producers I = {1, 2, . . . ,m}. The

objective of each of them is a “to be increased” payoff (profit, utility), f̃i(x) =

g̃i(x) − h̃i(x), where g̃i(x) ∈ R+ and h̃i(x) ∈ R+ refer to their scalar revenue
and cost function. The decision variables of the group is the vector x ∈ Rn
which must satisfy some constraints. Each agent wants a payoff as high as
possible. The goal of the group I is to approach and reach a Pareto point, or
a Pareto critical point. The vectorial objective of the group is F̃ (x) = G̃(x)−
H̃(x) ∈ Rm, where F̃ (x) = (f̃1(x), . . . , f̃m(x)), G̃(x) = (g̃1(x), . . . , g̃m(x)) and

H̃(x) = (h̃1(x), . . . , h̃m(x)). In a dynamic cooperative setting, all agents of
the group will accept to change from the last position x = xk to the next,
y = xk+1 only if their payoffs do not decrease, i.e., if f̃i(x

k+1) ≥ f̃i(x
k), for

all i ∈ I. In the opposite case, some agents will quit the group or resist to
change. This defines a cooperative improving dynamic xk+1 ∈ Ω(xk), where

Ω(xk) =
{
y ∈ D : F̃ (y) � F̃ (xk)

}
. The cooperative group dynamic problem

is to find a cooperative improving dynamic xk+1 ∈ Ω(xk) which converges to
(approaches and reaches) a Pareto critical point.

In real life, in a dynamic setting, most of the time, increasing returns pre-
vail, coming from fixed costs, learning by doing, .... This means that each
marginal revenue and cost function is decreasing. Then, each revenue g̃i and
cost h̃i function is concave. In this case the payoff of each agent is a differ-
ence between two concave functions. We consider “to be decreased” payoffs
fi(y) = −f̃i(y), where gi(y) = −g̃i(y) and hi(y) = −h̃i(y), which are the dif-
ference of two convex functions fi(y) = gi(y)− hi(y). Then, we will provide a
multi-objective DC algorithm which converges to a Pareto critical point, with
a very important added requirement: the algorithm must follow a cooperative
improving dynamic xk+1 ∈ Ω(xk). In this behavioral setting, the papers of
Bento et al. [5], Bonnel et al. [10] and Choung et al. [15] make “as if” they
consider this case of a cooperative improving dynamic. However, the afore-
mentioned works use convexity of the improving sets Ω(xk), for all k ∈ N.
A motivation, in a dynamic context, to consider the constrained set Ω(xk) is
given in Bento et al. [5]. In the present paper, we drop this important convexity
hypothesis, allowing for non-convex improving sets with DC multi-objective
payoff functions. The algorithm proposed in Ji et al. [34] cannot be viewed
as a cooperative improving dynamic and this is why algorithm (10) is better
adapted to applications, for instance in behavioral sciences, than algorithm
(8).

In this paper, we suppose that agents have limited (partial) knowledge.
We also suppose that they do not know their cost function, while they are
aware of their revenue function. This is why we consider approximate objective
functions, using a linear local approximation of each cost function (see Cruz
Neto et al. [18] for a more precise justification in the scalar case of one agent,
with one objective).
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6.1 Worthwhile to change processes

For applications, consider the behavioral context of the dynamics of human
behavior, at the level of an agent with several objectives, or at the level of an
organization where each agent has his own objective. We will use the recent
variational rationality approach (see Soubeyran [55–59]) where, at each period,
agents accept to change if these changes are worthwhile. This is the case when
their (vectorial) motivation to change M = U [A] ∈ Rm are high enough with
respect to their (vectorial) resistance to change R = D [I] ∈ Rm+ , i.e., M ≥ ξR.
High enough means that the threshold level ξ > 0 is high enough (it represents
a satisfying ratio).

Let us show very briefly how, in this variational rationality context, our
algorithm (10) represents a worthwhile stay and change process.

This paper considers the linear-quadratic case where the utilities U [A] = A
of their advantages to change A ∈ Rm are higher enough with respect to the
disutilities D [I] = I2 of their inconveniences to change I ∈ Rm+ , i.e., A ≥ ξI2,
where I2 is the vector of squares of each component of vector I. At each period,
advantages to change moving from “repeating the last action x” to “doing
a new action y” are defined as the difference A = A(x, y) = P (y) − P (x)
between the current (to be increased) vectorial payoff P (y) ∈ Rm to do the
current action y and the current vectorial payoff P (x) ∈ Rm to repeat the last
action x. In this paper F (·) = −P (·) represents a vector of unsatisfied needs
(to be decreased). Then, A(x, y) = F (x) − F (y). Inconveniences to change
I(x, y) = C(x, y)− C(x, x) refer to the difference between costs C(x, y) ∈ Rm+
of being able to change from x to y and costs C(x, x) ∈ Rm+ of being able to
repeat action x. In our paper C(x, y) = q2(x, y)ε, where ε ∈ Rm++ is a vector
of shares. Then, a change from x to y is worthwhile if A(x, y) ≥ ξC(x, y)2, i.e.,

F (x)− F (y) � ξq2(x, y)ε.

Let z ∈ Rn++ be a given vector of weights which helps to add different advan-
tages to change and different inconveniences to change, and allow to compare
their scalarized formulations. In this case a change is worthwhile if

〈F (x)− F (y), z〉 ≥ ξq2(x, y)〈ε, z〉.

Let k and k + 1 be the previous and current periods, where x = xk and
y = xk+1. Then, in the current period, a change from repeating the previous
action xk to perform the new action xk+1 is worthwhile if

〈F (xk)− F (xk+1), z〉 ≥ ξkq2(xk, xk+1)〈εk, z〉,

where {εk} and ξk = λk/2 are as in (10).
This proves that our algorithm is a specific instance of a worthwhile stay

and change process (see (22)). Our paper shows when, in the context of co-
operative group dynamics where all agents require, at each period, that their
payoffs do not decrease, a worthwhile stay and change transition approaches
and reaches a Pareto critical point. Future research will consider the case of
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weak Pareto points, to better fits with applications to group dynamics ending
in some trap. Of course the convex case ends in weak Pareto points which are
traps; see [10, Theorem 3.1].

7 Numerical experiments

In this section we present some numerical results to verify the practical effi-
ciency of the proposed method. We consider some academic test problems with
smooth and non-smooth multi-objective DC functions. These functions are in-
troduced in the sequel and after that we report our numerical experiments
analyzing our results under different point of view. We coded our simulations
in MATLAB on a machine AMD Athlon(tm) X2 with a Dual Core Processor
and 1.20 GHz CPU. In all tests we consider Algorithm 1 with D = R2, λk = 1,
for all k ∈ N, q(x, y) = ||x− y|| and the stopping rule ||xk+1 − xk|| < 10−4.

The proximal point method has proved to be an efficient tool in several
instances, be it through direct application or through methods which can be
derived from it. The performance of the method strongly depends on the algo-
rithm used to solve the subproblems. In this situation, it makes little sense to
compare the proximal method with other methods in terms of computational
efficiency, unless a specific procedure is chosen for solving the subproblems.
In this paper, we refrain from discussing algorithms to solve the subproblems,
and hence we skip a discussion of comparing it with other methods. However,
we compare the performance of our method with the proximal-type method
(8) for multi-objective DC function proposed in [34] (called Algorithm 2).
In our simulations the subproblems are solved using the MATLAB routine
“fmincon”.

Problem 1 Let F : R2 → R2 be a non-smooth multi-objective DC function
given by F (x, y) = G(x, y)−H(x, y), where

G(x, y) =
(

(x− 3)2 + (y − 4)2 + 4,
√

(x+ 6)2 + (y + 5)2 + 4
)

and

H(x, y) =
(
0.3(x− 3)2 + 0.2(y − 4)2, 0.01

[
(x+ 6)2 + (y + 5)2

])
.

Problem 2 Let F : R2 → R2 be a multi-objective DC function given by
F (x, y) = G(x, y)−H(x, y), where

G(x, y) =

(
1

2
(x2 + y2)2, x2 + y2

)
and

H(x, y) =

(
1

2
(x4 + y4), 0.5x2 + xy + 0.5y

)
.
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Problem 3 Let F : R2 → R2 be a multi-objective DC function given by
F (x, y) = G(x, y)−H(x, y), where

G(x, y) =
(
x2 + y2, x2 + y2

)
and

H(x, y) =
(
x2 + y2 − xy, 0.5x2 + xy + 0.5y2

)
.

7.1 Computing Pareto critical points

Next, we perform Algorithm 1 for 30 randomly generated starting points. In
this subsection, we consider z = (1, 2) and εk = ( 1√

2
, 1√

2
), for all k ∈ N. The

results are presented in Table 1. The column Iteration (k) refers to the number
of iteration until the stopping rule is satisfied. The column Time(s) shows the
time in second from the starting point is generated to the algorithm stoped.
The other columns present the starting point used, the limit point obtained
and its objective value, respectively.

Table 1 Running 30 times Algorithm 1 for Problem 1 with random starting points

# Iteration (k) Time (s) x0 x∗ F (x∗) = (F1(x∗), F2(x∗))
1 31 8.564 (-23.1101,20.7594) (1.801711408,2.933901786) (5.914379229,13.88901642)
2 8 4.025 (-19.657,-27.781) (-5.590530497,-4.535074441) (113.9360465,4.615694718)
3 31 8.065 (-11.2467,19.0368) (2.174280382,3.269234602) (4.904483488,14.2755238)
4 26 6.942 (-15.9218,5.2465) (0.1859623857,1.437630995) (14.79575333,12.13090998)
5 30 8.595 (25.4511,-10.1971) (2.374066594,3.447416184) (4.518533936,14.47985931)
6 14 5.538 (-17.6675,-8.1308) (-3.795903734,-2.566031225) (70.81922814,7.175810354)
7 24 7.644 (28.5429,13.0136) (2.655948458,3.697500387) (4.156064836,14.76505697)
8 15 5.881 (8.5986,16.954) (2.826545431,3.8479396) (4.039558432,14.935818)
9 18 5.71 (-2.0111,-16.0634) (-2.01363433,-0.7154761526) (39.38414278,9.509718382)
10 30 8.518 (-10.9273,17.3275) (2.143692966,3.241899263) (4.973056628,14.24408509)
11 11 4.54 (8.0666,9.587) (2.933917755,3.942037931) (4.005744483,15.04246158)
12 25 7.925 (2.255,25.153) (2.517563127,3.575056862) (4.307383071,14.62557106)
13 30 8.907 (16.8304,-10.3974) (2.298136341,3.379692696) (4.652653733,14.40236386)
14 28 8.237 (14.3249,-3.736) (2.351373695,3.427171633) (4.557007124,14.45671761)
15 27 8.19 (5.5078,-23.1294) (0.4645940327,1.700468139) (12.73007583,12.44372627)
16 27 7.909 (-10.8501,7.3112) (1.029760389,2.227648398) (9.230275067,13.06591714)
17 16 6.396 (23.6732,27.8152) (2.8987099,3.911178252) (4.013493221,15.00753443)
18 12 5.101 (-28.7962,-23.3609) (-4.457223424,-3.278822358) (85.31213082,6.257982982)
19 17 5.85 (-5.8188,-24.1683) (-2.539302582,-1.251101629) (47.53796585,8.841718983)
20 29 8.455 (-12.4171,10.7225) (1.543743805,2.699572005) (6.837367862,13.61730037)
21 29 8.752 (28.7875,-6.034) (2.434734324,3.501410105) (4.422541203,14.54156822)
22 31 9.236 (19.2531,-22.1028) (2.253850821,3.340097721) (4.738093825,14.35701921)
23 31 9.454 (20.6935,-16.0364) (2.291705828,3.373978638) (4.664698637,14.39580307)
24 17 6.225 (-25.9707,-10.1129) (-3.08244084,-1.81301414) (56.93016736,8.134077027)
25 26 7.924 (4.5141,-21.7908) (0.2061560526,1.456622946) (14.63890829,12.15364477)
26 30 8.97 (22.0679,-10.244) (2.349298103,3.425342324) (4.560574224,14.45461217)
27 15 4.477 (-0.7199,-4.1078) (-2.362582838,-1.070028803) (44.69426,9.06819408)
28 32 9.173 (-14.3675,28.9802) (2.219850717,3.310015134) (4.806906338,14.32233114)
29 20 6.974 (27.9419,26.911) (2.794198542,3.8193532) (4.055754574,14.90348543)
30 15 5.413 (-2.8967,-10.0984) (-3.013352958,-1.741393723) (55.68317121,8.224860327)
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Algorithm 1 solves in each subproblem a multi-objective problem subject
to the constraint set Ωk which imposes a descent process. Such a condition
does not make the algorithm unpractical or even costly. Actually, our analysis
shows that Algorithm 1 has better performance (in all the 30 experiments) in
number of iterations and running time than Algorithm 2. The performance of
Algorithm 2 is presented in Table 2. In Algorithm 2, we use the same MATLAB
routine to solve the subproblems and the same initial points considered in
Table 1. The subproblems are solved subject to the set S = {(x, y) ∈ R2 : a ≤
x ≤ b, c ≤ x ≤ d} large enough to include the solution set.

Table 2 Running 30 times Algorithm 2 for Problem 1 with the same starting points used
in Algorithm 1

# Iteration (k) Time (s) x0 x∗ F (x∗) = (F1(x∗), F2(x∗))
1 46 56.019 (-23.1101,20.7594) (0.6978730274,1.919117585) (11.17410955,12.70254544)
2 24 23.463 (-19.657,-27.781) (0.6978733322,1.919118982) (11.17412519,12.70254271)
3 47 43.383 (-11.2467,19.0368) (0.6978732346,1.919116249) (11.17409894,12.70254729)
4 43 38.47 (-15.9218,5.2465) (0.6978733502,1.919118773) (11.17412379,12.70254296)
5 51 49.998 (25.4511,-10.1971) (0.697870314,1.919088557) (11.17381005,12.70259762)
6 40 33.649 (-17.6675,-8.1308) (0.6978731952,1.919116781) (11.17410326,12.70254654)
7 52 48.438 (28.5429,13.0136) (0.6978706872,1.919089272) (11.17381954,12.70259597)
8 45 41.122 (8.5986,16.954) (0.6978734559,1.919117146) (11.17410915,12.70254551)
9 41 37.534 (-2.0111,-16.0634) (0.6978705264,1.919088559) (11.17381152,12.70259737)
10 46 41.496 (-10.9273,17.3275) (0.6978733094,1.919118079) (11.17411692,12.70254415)
11 40 36.379 (8.0666,9.587) (0.6978702805,1.919088136) (11.17380551,12.70259842)
12 49 45.194 (2.255,25.153) (0.6978730399,1.91911907) (11.17412397,12.70254293)
13 49 44.491 (16.8304,-10.3974) (0.6978704721,1.91908895) (11.17381488,12.70259678)
14 50 43.555 (14.3249,-3.736) (0.6978709245,1.919089005) (11.17381898,12.70259607)
15 45 40.607 (5.5078,-23.1294) (0.6978704927,1.919088007) (11.17380594,12.70259834)
16 43 37.237 (-10.8501,7.3112) (0.6978733224,1.919118831) (11.17412434,12.70254286)
17 47 43.119 (23.6732,27.8152) (0.6978704995,1.919088169) (11.17380758,12.70259805)
18 39 34.772 (-28.7962,-23.3609) (0.6978731226,1.919117273) (11.17410761,12.70254578)
19 41 35.631 (-5.8188,-24.1683) (0.6978707302,1.919089952) (11.17382637,12.70259478)
20 45 38.516 (-12.4171,10.7225) (0.6978732224,1.919116208) (11.17409815,12.70254743)
21 51 47.112 (28.7875,-6.034) (0.6978705631,1.919088) (11.17380621,12.70259829)
22 49 45.442 (19.2531,-22.1028) (0.6978706227,1.91908848) (11.17381226,12.70259724)
23 50 47.097 (20.6935,-16.0364) (0.6978707782,1.919088881) (11.17381676,12.70259646)
24 41 36.114 (-25.9707,-10.1129) (0.6978733163,1.919118396) (11.17411966,12.70254368)
25 45 39.718 (4.5141,-21.7908) (0.6978706845,1.919089198) (11.17381916,12.70259604)
26 51 46.411 (22.0679,-10.244) (0.6978709668,1.919089126) (11.1738205,12.7025958)
27 38 29.952 (-0.7199,-4.1078) (0.6978706621,1.919089802) (11.17382461,12.70259509)
28 48 44.382 (-14.3675,28.9802) (0.6978734495,1.919117127) (11.17410888,12.70254556)
29 48 44.71 (27.9419,26.911) (0.6978699387,1.919088207) (11.17380254,12.70259893)
30 39 32.292 (-2.8967,-10.0984) (0.697870396,1.919090211) (11.17382542,12.70259495)

It is worth to mention that Algorithm 2 finds the same Pareto critical
point of Problem 1 in all the 30 experiments. On the other hand, our method
has been shown to be efficient to obtain an approximation of the solution set
when it is performed many times for different initial points. This is illustrated
in Figures 1, 2 and 3 where the blue squares, red stars and blue stars denote
the generated initial points, the points of the sequence and the limit points of
the sequence generated by Algorithm 1, respectively.
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Fig. 1 Approximation of the solution set of Problem 1

Fig. 2 Approximation of the solution set of Problem 2
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Fig. 3 Approximation of the solution set of Problem 3

We also mention that Algorithm 2 does not necessarily decrease all the
components of the objective function as our method does. This is shown in
Table 3 and 4 where the algorithms are applied to solve Problem 1 with initial
point x0 = (20,−20). In last column of Table 4 we report the values F (xk+1)−
F (xk) for Algorithm 2 proving that the method is not a descent process.

7.2 Analysis of the parameters εk and z

In this subsection we analyze the performance of Algorithm 1 taking into ac-
count the variation of the parameters εk and z for Problem 1. Firstly, we
analyze the influence of the parameter εk in the time of convergence of Al-
gorithm 1 by considering it fixed and variable in all iterations. For this case,
we run the algorithm 30 times with randomly generated initial points. Each
time, it is considered εk = ( 1√

2
, 1√

2
) fixed, for all k ∈ N, and εk randomly

variable for each k ∈ N. The results are presented in Figure 4. One can note
that considering the parameter εk variable provided a better performance of
the method.

Secondly, we study the influence of parameter z in the time of convergence
of the algorithm. To this end, we run the algorithm 30 times for each one
of the following four cases: case 1 the initial point is (−20,−20); case 2 the
initial point is (20, 20); case 3 the initial point is (−20, 20); case 4 the initial
point is (20,−20). In all these cases, we consider the parameter εk randomly
variable for each k ∈ N and for each one of the 30 times that the algorithm
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was performed we take z = (10 cos(nπ60 ), 10 sin(nπ60 )), for n = 1, 2 . . . , 30. One
can note that the choice of the parameter z does not significantly change the
performance of the method (worst performance) except if it is taken close to
the y-axis.

Table 3 Algorithm 1 applied to Problem 1 from the starting point x0 = (20,−20)

Iteration (k) time (s) ||xk+1 − xk|| xk F (xk) = (F1(xk), F2(xk))
1 0.344 91.355 (15.07009249,-12.30890954) (318.7654171,21.32808068)
2 0.339 63.359 (11.46189075,-7.100753285) (152.7038953,18.49449446)
3 0.296 43.751 (8.83401866,-3.602828076) (74.06743741,16.67966911)
4 0.312 30.085 (6.934829845,-1.269588972) (37.05287448,15.64975494)
5 0.305 20.636 (5.572649163,0.2804881576) (19.70078128,15.10234905)
6 0.329 14.144 (4.601146173,1.308425417) (11.59022734,14.81434204)
7 0.33 0.96991 (3.910751674,1.989659653) (7.813802678,14.65680253)
8 0.309 0.66589 (3.421126776,2.440962486) (6.068621808,14.56397469)
9 0.344 0.45786 (3.074246629,2.739804181) (5.274333595,14.50424937)
10 0.314 0.31535 (2.828596791,2.937552554) (4.923601002,14.46269997)
11 0.359 0.2176 (2.654637849,3.068279015) (4.777975705,14.43215578)
12 0.359 0.15044 (2.531419453,3.154591954) (4.725469221,14.40897532)
13 0.331 0.10422 (2.444108011,3.21149476) (4.713703543,14.39112213)
14 0.25 0.072117 (2.384114703,3.251515485) (4.713703545,14.37973172)
15 0.278 0.049534 (2.344644073,3.28144279) (4.713703545,14.37434991)
16 0.287 0.033816 (2.318576009,3.302982706) (4.713703545,14.37183977)
17 0.187 0.023001 (2.301273056,3.318136737) (4.713703548,14.37067808)
18 0.218 0.01561 (2.28973383,3.32864975) (4.713703549,14.37014301)
19 0.223 0.010577 (2.282010948,3.335876748) (4.71370355,14.36989735)
20 0.22 0.0071596 (2.276827812,3.340815901) (4.71370355,14.36978478)
21 0.205 0.0048432 (2.273342172,3.344178539) (4.713703551,14.36973328)
22 0.218 0.0032749 (2.270994746,3.346462043) (4.713703551,14.36970973)
23 0.219 0.0022137 (2.269412284,3.348010101) (4.713703551,14.36969897)
24 0.179 0.0014914 (2.2683481,3.349054953) (4.713703715,14.36969398)
25 0.172 0.0010094 (2.267628752,3.349763082) (4.713703791,14.36969169)
26 0.172 0.00068307 (2.267142392,3.350242705) (4.713703825,14.36969065)
27 0.187 0.00046217 (2.266813509,3.350567421) (4.713703841,14.36969017)
28 0.187 0.00031274 (2.266591055,3.350787235) (4.713703848,14.36968995)
29 0.14 0.0002783 (2.266393133,3.350982876) (4.713703906,14.3696898)
30 0.11 0.00015983 (2.266279497,3.351095267) (4.713703926,14.36968975)
31 0.11 9.1935E-005 (2.266214143,3.351159926) (4.713703932,14.36968973)

8 Final remarks

Convergence properties of a proximal point method for vector-valued DC func-
tions adding a (non-convex) vectorial improving constraint have been proved.
Bento et al. [4] handled with a proximal algorithm for multi-objective optimiza-
tion involving locally Lipchitz vector functions and (non-convex) vectorial im-
proving constraints. Although we use the same approach of convergence anal-
ysis our method is different to the one considered in [4] because it minimizes
at each iteration a convex approximation instead of the (non-convex) objec-
tive function. Our method generalizes (in a finite dimensional multi-objective
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Table 4 Algorithm 2 applied to Problem 1 from the starting point x0 = (20,−20)

Iteration (k) time (s) ||xk+1 − xk|| xk F (xk+1)− F (xk)
1 2.008 540.2782 (12.562497,-8.000002916) (-483.89099980,-5.73896609)
2 1.406 396.3238 (8.378802864,-1.99999502) (-130.15698383,-2.73676509)
3 0.861 108.2335 (6.025582502,1.000009166) (-35.44415573,-0.89777979)
4 0.548 28.0215 (5.144387567,1.498727569) (-5.38389099,-0.39665191)
5 0.733 1.1728 (4.610249688,1.187252036) (-0.07969592,-0.46260705)
6 0.641 0.88719 (4.067198442,0.8705688819)) (0.48763633,-0.47816945)
7 0.502 0.83687 (3.527535025,0.7120754666) (0.21125337,-0.42110684
8 0.504 0.68461 (3.043118796,0.7434488424) (-0.35776162,-0.30941565)
9 0.521 0.57117 (2.614787298,0.803043836) (-0.20510666,-0.25709370)
10 0.516 0.47313 (2.252940969,0.9022951263) (-0.21300673,-0.19125228)
11 0.578 0.38491 (1.952390871,1.016024702)) (-0.17576213,-0.13957153
12 0.77 0.31081 (1.707198679,1.133397375) (-0.14766312,-0.09763097)
13 0.543 0.25051 (1.508999834,1.245808462) (-0.11924930,-0.06655698
14 0.439 0.2022 (1.349762745,1.348786032) (-0.09516737,-0.04419338)
15 0.484 0.16364 (1.2221836 ,1.440223332) (-0.07503942,-0.02867450)
16 0.464 0.13283 (1.120031828,1.519695262) (-0.05888158,-0.01815865)
17 0.42 0.10802 (1.038228736,1.587677475) (-0.04610299,-0.01117334)
18 0.394 0.087993 (0.9726313697,1.645176892) (-0.03611252,-0.00662644)
19 0.405 0.071745 (0.9199493651,1.693397949) (-0.02835212,-0.00371806)
20 0.393 0.058524 (0.877569491,1.733578141) (-0.02232555,-0.00189737)
21 0.394 0.047747 (0.8434215179,1.766894321) (-0.01764201,-0.00078698
22 0.417 0.038954 (0.8158644645,1.794414643) (-0.01399127,-0.00013417)
23 0.408 0.031775 (0.7935956034,1.817080566) (-0.01113498,0.00022864)
24 0.385 0.025915 (0.7755783156,1.835705368) (-0.00889078,0.00041115)
25 0.396 0.021131 (0.7609856084,1.850981736) (-0.00711987,0.00048440)
26 0.345 0.017228 (0.749155217,1.863494331) (-0.00571666,0.00049383)
27 0.36 0.014042 (0.7395576356,1.873730913) (-0.00460079,0.00046820)
28 0.359 0.011444 (0.7317663605,1.882097829) (-0.00370959,0.00042505)
29 0.343 0.0093247 (0.7254380348,1.888931632) (-0.00299615,0.00037520)
30 0.323 0.0075974 (0.7202956245,1.894510011) (-0.00242332,0.00032481)
31 0.345 0.0061895 (0.7161152716,1.899061535) (-0.00196234,0.00027728)
32 0.345 0.0050422 (0.7127158586,1.902773916) (-0.00159064,0.00023429)
33 0.374 0.0041075 (0.7099506166,1.905801125) (-0.00129045,0.00019641)
34 0.326 0.0033462 (0.7077005881,1.908269211) (-0.00104770,0.00016369)
35 0.361 0.0027263 (0.7058691266,1.910281391) (-0.00085115,0.00013580)
36 0.329 0.0022222 (0.7043774777,1.911922317) (-0.00069195,0.00011227)
37 0.375 0.0018085 (0.7031644616,1.913258462) (-0.00056303,0.00009260)
38 0.551 0.0014687 (0.7021800244,1.914343991) (-0.00045720,0.00007604)
39 0.55 0.0011961 (0.7013784133,1.915228136) (-0.00037062,0.00006216)
40 0.527 0.00097422 (0.7007257972,1.915948489) (-0.00030196,0.00005102)
41 0.532 0.00079357 (0.7001943229,1.916535355) (-0.00024561,0.00004174)
42 0.527 0.00064653 (0.699761428,1.917013555) (-0.00019999,0.00003414)
43 0.583 0.00052688 (0.6994087086,1.917403296) (-0.00016283,0.00002791)
44 0.567 0.00042954 (0.6991211918,1.91772106) (-0.00013266,0.00002280)
45 0.547 0.0003504 (0.6988866665,1.917980293) (-0.00010812,0.00001864)
46 0.296 0.00028612 (0.6986951772,1.918191971) (-0.00008819,0.00001523)
47 0.141 0.0013963 (0.6977027884,1.919174066) (-0.00008819,0.00001523)
48 0.205 0.00022594 (0.697905313,1.919118593) (-0.00046806,0.00008155)
49 0.153 5.0025e-005 (0.6978705211,1.919087548) (0.000215490,-0.00003755)
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Fig. 4 Parameter εk in Algorithm 1: fixed × variable

Fig. 5 Variety of parameters z in Algorithm 1
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setting) the exact proximal point method introduced by Bonnel et al. [10] and
our descent property implies the one obtained by Ji et al. [34] who do not
consider vectorial improving constraints. Preliminary computational experi-
ments have been conducted to check that the non-convex constraints does not
make the method costly. The performance of the method has been compared
to the proximal method considered by [34]. It also has been shown how our
proximal method can greatly help to solve a “group dynamic” problem by
using the recent variational rationality approach. In view of Remarks 4 and
6, it seems to be interesting to extend the approach proposed in [4] to in-
finite dimensional space and consider the concepts of relative minimizers in
multi-objective optimization given by Mordukhovich [47,48] which generalize
the concepts of Pareto and weak Pareto points. We will consider this topic in
a future research.
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